搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氩/氧等离子体处理对纳米金刚石/石墨烯复合薄膜的微结构和电化学性能的影响

姜波 张建平 蒋梅燕 陈爱盛 胡晓君

引用本文:
Citation:

氩/氧等离子体处理对纳米金刚石/石墨烯复合薄膜的微结构和电化学性能的影响

姜波, 张建平, 蒋梅燕, 陈爱盛, 胡晓君

Effects of argon/oxygen plasma treatment on microstructure and electrochemical properties of nanodiamond/graphene composite films

JIANG Bo, ZHANG Jianping, JIANG Meiyan, CHEN Aisheng, HU Xiaojun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 金刚石/石墨烯复合薄膜电极因能发挥金刚石的低背景电流和宽电势窗口,且兼具石墨烯的高电化学活性,引起了人们的广泛关注。本文采用氩氧等离子体对纳米金刚石/石墨复合薄膜进行刻蚀,通过改变刻蚀时间调控薄膜表面的石墨层数,获得少层石墨烯包覆纳米金刚石的表面结构,进而构建少层石墨烯包覆纳米金刚石的表层和石墨组分较多的导电性良好的底层,形成双层结构。结果表明,氩/氧等离子体处理时间达到5 min时,薄膜表层石墨组分被刻蚀成少层石墨包覆纳米金刚石的结构,增大了电阻率(2918.3 Ω·cm)及电势窗口(3.43 V);并且表面态由氢终止转变成氧终止,使金刚石晶粒具有正电子亲和势,电化学活性面积从387增加到2893 μC/cm2。随着处理时间继续延长至20 min时,薄膜表面的石墨层数不断减少,裸露的金刚石相含量增多,薄膜的电阻率增加,电化学活性面积减少;当刻蚀时间达到25 min时,复合薄膜下层石墨层暴露,金刚石表面的石墨转变为少层石墨烯,形成少层石墨烯包覆金刚石的顶层和石墨底层的双层结构,使得电化学活性再次提升(775 μC/cm2),并降低了复合薄膜的电阻率(1060.0 Ω·cm)及拓宽电势窗口(3.50 V)。本研究提供了一种等离子体刻蚀制备纳米金刚石/石墨烯复合电极的新方法,为充分发挥金刚石/石墨烯的协同效应提供了新思路。
    The diamond/graphene composite electrode has garnered significant attention due to its ability to synergistically combine the low background current and broad potential window of the diamond component with the high electrochemical activity of the graphitic component. In this study, argon-oxygen plasma etching was employed to treat nanodiamond/graphite composite films, and the surface structure of the few-layer graphene-coated nanodiamond is obtained by adjusting the etching time to control the number of graphite layers on the surface of the film, and then the surface layer of the few-layer graphene-coated nanodiamond and the bottom layer with good conductivity with more graphite components are constructed to form a double-layer structure. The experimental findings demonstrate that when the argon/oxygen plasma treatment time reaches 5 min, the graphite components on the surface layer of the film are etched into a structure of small-layer graphite coated nanodiamond, which increased the resistivity (2918.3 Ω·cm) and potential window (3.43 V). In addition, the surface state is changed from hydrogen termination to oxygen termination, so that the diamond grain has a positron affinity potential, and the electrochemical active area increases from 387 to 2893 μC/cm2. As the treatment time continued to extend to 20 min, the number of graphite layers on the surface of the film decreased, the diamond phase content increased, the resistivity of the film increased, and the electrochemically active area decreased. When the etching time reaches 25 min, the graphite layer under the composite film is exposed, and the graphite on the surface of the diamond is transformed into few-layer graphene, forming a double-layer structure of the top layer of few-layer graphene-coated diamond and the bottom layer of graphite, which synergistically improves the electrochemical activity (775 μC/cm2), reduces the resistivity of the composite film (1060.0 Ω··cm) and widens the potential window (3.50 V). This work presents a novel plasma-etching strategy for fabricating diamond/graphene hybrid electrodes, offering new insights into harnessing the complementary advantages of these carbon allotropes for advanced electrochemical applications.
  • [1]

    . Kunuku S, Sankaran K J, Tsai C Y, Chang W H, Tai N H, Leou K C, Lin I N 2013 ACS Appl. Mater. Interfaces 5 7439

    [2]

    . Cao Y, Legrain D R, Bigorda O R, Park J M, Watanabe K, Taniguchi T, Herrero P J 2020 Nature 583 215

    [3]

    . Jiang M Y, Zhang Z Q, Chen C K, Ma W C, Han S J, Li X, Lu S H, Hu X J 2020 Carbon 168 536

    [4]

    . Jiang M Y, Ma W C, Han S J, Chen C K, Fan D, Li X, Hu X J 2020 J. Appl. Phys. 127 015301

    [5]

    . Lucio A J, Meyler R E P, Edwards M A, Macpherson J V 2020 ACS Sens. 5 789

    [6]

    . Németh P, McColl K, Smith R L, Murri M, GarvieL A J, Alvaro M, Pécz B, Jones A P, Corà F, Salzmann C G, McMillan P F 2020 Nano Lett. 20 3611

    [7]

    . Pei J X, Yu X, Zhang Z Q, Zhang J, Wei S B, Boukherroub R 2020 Appl. Surf. Sci. 527 146761

    [8]

    . Shi D, Huang N, Liu L S, Yang B, Zhai Z F, Wang Y B, Yuan Z Y, Li H, Gai Z G, Jiang X 2020 Appl. Surf. Sci. 512 145652

    [9]

    . Xu J, Yokota Y, Wong R A, Kim Y, Einaga Y 2020 J. Am. Chem. Soc. 142 2310

    [10]

    . Arenal R, Bruno P, Miller D J, Bleuel M, Lal J, Gruen D M 2007 Phys. Rev. B 75 195431

    [11]

    . Sankaran K J, Kurian J, Chen H C, Dong C L, Lee C Y, Tai N H, Lin I N 2012 J. Phys. D: Appl. Phys. 45 365303

    [12]

    . Shang N, Papakonstantinou P, Wang P, Zakharov A, Palnitkar U, Lin I N, Chu M, Stamboulis A 2009 ACS Nano 3 1032

    [13]

    . Shalini J, Sankaran K J, Dong C L, Lee C Y, Tai N H, Lin I N 2013 Nanoscale 5 1159

    [14]

    . Shalini J, Lin Y C, Chang T H, Sankaran K J, Chen H C, Lin I N, Lee C Y, Tai N H 2013 Electrochim. Acta 92 9

    [15]

    . Yuan Q L, Liu Y, Ye C, Sun H Y, Dai D, Wei Q P, Lai G S, Wu T Z, Yu A M, Fu L, Chee K W A, Lin C T 2018 Biosens. Bioelectron. 111 117

    [16]

    . Jiang M Y, Wang P, Chen A S, Chen C K, Li X, Lu S H, Hu X J 2020 Acta Phys. Sin. 71 334 (in Chinese)(蒋梅燕,王平,陈爱盛,陈成克,李晓,鲁少华,胡晓君 2022物理学报 71 334)

    [17]

    . Xing L D, Xie Q M, Li W S 2020 Acta Phys. Sin. 69 127 (in Chinese)(邢丽丹,谢启明,李伟善 2020 物理学报 69 127)

    [18]

    . Wang P, Yuan X X, Cui Z, Xu C Y, Sun Z L, Li J H, Liu J S, Tian Y, Li H D 2021 ACS Omega 6 6326

    [19]

    . Cançado L G, Jorio A, Ferreira E H M, Stavale F, Achete C A, Capaz R B, Moutinho M V O, Lombardo A, Kulmala T S, Ferrari A C 2011 Nano Lett.11 3190

    [20]

    . Zhang X Y, Wang Y B, Gai Z G, Zhang M, Liu S S, Guo F X, Yang N J, Jiang X 2022 Carbon 196 602

    [21]

    . Tully J J, Braxton E, Cobb S J, Breeze B G, Markham M, Newton M E, Rodriguez P, Macpherson J V 2021 Carbon 185 717

    [22]

    . Lu Z G, Huang N, Zhai Z F, Chen B, Liu L S, Song H Z, Yuan Z Y, Zhang C Y, Yang B, Jiang X 2022 J. Mater. Sci. Technol. 105 26

    [23]

    . Liu F M, Deng Z J, Miao D T, Chen W P, Wang Y J, Zhou K C, Ma L, Wei Q P 2021 J. Environ. Chem. Eng. 9 106369

    [24]

    . Wang P, Wang T Y, Yang M C, Wang Q L, Yuan X X, Cui Z, Gao N, Liu J S, Cheng S H, Jiang Z G, Jin H C, Li H D 2024 Small 20 2402481

  • [1] 王浩, 谢佳苗, 郝文乾, 李京阳, 张鹏, 马晓帆, 刘福, 王旭. 气流流型和流速耦合作用下固体氧化物燃料电池电化学性能. 物理学报, doi: 10.7498/aps.74.20250096
    [2] 段坤, 陈健, 康瑶, 王旭东, 姚曼. MBene基高性能离子电池负极材料的第一性原理研究. 物理学报, doi: 10.7498/aps.74.20250251
    [3] 郭厦蕾, 侯育花, 郑寿红, 黄有林, 陶小马. Ge-S/F共掺杂对Li2MSiO4(M = Mn, Fe)晶体结构和性能影响的理论研究. 物理学报, doi: 10.7498/aps.71.20220473
    [4] 蒋梅燕, 王平, 陈爱盛, 陈成克, 李晓, 鲁少华, 胡晓君. 纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究. 物理学报, doi: 10.7498/aps.71.20220715
    [5] 张永泉, 姚安权, 杨柳, 朱凯, 曹殿学. 水系镁离子电池正极材料钠锰氧化物的制备及电化学性能. 物理学报, doi: 10.7498/aps.70.20202130
    [6] 彭林峰, 曾子琪, 孙玉龙, 贾欢欢, 谢佳. 富钠反钙钛矿型固态电解质的简易合成与电化学性能. 物理学报, doi: 10.7498/aps.69.20201227
    [7] 蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君. 硫离子注入纳米金刚石薄膜的微结构和电化学性能. 物理学报, doi: 10.7498/aps.68.20190394
    [8] 王桂强, 刘洁琼, 董伟楠, 阎超, 张伟. 氮/硫共掺杂多孔碳纳米片的制备及其电化学性能. 物理学报, doi: 10.7498/aps.67.20181524
    [9] 杨秀涛, 梁忠冠, 袁雨佳, 阳军亮, 夏辉. 多孔碳纳米球的制备及其电化学性能. 物理学报, doi: 10.7498/aps.66.048101
    [10] 李娟, 汝强, 胡社军, 郭凌云. 锂离子电池SnSb/C复合负极材料的热碳还原法制备及电化学性能研究. 物理学报, doi: 10.7498/aps.63.168201
    [11] 陈畅, 汝强, 胡社军, 安柏楠, 宋雄. Co2SnO4/Graphene复合材料的制备与电化学性能研究. 物理学报, doi: 10.7498/aps.63.198201
    [12] 王锐, 胡晓君. 氧离子注入纳米金刚石薄膜的微结构和电化学性能研究. 物理学报, doi: 10.7498/aps.63.148102
    [13] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, doi: 10.7498/aps.62.098201
    [14] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, doi: 10.7498/aps.61.156103
    [15] 胡衡, 胡晓君, 白博文, 陈小虎. 退火时间对硼掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, doi: 10.7498/aps.61.148101
    [16] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, doi: 10.7498/aps.60.068202
    [17] 白莹, 丁玲红, 张伟风. ZnFe2O4的固相法和水热法制备及其电化学性能研究. 物理学报, doi: 10.7498/aps.60.058201
    [18] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, doi: 10.7498/aps.59.2109
    [19] 潘金平, 胡晓君, 陆利平, 印迟. 退火对B掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, doi: 10.7498/aps.59.7410
    [20] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, doi: 10.7498/aps.59.8226
计量
  • 文章访问数:  38
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-13

/

返回文章
返回