搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固态电解质电池锂枝晶生长机械应力-热力学相场模拟研究

耿晓彬 李顶根 徐波

引用本文:
Citation:

固态电解质电池锂枝晶生长机械应力-热力学相场模拟研究

耿晓彬, 李顶根, 徐波

Mechanical stress-thermodynamic phase-field simulation of lithium dendrite growth in solid electrolyte battery

Geng Xiao-Bin, Li Ding-Gen, Xu Bo
PDF
HTML
导出引用
  • 固态电池中的锂枝晶生长问题是困扰其进行商业化应用的重要因素, 锂枝晶在锂金属阳极界面的生长不仅会导致电池能量效率降低, 甚至会产生燃烧、爆炸等安全问题. 为了探究抑制锂枝晶生长的因素和方法, 本文针对聚合物固态电解质电池中锂枝晶的生长问题, 利用相场理论进行模拟研究, 建立了耦合机械应力和热力场的锂枝晶生长相场模型, 讨论分析了环境温度、固态电解质杨氏模量以及外应力等关键物理因素对枝晶生长的影响以及作用原理. 结果显示在高温、高固体电解质杨氏模量和外应力条件下锂枝晶生长缓慢, 长枝晶数量少, 电沉积较为均匀. 此外, 对比了常见范围内的固态电解质杨氏模量和环境温度对锂枝晶生长的影响, 发现固态电解质杨氏模量改变对于最大锂枝晶长度的抑制效果相对于改变环境温度要高出19%.
    Growth of lithium dendrites in solid state batteries is an important factor that disturbs their commercial applications. The growth of lithium dendrites at the interface of lithium metal anode will not only lead to the decrease of battery energy efficiency, but also cause combustion, explosion and other safety problems. In order to explore the factors and methods that inhibit the growth of lithium dendrites, the phase-field theory is used to simulate the growth of lithium dendrites in polymer solid electrolyte batteries, and a phase-field model of lithium dendrite growth coupled with mechanical stress and thermal field is established. The effects of key physical factors such as ambient temperature, solid electrolyte Young’s modulus and external stress on dendrite growth and their acting principles are discussed and analyzed. The results show that under the conditions of high temperature, high solid electrolyte Young’s modulus and external stress, the growth of lithium dendrites is slow, the number of long dendrites is small, and the electrodeposition is more uniform. In addition, the effects of Young’s modulus of solid electrolyte and ambient temperature on the growth of lithium dendrites in a common range are compared with each other. It is found that the inhibition effect of changing Young’s modulus of solid electrolyte on the maximum length of lithium dendrites is 19% higher than that caused by the change of ambient temperature.
      通信作者: 李顶根, lidinggen@hust.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB0104104)资助的课题.
      Corresponding author: Li Ding-Gen, lidinggen@hust.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB0104104).
    [1]

    Krauskopf T, Dippel R, Hartmann H, Peppler K, Mogwitz B, Richter F H, Zeier W G, Janek J 2019 Joule 3 2030Google Scholar

    [2]

    Steiger J, Kramer D, Mönig R 2014 Electrochim. Acta 136 529Google Scholar

    [3]

    Porz L, Swamy T, Sheldon B W, Rettenwander D, Frömling T, Thaman H L, Berendts S, Uecker R, Carter W C, Chiang Y M 2017 Adv. Energy Mater. 7 1701003Google Scholar

    [4]

    Li Y, Li Y, Pei A, Yan K, Sun Y, Wu C L, Joubert L M, Chin R, Koh A L, Yu Y, Perrino J, Butz B, Chu S, Cui Y 2017 Science 358 506Google Scholar

    [5]

    Monroe C, Newman J 2003 J. Electrochem. Soc. 150 A1377Google Scholar

    [6]

    Akolkar R 2013 J. Power Sources 232 23Google Scholar

    [7]

    Hong Z, Viswanathan V 2018 ACS Energy Lett. 3 1737Google Scholar

    [8]

    Chen L, Zhang H W, Liang L Y, Liu Z, Qi Y, Lu P, Chen J, Chen L Q 2015 J. Power Sources 300 376Google Scholar

    [9]

    Ely D R, Jana A, García R E 2014 J. Power Sources 272 581Google Scholar

    [10]

    Yurkiv V, Foroozan T, Ramasubramanian A, Shahbazian-Yassar R, Mashayek F 2018 Electrochim. Acta 265 609Google Scholar

    [11]

    Yan H H, Bie Y H, Cui X Y, Xiong G P, Chen L 2018 Energy Convers. Manage. 161 193Google Scholar

    [12]

    Jeon J, Yoon G H, Vegge T, Chang J H 2022 ACS Appl. Mater. Interfaces 14 15275Google Scholar

    [13]

    张更, 王巧, 沙立婷, 李亚捷, 王达, 施思齐 2020 物理学报 69 226401Google Scholar

    Zhang G, Wang Q, Sha L T, Li Y J, Wang D, Shi S Q 2020 Acta Phys. Sin. 69 226401Google Scholar

    [14]

    Hong Z, Ahmad Z, Viswanathan V 2020 ACS Energy Lett. 5 2466Google Scholar

    [15]

    Hong Z, Viswanathan V 2019 ACS Energy Lett. 4 1012Google Scholar

    [16]

    Zhang J, Liu Y P, Wang C G, Tan H F 2021 J. Electrochem. Soc. 168 090522Google Scholar

    [17]

    Ren Y, Zhou Y, Cao Y 2020 J. Phys. Chem. C 124 12195Google Scholar

    [18]

    Lee J, Howell T, Rottmayer M, Boeckl J, Huang H 2019 J. Electrochem. Soc. 166 A416Google Scholar

    [19]

    Bryden T S, Dimitrov B, Hilton G, Bugryniec P, Brown S, Cumming D, Cruden A 2018 J. Power Sources 395 369Google Scholar

    [20]

    Li L, Basu S, Wang Y, Chen Z Z, Hundekar P, Wang B W, Shi J, Shi Y F, Narayanan, S, Koratkar N 2018 Science 359 1513Google Scholar

    [21]

    Ichikawa K, Nozaki H, Komazawa N, Tachibana A 2012 AIP Adv. 2 042195Google Scholar

    [22]

    Love C T, Baturina O A, Swider-Lyons K E 2015 ECS Electrochem. Lett. 4 A24Google Scholar

  • 图 1  不同环境温度下锂枝晶生长模型

    Fig. 1.  Lithium dendrite growth models at different environmental temperatures.

    图 2  不同环境温度下最大锂枝晶长度实验模拟对比

    Fig. 2.  Experimental simulation comparison of maximum lithium dendrite length under different environmental temperatures.

    图 3  不同环境温度同一时刻锂枝晶生长 (a) Li+浓度分布; (b) 扩散系数分布

    Fig. 3.  Lithium dendrite growth at different ambient temperatures at the same time: (a) Li+ concentration distribution; (b) diffusion coefficient distribution.

    图 4  不同环境温度同一时刻机械-热耦合模型锂枝晶生长模型 (a) 锂枝晶生长形貌; (b) 锂离子浓度分布; (c) 锂枝晶X轴方向机械应力分布

    Fig. 4.  Lithium dendrite growth model with different environmental temperatures and same time mechanical thermal coupling model: (a) Growth morphology of lithium dendrite; (b) lithium ion concentration distribution; (c) mechanical stress distribution in the X-axis direction of lithium dendrite.

    图 5  不同环境温度锂枝晶生长长度统计

    Fig. 5.  Statistics of lithium dendrite growth length at different environmental temperatures.

    图 6  300 K条件下, 机械-热耦合枝晶生长模型中的“空洞”

    Fig. 6.  “Void” in the mechanical thermal coupling dendrite growth model at 300 K.

    图 7  不同环境温度下锂枝晶生长界面上应力随时间变化(a) 最大拉应力; (b) 最大压应力

    Fig. 7.  Stress at the lithium dendrite growth interface changes with time at the different ambient temperatures: (a) Maximum tensile stress; (b) maximum compressive stress

    图 8  不同杨氏模量聚合物固态电解质中锂枝晶模型 (a) 锂枝晶生长形貌; (b) 锂枝晶X方向机械应力分布; (c) 锂枝晶所在电场电压分布

    Fig. 8.  Lithium dendrite model in solid polymer electrolytes with different Young’s modulus: (a) Morphology of lithium dendrite growth; (b) mechanical stress distribution in X direction of lithium dendrite; (c) electric field and voltage distribution of lithium dendrite.

    图 9  电沉积初期t = 1 s时刻, 不同杨氏模量固态电解质中机械应力分布

    Fig. 9.  Mechanical stress distribution in solid electrolytes with different Young’s modulus at t = 1 s during the initial stage of electrodeposition.

    图 10  不同杨氏模量聚合物固态电解质电池锂枝晶生长界面最大应力差

    Fig. 10.  Maximum stress difference at the interface of lithium dendrite growth in polymer solid electrolyte batteries with different Young’s modulus.

    图 11  同一时刻不同温度不同固体电解质杨氏模量条件下最大锂枝晶长度

    Fig. 11.  Maximum lithium dendrite length under the condition of different Young’s modulus of solid electrolytes at the same time and different temperatures.

    图 12  同一时刻不同外应力锂枝晶模型 (a) 锂枝晶生长形貌; (b) 锂枝晶模型机械应力分布

    Fig. 12.  Lithium dendrite models with different external stresses at the same time: (a) Morphology of lithium dendrite growth; (b) mechanical stress distribution of lithium dendrite models.

    图 13  不同时刻锂枝晶生长界面机械应力范围分布图 (a) 1 MPa; (b) 10 MPa; (c) 20 MPa

    Fig. 13.  Distribution of mechanical stress range at the interface of lithium dendrite growth at different times: (a) 1 MPa; (b) 10 MPa; (c) 20 MPa.

    表 1  相场模拟参数

    Table 1.  Phase field simulation parameters.

    参数名称 文献
    界面迁移率${L_\sigma}$/(10–6 m3·J–1·s–1) 2.5 [7]
    动力学系数$ {L_\eta } $/s–1 0.1 [15]
    梯度能量系数$ {\kappa _0} $/(10–5 J·m–1) 1.5 [16]
    锂离子标准扩散系数$ {D_0}$/(10–12 m2·s–1) 2.5 [17]
    电极的电导率$ {\sigma _{\rm{s}}} $/(107 S·m–1) 1.0 [8]
    电解质的电导率$ {\sigma _{{\mathrm{l}}}} $/(10–2 S·m–1) 3.5 [18]
    电荷转移数$ \alpha $ 0.5 [8]
    对流换热系数h /(W·m–2·K–1) 10 [11]
    热辐射系数$ {\varepsilon _{\text{R}}} $ 0.49 [11]
    电极比热容$ {C_{{\text{ps}}}} $/(J·g–1·K–1) 3.55 [19]
    电解质比热容$ {C_{{\text{pl}}}} $/(J·g–1·K–1) 1.76 [18]
    电极导热系数$ {\kappa ^{\mathrm{s}}} $/(W·m–1·K–1) 84.8 [20]
    电解质导热系数$ {\kappa ^{\mathrm{l}}} $/(W·m–1·K–1) 0.45 [18]
    电极杨氏模量$ {E^{\mathrm{s}}} $/GPa 4.9 [21]
    聚合物电解质杨氏模量$ {E^{\mathrm{l}}} $/GPa 0.07 [18]
    纳米填料杨氏模量$ {E^{\mathrm{f}}} $/GPa 300 [17]
    泊松比$ \upsilon $ 0.36 [10]
    下载: 导出CSV
  • [1]

    Krauskopf T, Dippel R, Hartmann H, Peppler K, Mogwitz B, Richter F H, Zeier W G, Janek J 2019 Joule 3 2030Google Scholar

    [2]

    Steiger J, Kramer D, Mönig R 2014 Electrochim. Acta 136 529Google Scholar

    [3]

    Porz L, Swamy T, Sheldon B W, Rettenwander D, Frömling T, Thaman H L, Berendts S, Uecker R, Carter W C, Chiang Y M 2017 Adv. Energy Mater. 7 1701003Google Scholar

    [4]

    Li Y, Li Y, Pei A, Yan K, Sun Y, Wu C L, Joubert L M, Chin R, Koh A L, Yu Y, Perrino J, Butz B, Chu S, Cui Y 2017 Science 358 506Google Scholar

    [5]

    Monroe C, Newman J 2003 J. Electrochem. Soc. 150 A1377Google Scholar

    [6]

    Akolkar R 2013 J. Power Sources 232 23Google Scholar

    [7]

    Hong Z, Viswanathan V 2018 ACS Energy Lett. 3 1737Google Scholar

    [8]

    Chen L, Zhang H W, Liang L Y, Liu Z, Qi Y, Lu P, Chen J, Chen L Q 2015 J. Power Sources 300 376Google Scholar

    [9]

    Ely D R, Jana A, García R E 2014 J. Power Sources 272 581Google Scholar

    [10]

    Yurkiv V, Foroozan T, Ramasubramanian A, Shahbazian-Yassar R, Mashayek F 2018 Electrochim. Acta 265 609Google Scholar

    [11]

    Yan H H, Bie Y H, Cui X Y, Xiong G P, Chen L 2018 Energy Convers. Manage. 161 193Google Scholar

    [12]

    Jeon J, Yoon G H, Vegge T, Chang J H 2022 ACS Appl. Mater. Interfaces 14 15275Google Scholar

    [13]

    张更, 王巧, 沙立婷, 李亚捷, 王达, 施思齐 2020 物理学报 69 226401Google Scholar

    Zhang G, Wang Q, Sha L T, Li Y J, Wang D, Shi S Q 2020 Acta Phys. Sin. 69 226401Google Scholar

    [14]

    Hong Z, Ahmad Z, Viswanathan V 2020 ACS Energy Lett. 5 2466Google Scholar

    [15]

    Hong Z, Viswanathan V 2019 ACS Energy Lett. 4 1012Google Scholar

    [16]

    Zhang J, Liu Y P, Wang C G, Tan H F 2021 J. Electrochem. Soc. 168 090522Google Scholar

    [17]

    Ren Y, Zhou Y, Cao Y 2020 J. Phys. Chem. C 124 12195Google Scholar

    [18]

    Lee J, Howell T, Rottmayer M, Boeckl J, Huang H 2019 J. Electrochem. Soc. 166 A416Google Scholar

    [19]

    Bryden T S, Dimitrov B, Hilton G, Bugryniec P, Brown S, Cumming D, Cruden A 2018 J. Power Sources 395 369Google Scholar

    [20]

    Li L, Basu S, Wang Y, Chen Z Z, Hundekar P, Wang B W, Shi J, Shi Y F, Narayanan, S, Koratkar N 2018 Science 359 1513Google Scholar

    [21]

    Ichikawa K, Nozaki H, Komazawa N, Tachibana A 2012 AIP Adv. 2 042195Google Scholar

    [22]

    Love C T, Baturina O A, Swider-Lyons K E 2015 ECS Electrochem. Lett. 4 A24Google Scholar

  • [1] 刘东昆, 王庆宇, 张田, 周羽, 王翔. 大晶粒UO2燃料裂变气体释放行为相场模拟研究. 物理学报, 2024, 73(6): 066102. doi: 10.7498/aps.73.20231773
    [2] 杨源, 胡乃方, 金永成, 马君, 崔光磊. 富锂正极材料在全固态锂电池中的研究进展. 物理学报, 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [3] 梁宇皓, 范丽珍. 固态锂电池中的机械力学失效及解决策略. 物理学报, 2020, 69(22): 226201. doi: 10.7498/aps.69.20200713
    [4] 彭林峰, 曾子琪, 孙玉龙, 贾欢欢, 谢佳. 富钠反钙钛矿型固态电解质的简易合成与电化学性能. 物理学报, 2020, 69(22): 228201. doi: 10.7498/aps.69.20201227
    [5] 张桥保, 龚正良, 杨勇. 硫化物固态电解质材料界面及其表征的研究进展. 物理学报, 2020, 69(22): 228803. doi: 10.7498/aps.69.20201581
    [6] 刘玉龙, 辛明杨, 丛丽娜, 谢海明. 聚氧乙烯基聚合物固态电池的界面研究进展. 物理学报, 2020, 69(22): 228202. doi: 10.7498/aps.69.20201588
    [7] 余启鹏, 刘琦, 王自强, 李宝华. 全固态金属锂电池负极界面问题及解决策略. 物理学报, 2020, 69(22): 228805. doi: 10.7498/aps.69.20201218
    [8] 赵宁, 穆爽, 郭向欣. 石榴石型固态锂电池中的物理问题. 物理学报, 2020, 69(22): 228804. doi: 10.7498/aps.69.20201191
    [9] 张更, 王巧, 沙立婷, 李亚捷, 王达, 施思齐. 相场模型及其在电化学储能材料中的应用. 物理学报, 2020, 69(22): 226401. doi: 10.7498/aps.69.20201411
    [10] 曹文卓, 李泉, 王胜彬, 李文俊, 李泓. 金属锂在固态电池中的沉积机理、策略及表征. 物理学报, 2020, 69(22): 228204. doi: 10.7498/aps.69.20201293
    [11] 陈振飞, 冯露, 赵洋, 齐红蕊. 力和扩散机理下外延形貌的演化分析. 物理学报, 2015, 64(13): 138103. doi: 10.7498/aps.64.138103
    [12] 潘诗琰, 朱鸣芳. 双边扩散枝晶生长的定量相场模型. 物理学报, 2012, 61(22): 228102. doi: 10.7498/aps.61.228102
    [13] 朱昌盛, 冯力, 王智平, 肖荣振. 三维枝晶生长的相场法数值模拟研究. 物理学报, 2009, 58(11): 8055-8061. doi: 10.7498/aps.58.8055
    [14] 赵达文, 李金富. 相场模型模拟液固界面各向异性作用下自由枝晶生长. 物理学报, 2009, 58(10): 7094-7100. doi: 10.7498/aps.58.7094
    [15] 陈玉娟, 陈长乐. 相场法模拟对流速度对上游枝晶生长的影响. 物理学报, 2008, 57(7): 4585-4589. doi: 10.7498/aps.57.4585
    [16] 冯 力, 王智平, 路 阳, 朱昌盛. 二元合金多晶粒的枝晶生长的等温相场模型. 物理学报, 2008, 57(2): 1084-1090. doi: 10.7498/aps.57.1084
    [17] 李 睿, 王庆东. 工艺导致的机械应力对深亚微米CMOS器件的影响. 物理学报, 2008, 57(7): 4497-4507. doi: 10.7498/aps.57.4497
    [18] 李俊杰, 王锦程, 许 泉, 杨根仓. 外来夹杂物颗粒对枝晶生长形态影响的相场法研究. 物理学报, 2007, 56(3): 1514-1519. doi: 10.7498/aps.56.1514
    [19] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长. 物理学报, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [20] 苗卫方, 李谷松, 李淑苓, 王景唐. 机械合金化非晶化过程中内应力的作用. 物理学报, 1992, 41(6): 924-928. doi: 10.7498/aps.41.924
计量
  • 文章访问数:  5535
  • PDF下载量:  278
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-22
  • 修回日期:  2023-08-18
  • 上网日期:  2023-09-15
  • 刊出日期:  2023-11-20

/

返回文章
返回