搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

富钠反钙钛矿型固态电解质的简易合成与电化学性能

彭林峰 曾子琪 孙玉龙 贾欢欢 谢佳

引用本文:
Citation:

富钠反钙钛矿型固态电解质的简易合成与电化学性能

彭林峰, 曾子琪, 孙玉龙, 贾欢欢, 谢佳

Facile synthesis and electrochemical properties of Na-rich anti-perovskite solid electrolytes

Peng Lin-Feng, Zeng Zi-Qi, Sun Yu-Long, Jia Huan-Huan, Xie Jia
PDF
HTML
导出引用
  • 全固态钠电池兼具高安全和低成本的潜在优势, 是储能领域的热点发展技术之一. 高性能固态电解质是实现全固态钠电池的关键因素. 近年来, 反钙钛矿型锂/钠离子导体因高离子电导率和灵活的结构设计, 已经受到广泛关注. 然而, 富钠反钙钛矿型Na3OBrxI1–x(0 < x < 1)的合成复杂、室温离子电导率偏低、且电化学性能研究较少. 本文通过简单合成路径得到纯相反钙钛矿型Na3OBrxI1–x, 经过100 ℃热处理之后, 其离子电导率在100 ℃可达10–3 S·cm–1以上. 然而, 随着温度降低, 离子电导率会发生跳变. 通过固态核磁共振(NMR)分析, 表明该现象可能与材料复杂的结构对称性和钠位变化有关. 同时, 对Na3OBrxI1–x在全固态钠电池中的可行性进行了评估. 研究表明, Na3OBrxI1–x材料不具有“亲钠性”, 通过离子液体对界面进行修饰后, Na3OBrxI1–x展现出良好的钠金属相容性, 组装的TiS2/Na3OBr0.5I0.5/Na-Sn全电池首次放电比容量为190 mAh·g–1. 本文促进了对反钙钛矿型Na3OBrxI1–x结构和性质的理解, 并初步探究了其作为钠离子固态电解质的应用前景.
    All-solid-state sodium batteries are promising candidates in energy storage applications due to their high safety and low cost. A suitable solid electrolyte is a key component for high-performance all-solid-state sodium battery. Current inorganic solid electrolytes mainly include oxide- and sulfide-based electrolytes. However, the oxide-based electrolytes require to be sinetred above 1000 ℃ for high ionic conductivity, and most sulfide-based electrolytes can react with H2O torelease toxic H2S gas. These features will hinder the practical application of all-solid-state sodium batteries. In recent years, novel sodium ionic conductors have appeared successively. Among them, anti-perovskite type of Li/Na ionic conductor has received a lot of attention because of its high ionic conductivity and flexible structure design. Nevertheless, the synthesis of Na-rich anti-perovskite Na3OBrxI1–x (0 < x < 1) is complex, the ionic conductivity at room temperature is relatively low, and its electrochemical properties remain unknown. Here in this work, the phase-pure Na-rich anti-perovskite Na3OBrxI1–x is synthesized by a facile synthesis way. The X-ray diffraction patterns show that the anti-perovskite structure without any impurity phase is obtained. Alternating-current (AC) impedance spectrum is used for measuring ionic conductivity of electrolyte pellets after thermally being treated at around 100 ℃. The Na3OBr0.3I0.7 exhibits an ionic conductivity of 1.47 × 10–3 S/cm at 100 ℃. Unfortunately, the ionic conductivity experiences a sharp drop with the decrease of temperature, which may be related to the change of structural symmetry and Na sites in the structure revealed by solid state 23Na NMR. In particular, the ionic conductivities of Na3OBrxI1–x demonstrate the potential applications at medium temperature (40-80 ℃ in which the ionic conductivity of Na3OBrxI1–x is close to or higher than 10–4 S/cm) for all-solid-state sodium battery. Therefore, the compatibility against Na metal and the electrochemical performance in all-solid-state batteries have been evaluated. Since Na3OBrxI1–x is not “Na-philic”, the resistance in impedance of the Na/Na3OBr0.5I0.5/Na is very high. However, after modifying the interface by ionic liquid, the Na3OBr0.5I0.5 exhibits good compatibility against Na metal and tiny ionic liquid also leads to high initial discharge specific capacity of 190 mAh/g and excellent cycling stability (around 127 mAh/g after 10 cycles) in the TiS2/Na3OBr0.5I0.5/Na-Sn solid-state battery. The capacity decay maybe results from the inferior interfacial contact between the solid electrolyte and the electrode materials because the electrode materials in this system experience large volume change during cycling. The successful operation in solid-state sodium batteries indicates that the Na3OBrxI1–x is feasible to be used as a sodium solid electrolyte, which is of great importance for practical application of Na-rich anti-perovskite solid electrolytes.
      通信作者: 谢佳, xiejia@hust.edu.cn
    • 基金项目: 国家自然科学基金联合基金(批准号: U1966214)、国家自然科学基金青年科学基金(批准号: 51902116)和中国博士后科学基金(批准号: 2019M652634)资助的课题
      Corresponding author: Xie Jia, xiejia@hust.edu.cn
    • Funds: Project supported by the Program of Joint Funds of the National Natural Science Foundation of China (Grant No. U1966214), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51902116), and the China Postdoctoral Science Foundation (Grant No. 2019M652634)
    [1]

    Li M, Lu J, Chen Z, Amine K 2018 Adv. Mater. 30 e1800561Google Scholar

    [2]

    Service R F 2019 Science 366 292Google Scholar

    [3]

    Yabuuchi N, Kubota K, Dahbi M, Komaba S 2014 Chem. Rev. 114 11636Google Scholar

    [4]

    Lee J M, Singh G, Cha W, Kim S, Yi J, Hwang S J, Vinu A 2020 ACS Energy Lett. 5 1939Google Scholar

    [5]

    Yang C, Xin S, Mai L, You Y 2020 Adv. Energy Mater. 10.1002/aenm.202000974Google Scholar

    [6]

    Rajagopalan R, Tang Y, Jia C, Ji X, Wang H 2020 Energy Environ. Sci. 13 1568Google Scholar

    [7]

    Xiao Y H, Wang Y, Bo S H, Kim J C, Miara L J, Ceder G 2020 Nat. Rev. Mater. 5 105Google Scholar

    [8]

    Feng X, Ren D, He X, Ouyang M 2020 Joule 4 743Google Scholar

    [9]

    Chen R, Li Q, Yu X, Chen L, Li H 2019 Chem. Rev. 120 6820Google Scholar

    [10]

    Xu L, Li J, Deng W, Shuai H, Li S, Xu Z, Li J, Hou H, Peng H, Zou G, Ji X 2020 Adv. Energy Mater. 10.1002/aenm. 202000648Google Scholar

    [11]

    Lu Y, Li L, Zhang Q, Niu Z, Chen J 2018 Joule 2 1747Google Scholar

    [12]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682Google Scholar

    [13]

    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 Nat. Energy 1 16030Google Scholar

    [14]

    Zhang Z, Sun Y, Duan X, Peng L, Jia H, Zhang Y, Shan B, Xie J 2019 J. Mater. Chem. A 7 2717Google Scholar

    [15]

    Zhou L, Assoud A, Zhang Q, Wu X, Nazar L F 2019 J. Am. Chem. Soc. 141 19002Google Scholar

    [16]

    Wang C, Fu K, Kammampata S P, McOwen D W, Samson A J, Zhang L, Hitz G T, Nolan A M, Wachsman E D, Mo Y, Thangadurai V, Hu L 2020 Chem. Rev. 120 4257Google Scholar

    [17]

    Zhang Z, Zhang J, Jia H, Peng L, An T, Xie J 2020 J. Power Sources 450Google Scholar

    [18]

    Fuchs T, Culver S P, Till P, Zeier W G 2019 ACS Energy Lett. 5 146Google Scholar

    [19]

    Jia H, Sun Y, Zhang Z, Peng L, An T, Xie J 2019 Energy Storage Mater. 23 508Google Scholar

    [20]

    Hayashi A, Masuzawa N, Yubuchi S, Tsuji F, Hotehama C, Sakuda A, Tatsumisago M 2019 Nat. Commun. 10 5266Google Scholar

    [21]

    Jia H, Liang X, An T, Peng L, Feng J, Xie J 2020 Chem. Mater. 32 4065Google Scholar

    [22]

    Zheng F, Kotobuki M, Song S, Lai M O, Lu L 2018 J. Power Sources 389 198Google Scholar

    [23]

    Jia H, Peng L, Zhang Z, An T, Xie J 2020 J. Energy Chem. 48 102Google Scholar

    [24]

    Narayanan S, Reid S, Butler S, Thangadurai V 2019 Solid State Ionics 331 22Google Scholar

    [25]

    Zhao Y S, Daemen L L 2012 J. Am. Chem. Soc. 134 15042Google Scholar

    [26]

    Wang Y, Wang Q, Liu Z, Zhou Z, Li S, Zhu J, Zou R, Wang Y, Lin J, Zhao Y 2015 J. Power Sources 293 735Google Scholar

    [27]

    Fan S S, Lei M, Wu H, Hu J, Yin C L, Liang T X, Li C L 2020 Energy Storage Mater. 31 87Google Scholar

    [28]

    Yang Q F, Li C L 2018 Energy Storage Mater. 14 100Google Scholar

    [29]

    Nguyen H, Hy S, Wu E, Deng Z, Samiee M, Yersak T, Luo J, Ong S P, Meng Y S 2016 J. Electrochem. Soc. 163 A2165Google Scholar

    [30]

    Braga M H, Ferreira J A, Murchison A J, Goodenough J B 2016 J. Electrochem. Soc. 164 A207Google Scholar

    [31]

    Braga M H, Murchison A J, Ferreira J A, Singh P, Goodenough J B 2016 Energy Environ. Sci. 9 948Google Scholar

    [32]

    Sun Y, Wang Y, Liang X, Xia Y, Peng L, Jia H, Li H, Bai L, Feng J, Jiang H, Xie J 2019 J. Am. Chem. Soc. 141 5640Google Scholar

    [33]

    Wang Y, Wen T, Park C, Kenney B C, Pravica M, Yang W, Zhao Y 2016 J. Appl. Phys. 119 025901Google Scholar

    [34]

    Zhu J, Wang Y, Li S, Howard J W, Neuefeind J, Ren Y, Wang H, Liang C, Yang W, Zou R, Jin C, Zhao Y 2016 Inorg. Chem. 55 5993Google Scholar

    [35]

    Lv Z L, Cui H L, Wang H, Li X H, Ji G F 2017 Phys. Status Solidi B) 254 1700089Google Scholar

    [36]

    Dawson J A, Chen H, Islam M S 2018 J. Phys. Chem. C 122 23978Google Scholar

    [37]

    Pham T L, Samad A, Kim H J, Shin Y H 2018 J. Appl. Phys. 124 164106Google Scholar

    [38]

    Wan T H, Lu Z, Ciucci F 2018 J. Power Sources 390 61Google Scholar

    [39]

    Fang H, Jena P 2019 ACS Appl. Mater. Interfaces 11 963Google Scholar

    [40]

    Yu Y, Wang Z, Shao G 2019 J. Mater. Chem. A 7 21985Google Scholar

    [41]

    Hippler K, Sitta S, Vogt P, Sabrowsky H 1990 Acta Cryst. C 46 736

    [42]

    Hu J L, Yao Z G, Chen K Y, Li C L 2020 Energy Storage Mater. 28 37Google Scholar

  • 图 1  (a)合成的反钙钛矿Na3OBrxI1–x (x = 0.3, 0.5, 0.7)样品的XRD图谱; (b)图(a)的局部放大图

    Fig. 1.  (a) The X-ray diffraction (XRD) patterns of synthezied anti-perovskites Na3OBrxI1–x (x = 0.3, 0.5, 0.7); (b) local zoom of Fig. (a).

    图 2  通过(a)冷压和(b)热压方法制备得到的Na3OBr0.5I0.5电解质片的SEM图; (c)不同温度下测得的热压Na3OBr0.5I0.5片的Nyquist曲线; (d) Na3OBrxI1–x (x = 0.3, 0.5, 0.7)的logσ与1000/T对应曲线

    Fig. 2.  SEM images of (a) cold-pressed and (b) hot-pressed Na3OBr0.5I0.5 solid electrolyte pellets; (c) Nyquist plots of hot-pressed Na3OBr0.5I0.5 measured at different temperatures; (d) logσ versus 1000/T plots for Na3OBrxI1–x (x = 0.3, 0.5, 0.7).

    图 3  Na3OBr0.3I0.7在不同温度下的 (a)固态核磁图谱; (b)XRD图谱

    Fig. 3.  (a) Solid state 23Na NMR spectra and (b) XRD patterns of Na3OBr0.3I0.7 at different temperature.

    图 4  (a) Na/Na3OBr0.5I0.5/Na对称电池的电化学阻抗谱; (b) 添加了离子液体的Na/IL/Na3OBr0.5I0.5/IL/Na对称电池的电化学阻抗谱; (c) Na/IL/Na3OBr0.5I0.5/IL/Na对称电池在不同电流密度下的充放电曲线; (d) TiS2/IL/Na3OBr0.5I0.5/IL/Na-Sn在50 ℃, 0.1 C条件下充放电曲线

    Fig. 4.  (a) Electrochemical impedance plot of Na/Na3OBr0.5I0.5/Na symmetrical cell; (b) electrochemical impedance plot of Na/IL/Na3OBr0.5I0.5/IL/Na symmetrical cell with ionic liquid; (c) charge-discharge curves of Na/IL/Na3OBr0.5I0.5/IL/Na symmetrical cell at different current density; (d) charge-discharge curves of TiS2/IL/Na3OBr0.5I0.5/IL/Na-Sn operated at 50°C, 0.1 C.

    表 1  Na3OBr0.5I0.5在冷压和热压下的密度

    Table 1.  Density of hot- and cold-pressed Na3OBr0.5I0.5

    密度/ g·cm–3致密度
    冷压2.1169%
    热压2.5583%
    真实密度*3.06
    *真实密度基于XRD谱得到的晶格参数计算, 晶格参数计算基于简单的立方相[26], 忽略结构对称性破坏引起的细微变化.
    下载: 导出CSV

    表 2  Na3OBrxI1–x (x = 0.3, 0.5, 0.7)离子电导率

    Table 2.  Ionic conductivity of Na3OBrxI1–x (x = 0.3, 0.5, 0.7).

    温度/℃离子电导率/ S·cm–1
    Na3OBr0.7I0.3Na3OBr0.5I0.5Na3OBr0.3I0.7
    1301.67 × 10–3
    1108.96 × 10–41.32 × 10–35.55 × 10–3
    1004.50 × 10–46.56 × 10–41.47 × 10–3
    809.73 × 10–52.01 × 10–43.93 × 10–4
    601.22 × 10–56.78 × 10–52.05 × 10–4
    401.06 × 10–5
    下载: 导出CSV
  • [1]

    Li M, Lu J, Chen Z, Amine K 2018 Adv. Mater. 30 e1800561Google Scholar

    [2]

    Service R F 2019 Science 366 292Google Scholar

    [3]

    Yabuuchi N, Kubota K, Dahbi M, Komaba S 2014 Chem. Rev. 114 11636Google Scholar

    [4]

    Lee J M, Singh G, Cha W, Kim S, Yi J, Hwang S J, Vinu A 2020 ACS Energy Lett. 5 1939Google Scholar

    [5]

    Yang C, Xin S, Mai L, You Y 2020 Adv. Energy Mater. 10.1002/aenm.202000974Google Scholar

    [6]

    Rajagopalan R, Tang Y, Jia C, Ji X, Wang H 2020 Energy Environ. Sci. 13 1568Google Scholar

    [7]

    Xiao Y H, Wang Y, Bo S H, Kim J C, Miara L J, Ceder G 2020 Nat. Rev. Mater. 5 105Google Scholar

    [8]

    Feng X, Ren D, He X, Ouyang M 2020 Joule 4 743Google Scholar

    [9]

    Chen R, Li Q, Yu X, Chen L, Li H 2019 Chem. Rev. 120 6820Google Scholar

    [10]

    Xu L, Li J, Deng W, Shuai H, Li S, Xu Z, Li J, Hou H, Peng H, Zou G, Ji X 2020 Adv. Energy Mater. 10.1002/aenm. 202000648Google Scholar

    [11]

    Lu Y, Li L, Zhang Q, Niu Z, Chen J 2018 Joule 2 1747Google Scholar

    [12]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682Google Scholar

    [13]

    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 Nat. Energy 1 16030Google Scholar

    [14]

    Zhang Z, Sun Y, Duan X, Peng L, Jia H, Zhang Y, Shan B, Xie J 2019 J. Mater. Chem. A 7 2717Google Scholar

    [15]

    Zhou L, Assoud A, Zhang Q, Wu X, Nazar L F 2019 J. Am. Chem. Soc. 141 19002Google Scholar

    [16]

    Wang C, Fu K, Kammampata S P, McOwen D W, Samson A J, Zhang L, Hitz G T, Nolan A M, Wachsman E D, Mo Y, Thangadurai V, Hu L 2020 Chem. Rev. 120 4257Google Scholar

    [17]

    Zhang Z, Zhang J, Jia H, Peng L, An T, Xie J 2020 J. Power Sources 450Google Scholar

    [18]

    Fuchs T, Culver S P, Till P, Zeier W G 2019 ACS Energy Lett. 5 146Google Scholar

    [19]

    Jia H, Sun Y, Zhang Z, Peng L, An T, Xie J 2019 Energy Storage Mater. 23 508Google Scholar

    [20]

    Hayashi A, Masuzawa N, Yubuchi S, Tsuji F, Hotehama C, Sakuda A, Tatsumisago M 2019 Nat. Commun. 10 5266Google Scholar

    [21]

    Jia H, Liang X, An T, Peng L, Feng J, Xie J 2020 Chem. Mater. 32 4065Google Scholar

    [22]

    Zheng F, Kotobuki M, Song S, Lai M O, Lu L 2018 J. Power Sources 389 198Google Scholar

    [23]

    Jia H, Peng L, Zhang Z, An T, Xie J 2020 J. Energy Chem. 48 102Google Scholar

    [24]

    Narayanan S, Reid S, Butler S, Thangadurai V 2019 Solid State Ionics 331 22Google Scholar

    [25]

    Zhao Y S, Daemen L L 2012 J. Am. Chem. Soc. 134 15042Google Scholar

    [26]

    Wang Y, Wang Q, Liu Z, Zhou Z, Li S, Zhu J, Zou R, Wang Y, Lin J, Zhao Y 2015 J. Power Sources 293 735Google Scholar

    [27]

    Fan S S, Lei M, Wu H, Hu J, Yin C L, Liang T X, Li C L 2020 Energy Storage Mater. 31 87Google Scholar

    [28]

    Yang Q F, Li C L 2018 Energy Storage Mater. 14 100Google Scholar

    [29]

    Nguyen H, Hy S, Wu E, Deng Z, Samiee M, Yersak T, Luo J, Ong S P, Meng Y S 2016 J. Electrochem. Soc. 163 A2165Google Scholar

    [30]

    Braga M H, Ferreira J A, Murchison A J, Goodenough J B 2016 J. Electrochem. Soc. 164 A207Google Scholar

    [31]

    Braga M H, Murchison A J, Ferreira J A, Singh P, Goodenough J B 2016 Energy Environ. Sci. 9 948Google Scholar

    [32]

    Sun Y, Wang Y, Liang X, Xia Y, Peng L, Jia H, Li H, Bai L, Feng J, Jiang H, Xie J 2019 J. Am. Chem. Soc. 141 5640Google Scholar

    [33]

    Wang Y, Wen T, Park C, Kenney B C, Pravica M, Yang W, Zhao Y 2016 J. Appl. Phys. 119 025901Google Scholar

    [34]

    Zhu J, Wang Y, Li S, Howard J W, Neuefeind J, Ren Y, Wang H, Liang C, Yang W, Zou R, Jin C, Zhao Y 2016 Inorg. Chem. 55 5993Google Scholar

    [35]

    Lv Z L, Cui H L, Wang H, Li X H, Ji G F 2017 Phys. Status Solidi B) 254 1700089Google Scholar

    [36]

    Dawson J A, Chen H, Islam M S 2018 J. Phys. Chem. C 122 23978Google Scholar

    [37]

    Pham T L, Samad A, Kim H J, Shin Y H 2018 J. Appl. Phys. 124 164106Google Scholar

    [38]

    Wan T H, Lu Z, Ciucci F 2018 J. Power Sources 390 61Google Scholar

    [39]

    Fang H, Jena P 2019 ACS Appl. Mater. Interfaces 11 963Google Scholar

    [40]

    Yu Y, Wang Z, Shao G 2019 J. Mater. Chem. A 7 21985Google Scholar

    [41]

    Hippler K, Sitta S, Vogt P, Sabrowsky H 1990 Acta Cryst. C 46 736

    [42]

    Hu J L, Yao Z G, Chen K Y, Li C L 2020 Energy Storage Mater. 28 37Google Scholar

  • [1] 耿晓彬, 李顶根, 徐波. 固态电解质电池锂枝晶生长机械应力-热力学相场模拟研究. 物理学报, 2023, 72(22): 220201. doi: 10.7498/aps.72.20230824
    [2] 蒋梅燕, 王平, 陈爱盛, 陈成克, 李晓, 鲁少华, 胡晓君. 纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究. 物理学报, 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [3] 张永泉, 姚安权, 杨柳, 朱凯, 曹殿学. 水系镁离子电池正极材料钠锰氧化物的制备及电化学性能. 物理学报, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [4] 余启鹏, 刘琦, 王自强, 李宝华. 全固态金属锂电池负极界面问题及解决策略. 物理学报, 2020, 69(22): 228805. doi: 10.7498/aps.69.20201218
    [5] 赵宁, 穆爽, 郭向欣. 石榴石型固态锂电池中的物理问题. 物理学报, 2020, 69(22): 228804. doi: 10.7498/aps.69.20201191
    [6] 张桥保, 龚正良, 杨勇. 硫化物固态电解质材料界面及其表征的研究进展. 物理学报, 2020, 69(22): 228803. doi: 10.7498/aps.69.20201581
    [7] 蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君. 硫离子注入纳米金刚石薄膜的微结构和电化学性能. 物理学报, 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [8] 王桂强, 刘洁琼, 董伟楠, 阎超, 张伟. 氮/硫共掺杂多孔碳纳米片的制备及其电化学性能. 物理学报, 2018, 67(23): 238103. doi: 10.7498/aps.67.20181524
    [9] 杨秀涛, 梁忠冠, 袁雨佳, 阳军亮, 夏辉. 多孔碳纳米球的制备及其电化学性能. 物理学报, 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [10] 陈畅, 汝强, 胡社军, 安柏楠, 宋雄. Co2SnO4/Graphene复合材料的制备与电化学性能研究. 物理学报, 2014, 63(19): 198201. doi: 10.7498/aps.63.198201
    [11] 王锐, 胡晓君. 氧离子注入纳米金刚石薄膜的微结构和电化学性能研究. 物理学报, 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [12] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [13] 胡衡, 胡晓君, 白博文, 陈小虎. 退火时间对硼掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, 2012, 61(14): 148101. doi: 10.7498/aps.61.148101
    [14] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [15] 白莹, 丁玲红, 张伟风. ZnFe2O4的固相法和水热法制备及其电化学性能研究. 物理学报, 2011, 60(5): 058201. doi: 10.7498/aps.60.058201
    [16] 丁磊, 王聪, 褚立华, 纳元元, 闫君. 反钙钛矿Mn3AX化合物的晶格、磁性和电输运性质的研究进展. 物理学报, 2011, 60(9): 097507. doi: 10.7498/aps.60.097507
    [17] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [18] 潘金平, 胡晓君, 陆利平, 印迟. 退火对B掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, 2010, 59(10): 7410-7416. doi: 10.7498/aps.59.7410
    [19] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [20] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
计量
  • 文章访问数:  9235
  • PDF下载量:  374
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-31
  • 修回日期:  2020-10-05
  • 上网日期:  2020-11-18
  • 刊出日期:  2020-11-20

/

返回文章
返回