搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫离子注入纳米金刚石薄膜的微结构和电化学性能

蒋梅燕 朱政杰 陈成克 李晓 胡晓君

引用本文:
Citation:

硫离子注入纳米金刚石薄膜的微结构和电化学性能

蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君

Microstructural and electrochemical properties of sulfur ion implanted nanocrystalline diamond films

Jiang Mei-Yan, Zhu Zheng-Jie, Chen Cheng-Ke, Li Xiao, Hu Xiao-Jun
PDF
HTML
导出引用
  • 采用热丝化学气相沉积法制备纳米金刚石薄膜, 并对薄膜进行硫离子注入和真空退火处理. 系统研究了退火温度对薄膜微结构和电化学性能的影响. 结果表明, 硫离子注入有利于提升薄膜的电化学可逆性. 在800 °C及以下温度退火时, 薄膜中晶界处的非晶碳相逐渐向反式聚乙炔相转变, 致使电化学性能逐渐变差. 当退火温度上升到900 °C时, Raman光谱和TEM结果显示此时薄膜中金刚石相含量较多且晶格质量较好, 晶界中的反式聚乙炔发生裂解; X射线光电子能谱结果表明, 此时C—O键、C=O键、π—π*含量显著增多; Hall效应测试显示此时薄膜迁移率与载流子浓度较未退火时明显升高; 在铁氰化钾电解液中氧化还原峰高度对称, 峰电位差减小至0.20 V, 电化学活性面积增加到0.64 mC/cm2, 电化学可逆性远好于600, 700, 800 °C退火时的样品.
    Nanocrystalline diamond (NCD) films have a composite structure composed of diamond grains and amorphous carbon grain boundaries. Compared with microcrystalline diamond (MCD) films, the NCD film grain boundaries are rich in a large number of π bonds, thus providing conductive channels. Its conductivity is 3−7 orders of magnitude higher than that of MCD, and the surface of NCD film is uniform and dense, and the roughness is lower, so the NCD film is a promising electrode material. In our previous study, microwave plasma chemical vapor deposition was successfully used to prepare n-type sulfur-doped diamond films with good electrical properties. However, the electrochemical properties of sulfur-doped nanocrystalline diamond films have not been studied till now. In the present work, the nanocrystalline diamond films are prepared by the hot-wire chemical vapor deposition. The films are subjected to ion implantation and vacuum annealing. The effects of annealing temperature on the microstructure and electrochemical properties of the films are investigated. The results show that the sulfur ion implantation is beneficial to the improvement of the electrochemical reversibility of the film. When annealed at 800 °C and below, the amorphous carbon phase at the grain boundary in the film gradually changes into the trans-acetylene phase, resulting in a gradual deterioration of electrochemical performance. When the annealing temperature rises to 900 °C, Raman spectrum and TEM results show that the film has more diamond phase content and better lattice quality, and the trans-polyacetylene in the grain boundary is cracked; XPS results indicate that the CO bond at this time, C=O bond, and π—π* content increase significantly; Hall test shows that the film mobility and carrier concentration are significantly higher than those of unannealed film. The redox peak in the electrolyte is highly symmetrical, the peak potential difference is reduced to 0.20 V, the electrochemical active area is increased to 0.64 mC/cm2, and the electrochemical reversibility is much better thanthose of samples annealed at 600 °C, 700 °C, and 800 °C, respectively.
      通信作者: 胡晓君, huxj@zjut.edu.cn
      Corresponding author: Hu Xiao-Jun, huxj@zjut.edu.cn
    [1]

    Chailapakul O, Aksharanandana P, Frelink T 2001 Sens. Actuators, B 80 193Google Scholar

    [2]

    Denisova A E, Pleskov Y V 2008 Russ. J. Electrochem. 44 1083Google Scholar

    [3]

    Green S J, Mahe L S A, Rosseinsky D R 2013 Electrochim. Acta 107 111Google Scholar

    [4]

    ubomír Š L, Jozef S, Jana S 2013 Electrochim. Acta 87 503Google Scholar

    [5]

    Xu H, Chen C K, Fan D, Jiang M Y, Li Xiao, Hu X J 2019 Carbon 145 187Google Scholar

    [6]

    顾珊珊, 胡晓君, 黄凯 2013 物理学报 62 118101Google Scholar

    Gu S S, Hu X J, Huang K 2013 Acta Phys. Sin. 62 118101Google Scholar

    [7]

    潘金平, 胡晓君, 陆利平, 印迟 2010 物理学报 59 7410Google Scholar

    Pan J P, Hu X J, Lu L P, Yin C 2010 Acta Phys. Sin. 59 7410Google Scholar

    [8]

    Wang S, Swope V M, Butler J E 2009 Diamond Relat. Mater. 18 669Google Scholar

    [9]

    Barek J, Jandová K, Pecková K, Zima J 2007 Talanta 74 421Google Scholar

    [10]

    Williams O A, Nesladek M, Daenen M, Michaelson S, Hoffman A, Osawa E, Heaner K, Jackman R B 2008 Diamond Relat. Mater. 17 1080Google Scholar

    [11]

    Jiang M Y, Yu H, Li X, Lu S H, Hu X J 2017 Electrochim. Acta 258 61Google Scholar

    [12]

    Hu X J, Ye J S, Hu H, Chen X H, Shen Y G 2011 Appl. Phys. Lett. 99 131902Google Scholar

    [13]

    Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H 2011 J. Appl. Phys. 109 053524Google Scholar

    [14]

    王锐, 胡晓君 2014 物理学报 63 148102Google Scholar

    Wang R, Hu X J 2014 Acta Phys. Sin. 63 148102Google Scholar

    [15]

    胡晓君, 李荣斌, 沈荷生, 戴永兵, 何贤昶 2004 半导体学报 25 8

    Hu X J, Li R B, Shen H S, Dai Y B, He X C 2004 Journal Semiconductors 25 8

    [16]

    Galář P, Dzurňák B, Varga M 2014 Opt. Mater. Express 4 624Google Scholar

    [17]

    Ferrari A C, Robertson 2001 Phys. Rev. B 64 075414Google Scholar

    [18]

    Ferrari A C, Robertson 2001 Phys. Rev. B 63 121405Google Scholar

    [19]

    Chhowalla M, Ferrari A C, Robertson J, Amaratunga G A J 2000 Appl. Phys. Lett. 76 1419Google Scholar

    [20]

    Ferrari A C, Robertson J 2004 P. Roy. Soc. A-Math. Phy. 362 2477

    [21]

    Mei Y S, Fan D, Lu S H, Shen Y G, Hu X J 2016 J. Appl. Phys. 120 225107Google Scholar

    [22]

    Hu X J, Chen C K, Lu S H 2016 Carbon 98 671Google Scholar

    [23]

    Pleskov Y V, Krotova M D, Ralchenko V G 2010 Russ. J. Electrochem. 46 1063Google Scholar

    [24]

    Pleskov Y V, Krotova M D, Saveliev A V, Ralchenko V G 2007 Diamond Relat. Mater. 16 2114Google Scholar

    [25]

    Simon N, Girard H, Ballutaud D 2005 Diamond Relat. Mater. 14 1179Google Scholar

    [26]

    Osswald S, Yushin G, Mochalin V, Kucheyev S O, Gogotsi Y 2006 J. Am. Chem. Soc. 128 11635Google Scholar

  • 图 1  (a) NCD, (b) SNCD-Un, (c) SNCD-900的FESEM表面形貌图

    Fig. 1.  FESEM surface topography of (a) NCD, (b) SNCD-Un, (c) SNCD-900.

    图 2  不同退火温度的SNCD在1 mol/L的KCl体系中背景电流

    Fig. 2.  Background current of SNCD in 1 mol/L KCl system at different annealing temperatures.

    图 3  不同退火温度的SNCD在0.001 mol/L K3Fe(CN)6 + 1 mol/L KCl体系中以100 mV/s扫速下的循环伏安图

    Fig. 3.  Cyclic voltammograms of SNCD at different annealing temperatures in a 0.001 mol/L K3Fe(CN)6 + 1 mol/L KCl system at a sweep speed of 100 mV/s.

    图 4  不同退火温度的SNCD薄膜的(a)可见光Raman图谱及其Gaussian拟合结果; (b)拟合得到的金刚石与TPA含量演化图; (c) 拟合得到的ID/IG值演化图; (d)拟合得到的金刚石峰半峰宽演化图

    Fig. 4.  (a) The visible Raman map and its Gaussian fitting results and the evolution of, (b) ID/ IG value and the G peak positon, (c) the diamond and TPA content and (d) the peak width of the diamond peak (FWHMDia) of SNCD film with different annealing temperatures.

    图 5  (a) SNCD-Un, (b) SNCD-600, (c) SNCD-800, (d) SNCD-900的HRTEM图(每张图片的右上角FT0代表该区域的整个傅里叶变换图, FT1, FT2, FT3分别表示对图上所标该区域做傅里叶变换)

    Fig. 5.  HRTEM image of (a) SNCD-Un, (b) SNCD-600, (c) SNCD-800, (d) SNCD-900 (the upper right corner of each picture, FT0, represents the entire Fourier transform of the region; FT1, FT2, and FT3 respectively represent the Fourier transform of the region marked on the graph).

    图 6  SNCD-600, SNCD-800和SNCD-900的C 1s分峰谱图

    Fig. 6.  C 1s peak spectrum of SNCD-600, SNCD-800 and SNCD-900.

    表 1  不同退火温度的SNCD电极在100 mV/s扫描速率下峰电位信息及电化学活性面积

    Table 1.  Peak potential information and electrochemically active area of SNCD electrodes with different annealing temperatures at a scanning rate of 100 mV/s.

    样品名称峰电位差ΔEp/V电化学活性
    面积ΔQC/mC·cm–2
    NCD0.380.31
    SNCD-Un0.260.39
    SNCD-6000.270.36
    SNCD-7000.350.32
    SNCD-8000.11
    SNCD-9000.200.64
    SNCD-10000.230.69
    下载: 导出CSV

    表 2  SNCD-Un和SNCD-900的霍尔效应测试结果

    Table 2.  Hall effects test results of samples SNCD-Un and SNCD-900.

    样品名称电阻率/Ω·square–1霍尔系数/m2·C–1迁移率/cm2·V–1·s–1载流子浓度/cm–2导电类型
    SNCD-Un0.3192.2614.22.76 × 1014n
    SNCD-9000.36510.3056.26.08 × 1014n
    下载: 导出CSV

    表 3  由C 1s谱图拟合得到的SNCD-600, SNCD-800和SNCD-900表面各键的含量

    Table 3.  Contents of the bonds on the surface of SNCD-600, SNCD-800 and SNCD-900 calculated by C 1s spectral fitting.

    样品名称sp2C/%sp3C/%C—O/%C=O/%π—π*/%
    SNCD-60056.5325.787.557.802.33
    SNCD-80049.0928.738.358.884.92
    SNCD-90020.3730.4720.9719.628.58
    下载: 导出CSV
  • [1]

    Chailapakul O, Aksharanandana P, Frelink T 2001 Sens. Actuators, B 80 193Google Scholar

    [2]

    Denisova A E, Pleskov Y V 2008 Russ. J. Electrochem. 44 1083Google Scholar

    [3]

    Green S J, Mahe L S A, Rosseinsky D R 2013 Electrochim. Acta 107 111Google Scholar

    [4]

    ubomír Š L, Jozef S, Jana S 2013 Electrochim. Acta 87 503Google Scholar

    [5]

    Xu H, Chen C K, Fan D, Jiang M Y, Li Xiao, Hu X J 2019 Carbon 145 187Google Scholar

    [6]

    顾珊珊, 胡晓君, 黄凯 2013 物理学报 62 118101Google Scholar

    Gu S S, Hu X J, Huang K 2013 Acta Phys. Sin. 62 118101Google Scholar

    [7]

    潘金平, 胡晓君, 陆利平, 印迟 2010 物理学报 59 7410Google Scholar

    Pan J P, Hu X J, Lu L P, Yin C 2010 Acta Phys. Sin. 59 7410Google Scholar

    [8]

    Wang S, Swope V M, Butler J E 2009 Diamond Relat. Mater. 18 669Google Scholar

    [9]

    Barek J, Jandová K, Pecková K, Zima J 2007 Talanta 74 421Google Scholar

    [10]

    Williams O A, Nesladek M, Daenen M, Michaelson S, Hoffman A, Osawa E, Heaner K, Jackman R B 2008 Diamond Relat. Mater. 17 1080Google Scholar

    [11]

    Jiang M Y, Yu H, Li X, Lu S H, Hu X J 2017 Electrochim. Acta 258 61Google Scholar

    [12]

    Hu X J, Ye J S, Hu H, Chen X H, Shen Y G 2011 Appl. Phys. Lett. 99 131902Google Scholar

    [13]

    Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H 2011 J. Appl. Phys. 109 053524Google Scholar

    [14]

    王锐, 胡晓君 2014 物理学报 63 148102Google Scholar

    Wang R, Hu X J 2014 Acta Phys. Sin. 63 148102Google Scholar

    [15]

    胡晓君, 李荣斌, 沈荷生, 戴永兵, 何贤昶 2004 半导体学报 25 8

    Hu X J, Li R B, Shen H S, Dai Y B, He X C 2004 Journal Semiconductors 25 8

    [16]

    Galář P, Dzurňák B, Varga M 2014 Opt. Mater. Express 4 624Google Scholar

    [17]

    Ferrari A C, Robertson 2001 Phys. Rev. B 64 075414Google Scholar

    [18]

    Ferrari A C, Robertson 2001 Phys. Rev. B 63 121405Google Scholar

    [19]

    Chhowalla M, Ferrari A C, Robertson J, Amaratunga G A J 2000 Appl. Phys. Lett. 76 1419Google Scholar

    [20]

    Ferrari A C, Robertson J 2004 P. Roy. Soc. A-Math. Phy. 362 2477

    [21]

    Mei Y S, Fan D, Lu S H, Shen Y G, Hu X J 2016 J. Appl. Phys. 120 225107Google Scholar

    [22]

    Hu X J, Chen C K, Lu S H 2016 Carbon 98 671Google Scholar

    [23]

    Pleskov Y V, Krotova M D, Ralchenko V G 2010 Russ. J. Electrochem. 46 1063Google Scholar

    [24]

    Pleskov Y V, Krotova M D, Saveliev A V, Ralchenko V G 2007 Diamond Relat. Mater. 16 2114Google Scholar

    [25]

    Simon N, Girard H, Ballutaud D 2005 Diamond Relat. Mater. 14 1179Google Scholar

    [26]

    Osswald S, Yushin G, Mochalin V, Kucheyev S O, Gogotsi Y 2006 J. Am. Chem. Soc. 128 11635Google Scholar

  • [1] 陆益敏, 汪雨洁, 徐曼曼, 王海, 奚琳. 磁场辅助激光生长类金刚石膜的微结构及光学性能. 物理学报, 2024, 73(10): 108101. doi: 10.7498/aps.73.20240145
    [2] 蒋梅燕, 王平, 陈爱盛, 陈成克, 李晓, 鲁少华, 胡晓君. 纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究. 物理学报, 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [3] 张永泉, 姚安权, 杨柳, 朱凯, 曹殿学. 水系镁离子电池正极材料钠锰氧化物的制备及电化学性能. 物理学报, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [4] 何学敏, 钟伟, 都有为. 核壳结构磁性复合纳米材料的可控合成与性能. 物理学报, 2018, 67(22): 227501. doi: 10.7498/aps.67.20181027
    [5] 王桂强, 刘洁琼, 董伟楠, 阎超, 张伟. 氮/硫共掺杂多孔碳纳米片的制备及其电化学性能. 物理学报, 2018, 67(23): 238103. doi: 10.7498/aps.67.20181524
    [6] 杨秀涛, 梁忠冠, 袁雨佳, 阳军亮, 夏辉. 多孔碳纳米球的制备及其电化学性能. 物理学报, 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [7] 王锐, 胡晓君. 氧离子注入纳米金刚石薄膜的微结构和电化学性能研究. 物理学报, 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [8] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [9] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [10] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响. 物理学报, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [11] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [12] 胡衡, 胡晓君, 白博文, 陈小虎. 退火时间对硼掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, 2012, 61(14): 148101. doi: 10.7498/aps.61.148101
    [13] 胡晓君, 胡衡, 陈小虎, 许贝. 磷离子注入纳米金刚石薄膜的n型导电性能与微结构研究. 物理学报, 2011, 60(6): 068101. doi: 10.7498/aps.60.068101
    [14] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [15] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [16] 潘金平, 胡晓君, 陆利平, 印迟. 退火对B掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, 2010, 59(10): 7410-7416. doi: 10.7498/aps.59.7410
    [17] 刘 峰, 孟月东, 任兆杏, 舒兴胜. 感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究. 物理学报, 2008, 57(3): 1796-1801. doi: 10.7498/aps.57.1796
    [18] 张红娣, 安玉凯, 麦振洪, 高 炬, 胡凤霞, 王 勇, 贾全杰. La0.8Ca0.2MnO3/SrTiO3薄膜厚度对其结构及磁学性能的影响. 物理学报, 2007, 56(9): 5347-5352. doi: 10.7498/aps.56.5347
    [19] 刘小兵, 史向华, 廖太长, 任 鹏, 柳 玥, 柳 毅, 熊祖洪, 丁训民, 侯晓远. 声空化物理化学综合法制备发光多孔硅薄膜的微结构与发光特性. 物理学报, 2005, 54(1): 416-421. doi: 10.7498/aps.54.416
    [20] 王永谦, 陈维德, 陈长勇, 刁宏伟, 张世斌, 徐艳月, 孔光临, 廖显伯. 快速热退火和氢等离子体处理对富硅氧化硅薄膜微结构与发光的影响. 物理学报, 2002, 51(7): 1564-1570. doi: 10.7498/aps.51.1564
计量
  • 文章访问数:  7602
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-19
  • 修回日期:  2019-05-14
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-20

/

返回文章
返回