搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MBene基高性能离子电池负极材料的第一性原理研究

段坤 陈健 康瑶 王旭东 姚曼

引用本文:
Citation:

MBene基高性能离子电池负极材料的第一性原理研究

段坤, 陈健, 康瑶, 王旭东, 姚曼

First-Principles Study of MBene-Based High-Performance Anode Materials for Ion Batteries

Duan Kun, Chen Jian, Kang Yao, Wang Xu-dong, Yao Man
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 二维过渡金属硼化物(MBene)作为新型金属离子电池电极材料,具有MB、M2B、M2B2等多种相结构,然而现有研究对于M2B相体系的探索仍显匮乏。本研究聚焦于M2B相MBene的设计,首次构建了硫(S)官能团化的Zr2BS2和Nb2BS2两种全新材料,系统揭示了其作为锂/钠离子电池负极材料的性能机制。通过第一性原理的计算方法,证实Zr2BS2和Nb2BS2两种材料具备优异的结构稳定性,并且在钠离子电池中展现出较高的理论比容量(分别为624 mA h g-1;和616 mA h g-1)以及较低的扩散势垒(Na+扩散势垒低至0.131 eV和0.088 eV)。同时,其较低的开路电压(0.38 V和0.21 V)可有效抑制枝晶生长,兼具高容量与安全性。本研究不仅完善了M2B相MBene体系的系统性研究,更为开发高容量、快充型钠离子电池负极材料提供了理论指导。
    Two-dimensional transition metal borides (MBene), as emerging electrode materials for metal-ion batteries, exhibit diverse phase structures including MB, M2B, and M2B2. However, current research remains insufficient in exploring the M2B-phase system. This study focuses on the design of M2B-phase MBenes, pioneering the construction of two novel sulfur-functionalized materials, Zr2BS2 and Nb2BS2, while systematically elucidating their performance mechanisms as anode materials for lithium/sodium-ion batteries. Through first-principles calculations, both Zr2BS2 and Nb2BS2 demonstrate exceptional structural stability and superior electrochemical properties in sodium-ion battery applications. Specifically, they exhibit high theoretical specific capacities (624 mA h g-1 and 616 mA h g-1) and remarkably low diffusion energy barriers for Na⁺ (0.131 eV and 0.088 eV). Moreover, their low open-circuit voltages (0.38 V and 0.21 V) effectively suppress dendrite growth, achieving an optimal balance between high capacity and operational safety. This work not only establishes a theoretical framework for MBene-based anode design but also provides critical insights into the correlation between surface functionalization, structural stability, and ion transport kinetics. The findings offer valuable guidance for developing other two-dimensional materials and non-layered systems, while contributing to mechanistic understanding of charge-discharge processes in transition metal dichalcogenide TMD-based lithium/sodium-ion batteries.
  • [1]

    Dusastre V, Martiradonna L 2017Nat. Mater. 16 15

    [2]

    Tian J J, Xue Q F, Yao Q, Li N, Christoph J, Brabec, Hin L Y 2020Adv. Energy Mater. 10 2000183

    [3]

    Akkerman Q A, Gandini M, Stasio F D, Rastogi P, Palazon F, Bertoni G, Ball J M, Prato M, Petrozza A, Manna L 2017Nat. Energy 2 16194

    [4]

    Barre A, Deguilhem B, Grolleau S, Gérard M, Suard F, Riu D 2013J. Power Sources 241 680

    [5]

    Wang Y X, Liu B, Li Q Y, Cartmell S, Ferrara S, Deng Z Q, Xiao J 2015J. Power Sources 286 330

    [6]

    Jin L, Shen C, Shellikeri A, Wu Q, Zheng J, Andrei P, Zhang J G, Zheng J P 2020Energy Environ. Sci. 13 2341

    [7]

    Noori A, El-Kady M F, Rahmanifar M S, Kaner R B, Mousavi M F 2019Chem. Soc. Rev. 48 1272

    [8]

    Soltani M, Beheshti S H 2021J. Energy Storage 34 102019

    [9]

    Choi N S, Chen Z, Freunberger S A, Ji X, Sun Y K, Amine K, Yushin G, Nazar L F, Cho J, Bruce P G 2012Angew. Chem. Int. Ed. 51 9994

    [10]

    Fang Y, Xiao L, Chen Z, Ai X, Cao Y, Yang H 2018Electrochem. Energy Rev. 1 294

    [11]

    Li F, Tang Q 2019ACS Appl. Nano Mater. 2 7220

    [12]

    Zhang B, Zhou J, Guo Z, Peng Q, Sun Z 2020Appl. Surf. Sci. 500 144248

    [13]

    Liu X, Ge X, Dong Y, Fu K, Meng F, Si R, Zhang M, Xu X 2020Mater. Chem. Phys. 253 123334

    [14]

    Zhang B, Zhou J, Sun Z 2022J. Mater. Chem. A 10 15865

    [15]

    Guo Z, Zhou J, Sun Z 2017J. Mater. Chem. A 5 23530

    [16]

    Zha X H, Xu P, Huang Q, Du S, Zhang R Q 2020Nanoscale Adv. 2347

    [17]

    Ma N, Wang T, Li N, Li Y, Fan J 2022Appl. Surf. Sci. 571 151275

    [18]

    Jia J, Li B, Duan S, Cui Z, Gao H 2019Nanoscale 11 20307

    [19]

    Zhou J, Palisaitis J, Halim J, Dahlqvist M, Tao Q, Persson I, Hultman L, Persson P OÅ, Rosen J 2021Science 373 801

    [20]

    Khaledialidusti R, Khazaei M, Wang V, Miao N, Si C, Wang J, Wang J 2021J. Phys.:Condens. Matter 33 155503

    [21]

    Liang B, Ma N, Wang Y, Wang T, Fan J 2022Appl. Surf. Sci. 599 153927

    [22]

    Mehta V, Saini H S, Srivastava S, Kashyap M K, Tankeshwar K 2019J. Phys. Chem. C 123 25052

    [23]

    Li D, Chen X, Xiang P, Du H, Xiao B 2020Appl. Surf. Sci. 501 144221

    [24]

    Wang Y, Ma N, Liang B, Fan J 2022Appl. Surf. Sci. 596 153619

    [25]

    Kresse G, Furthmüller J 1996Phys. Rev. B 54 11169

    [26]

    Kresse G, Furthmüller J 1996Comput. Mater. Sci. 6 15

    [27]

    Blöchl P E 1994Phys. Rev. B 50 17953

    [28]

    Kresse G, Joubert D 1999Phys. Rev. B 59 1758

    [29]

    Perdew J P, Ernzerhof M, Burke K 1996J. Chem. Phys. 105 9982

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996Phys. Rev. Lett. 77 3865

    [31]

    Grimme S 2006J. Comput. Chem. 27 1787

    [32]

    Gonze X, Lee C 1997Phys. Rev. B 55 10355

    [33]

    Togo A, Tanaka I 2015Scr. Mater. 108 1

    [34]

    Paier J, Hirschl R, Marsman M, Kresse G 2005J. Chem. Phys. 122 234102

    [35]

    Yuan X, Zhang Z, He Y, Zhao S, Zhou N 2022J. Phys. Chem. C 126 91

    [36]

    Yan B, Lu C, Zhang P, Chen J, He W, Tian W, Zhang W, Sun Z 2020Mater. Today Commun. 22 100713

    [37]

    Chen Z, Huang S, Yuan X, Gan X, Zhou N 2021Appl. Surf. Sci. 544 148861

    [38]

    Singh S, Espejo C, Romero A H 2018Phys. Rev. B 98 155309

    [39]

    Andrew R C, Mapasha R E, Ukpong A M, Chetty N 2012Phys. Rev. B 85 125428

    [40]

    Born M, Huang K 1955Am. J. Phys. 23 474

    [41]

    Shu H B, Li F, Hu C L, Liang P, Cao D, Chen X S 2016Nanoscale 13 2341

    [42]

    Zhang X, Yu Z, Wang S S, Guan S, Yang H Y, Yao Y, Yang S A 2016J. Mater. Chem. A 4 15224

    [43]

    Meng Q, Ma J, Zhang Y, Li Z, Hu A, Kai J J, Fan J 2018J. Mater. Chem. A 6 13652

    [44]

    Meng Q, Ma J, Zhang Y, Li Z, Zhi C, Hu A, Fan J 2018Nanoscale 10 3385

    [45]

    Shukla V, Jena N K, Naqvi S R, Luo W, Ahuja R 2019Nano Energy 58 877

    [46]

    Gao S, Hao J, Zhang X, Li L, Zhang C, Wu L, Ma X, Lu P, Liu G 2021Comput. Mater. Sci. 200 110776

    [47]

    Urban A, Seo D H, Ceder G 2016npj Comput. Mater. 2 16002

    [48]

    Aydinol M K, Kohan A F, Ceder G, Cho K, Joannopoulos J 1997Phys. Rev. B 56 1354

    [49]

    Eames C, Islam M S 2014J. Am. Chem. Soc. 136 16270

    [50]

    Yang E, Ji H, Kim J, Kim H, Jung Y 2015Phys. Chem. Chem. Phys. 17 5000

  • [1] 王浩, 谢佳苗, 郝文乾, 李京阳, 张鹏, 马晓帆, 刘福, 王旭. 气流流型和流速耦合作用下固体氧化物燃料电池电化学性能. 物理学报, doi: 10.7498/aps.74.20250096
    [2] 黄盛星, 陈健, 王文菲, 王旭东, 姚曼. 新型双过渡金属MXene热电输运性能第一性原理计算. 物理学报, doi: 10.7498/aps.73.20240432
    [3] 蒋梅燕, 王平, 陈爱盛, 陈成克, 李晓, 鲁少华, 胡晓君. 纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究. 物理学报, doi: 10.7498/aps.71.20220715
    [4] 王兰, 程思远, 曾航航, 谢聪伟, 龚元昊, 郑植, 范晓丽. CuBiI三元化合物晶体结构预测及光电性能第一性原理研究. 物理学报, doi: 10.7498/aps.70.20210145
    [5] 张永泉, 姚安权, 杨柳, 朱凯, 曹殿学. 水系镁离子电池正极材料钠锰氧化物的制备及电化学性能. 物理学报, doi: 10.7498/aps.70.20202130
    [6] 彭林峰, 曾子琪, 孙玉龙, 贾欢欢, 谢佳. 富钠反钙钛矿型固态电解质的简易合成与电化学性能. 物理学报, doi: 10.7498/aps.69.20201227
    [7] 蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君. 硫离子注入纳米金刚石薄膜的微结构和电化学性能. 物理学报, doi: 10.7498/aps.68.20190394
    [8] 王桂强, 刘洁琼, 董伟楠, 阎超, 张伟. 氮/硫共掺杂多孔碳纳米片的制备及其电化学性能. 物理学报, doi: 10.7498/aps.67.20181524
    [9] 杨秀涛, 梁忠冠, 袁雨佳, 阳军亮, 夏辉. 多孔碳纳米球的制备及其电化学性能. 物理学报, doi: 10.7498/aps.66.048101
    [10] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, doi: 10.7498/aps.64.087101
    [11] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究. 物理学报, doi: 10.7498/aps.64.187101
    [12] 陈畅, 汝强, 胡社军, 安柏楠, 宋雄. Co2SnO4/Graphene复合材料的制备与电化学性能研究. 物理学报, doi: 10.7498/aps.63.198201
    [13] 王锐, 胡晓君. 氧离子注入纳米金刚石薄膜的微结构和电化学性能研究. 物理学报, doi: 10.7498/aps.63.148102
    [14] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, doi: 10.7498/aps.62.046201
    [15] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, doi: 10.7498/aps.62.103102
    [16] 代云雅, 杨莉, 彭述明, 龙兴贵, 周晓松, 祖小涛. 金属氢化物力学性能的第一性原理研究. 物理学报, doi: 10.7498/aps.61.108801
    [17] 胡衡, 胡晓君, 白博文, 陈小虎. 退火时间对硼掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, doi: 10.7498/aps.61.148101
    [18] 白莹, 丁玲红, 张伟风. ZnFe2O4的固相法和水热法制备及其电化学性能研究. 物理学报, doi: 10.7498/aps.60.058201
    [19] 潘金平, 胡晓君, 陆利平, 印迟. 退火对B掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, doi: 10.7498/aps.59.7410
    [20] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, doi: 10.7498/aps.59.8226
计量
  • 文章访问数:  237
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-24

/

返回文章
返回