-
开发高能量密度、长循环寿命、低成本和高安全性的全固态锂电池是发展下一代锂离子电池的重要方向之一. 富锂层状氧化物正极材料由于阴阳离子协同参与氧化还原反应, 可以提供更高的放电比容量(>250 mAh/g)和能量密度(>900 Wh/kg), 将其应用于全固态锂电池中有望推动锂离子电池能量密度突破500 Wh/kg的中长期目标. 然而, 富锂正极材料的电子导电性差、阴离子氧的不可逆氧化还原反应以及循环中的结构相变, 导致该材料在电化学循环过程中存在初始库仑效率低、循环稳定性差和电压衰退等问题. 此外, 富锂正极材料的工作电压较高(> 4.5 V vs. Li/Li+), 使正极/电解质之间不仅面临常规的界面化学反应, 释放的氧还会加剧界面的电化学反应, 对正极/电解质的界面稳定性提出了更高的要求. 因此, 富锂正极材料的本征特性和富锂正极/电解质间严重的界面反应极大限制了富锂正极材料在全固态锂电池中的应用. 本文首先详细阐述了富锂正极材料在全固态锂电池中的失效机制, 其次综述了近年来富锂正极材料在不同固态电解质体系下的研究进展, 最后总结和展望了富锂全固态锂电池未来的研究重点和发展方向.The development of all-solid-state lithium batteries with high energy density, long cycle life, low cost and high safety is one of the important directions for the developing next-generation lithium-ion batteries. Lithium-rich cathode materials have been widely used in liquid lithium batteries for their higher discharge specific capacity (> 250 mAh/g) and energy density (> 900 Wh/kg), high thermal stability and low raw material cost. With the rapid development of high-performance lithium-rich cathode materials and solid-state electrolytes in all-solid-state lithium batteries, the application of lithium-rich cathode materials in all-solid-state lithium batteries is expected to make a breakthrough toward the target of 500 Wh/kg energy density of lithium-ion batteries. In this review, first, we elaborate the failure mechanism of lithium-rich cathode materials in all-solid-state lithium batteries. The poor electronic conductivity, irreversible redox reaction of anionic oxygen and structute transformation during the electrochemical cycling of lithium-rich cathode materials result in the low initial coulomb efficiency, poor cycling stability and voltage decay. In addition, the high operating voltage of lithium-rich cathode materials (> 4.5 V vs. Li/Li+) triggers off not only the conventional interfacial chemical reactions between anode and electrolyte, but also the release of oxygen, aggravating the interfacial electrochemical reactions, which reduces the stability of the cathode/electrolyte interface. Therefore, the intrinsic characteristics of lithium-rich cathode materials and the severe interfacial reaction of lithium-rich cathode/electrolyte greatly limit the application of lithium-rich cathode materials in all-solid-state lithium batteries. Then, we review the research progress of lithium-rich cathode materials in various solid-state electrolyte systems in recent years. The higher room temperature ionic conductivity and wider voltage window of inorganic solid-state electrolytes provide opportunities for the application of lithium-rich cathode materials in all-solid-state lithium batteries. At present, the application of lithium-rich cathode materials in all-solid-state lithium batteries is explored on the basis of sulfide, halide and oxide solid-state electrolyte systems, and important progress has been made in the studies of composite cathode preparation methods, interfacial reaction mechanisms and activation mechanisms. Finally, we summarize the current research hotspot of lithium-rich cathode all-solid-state lithium batteries and propose several strategies for their future studies, such as the regulation of cathode material components, the construction of lithium ion and electron transport pathways within the composite cathode, and the interfacial modification of cathode materials that have been shown to have significant effects in solving the failure problem.
-
Keywords:
- Li-rich cathode /
- all-solid-state lithium battery /
- solid electrolyte /
- interface reaction
[1] Li M, Lu J, Chen Z W, Amine K 2017 Adv. Mater. 30 1063Google Scholar
[2] Manthiram A 2017 ACS Cent. Sci. 3 1063Google Scholar
[3] Tarascon J M, Armand M 2001 Nature 414 359Google Scholar
[4] Tan S J, Wang W P, Tian Y F, Xin S, Guo Y G 2021 Adv. Funct. Mater. 31 2105253Google Scholar
[5] Chen J, Wu J W, Wang X D, Zhou A A, Yang Z L 2021 Energy Stor. Mater. 35 70Google Scholar
[6] Chen L K, Huang Y F, Ma J B, Ling H J, Kang F Y, He Y B 2020 Energy Fuels 34 13456Google Scholar
[7] Xu J J, Cai X Y, Cai S M, Shao Y X, Hu C, Lu S R, Ding S J 2022 Energy Environ. Mater. 0 e12450Google Scholar
[8] Li W D, Song B H, Manthiram A 2017 Chem. Soc. Rev. 46 3006Google Scholar
[9] Zuo W H, Luo M Z, Liu X S, Wu J, Liu H D, Li J, Winter M, Fu R Q, Yang W L, Yang Y 2020 Energy Environ. Sci. 13 4450Google Scholar
[10] He W, Guo W B, Wu H L, Lin L, Liu Q, Han X, Xie Q S, Liu P F, Zheng H F, Wang L S, Yu X Q, Peng D L 2021 Adv. Mater. 33 2005937Google Scholar
[11] Kim J-S, Johnson C S, Vaughey J T, Thackeray M M, Hackney S A, Yoon W, Grey C P 2004 Chem. Mater. 16 1996Google Scholar
[12] Hodeau J L, Marezio M, Santoro A, Roth R S 1982 J. Solid State Chem. 45 170Google Scholar
[13] Pearce P E, Perez A J, Rousse G, Saubanere M, Batuk D, Foix D, McCalla E, Abakumov A M, Van Tendeloo G, Doublet M L, Tarascon J M 2017 Nat. Mater. 16 580Google Scholar
[14] Lyu Y C, Hu E Y, Xiao D D, Wang Y, Yu X Q, Xu G L, Ehrlich S N, Amine K, Gu L, Yang X Q, Li H 2017 Chem. Mater. 29 9053Google Scholar
[15] Zhao S Q, Yan K, Zhang J Q, Sun B, Wang G X 2020 Angew. Chem. Int. Ed. 60 2208Google Scholar
[16] Liu T C, Liu J J, Li L X, Yu L, Diao J C, Zhou T, Li S N, Dai A, Zhao W G, Xu S Y, Ren Y, Wang L G, Wu T P, Qi R, Xiao Y G, Zheng J X, Cha W, Harder R, Robinson I, Wen J G, Lu J, Pan F, Amine K 2022 Nature 606 305Google Scholar
[17] Aditya Narayan S, Anand Kumar S, Kyung-Wan N 2022 Matter 5 2587Google Scholar
[18] Wu Y Q, Zhou K, Ren F C, Ha Y, Liang Z T, Zheng X F, Wang Z Y, Yang W, Zhang M J, Luo M Z, Battaglia C, Yang W L, Zhu L Y, Gong Z L, Yang Y 2022 Energy Environ. Sci. 15 3470Google Scholar
[19] Liu B W, Hu N F, Li C, Ma J, Zhang J W, Yang Y, Sun D Y, Yin B X, Cui G L 2022 Angew. Chem. Int. Ed. 61 e202209626Google Scholar
[20] Du W B, Shao Q N, Wei Y Q, Yan C H, Gao P P, Lin Y Z, Jiang Y Z, Liu Y F, Yu X B, Gao M X, Sun W P, Pan H G 2022 ACS Energy Lett. 7 3006Google Scholar
[21] Yu R Z, Wang C H, Duan H, Jiang M, Zhang A B, Fraser A, Zuo J X, Wu Y L, Sun Y P, Zhao Y, Liang J W, Fu J M, Deng S X, Ren Z M, Li G H, Huang H, Li R Y, Chen N, Wang J T, Li X F, Singh C V, Sun X L 2022 Adv. Mater. 35 2370029Google Scholar
[22] Sun S, Zhao C Z, Yuan H, Fu Z H, Chen X, Lu Y, Li Y F, Hu J K, Dong J, Huang J Q, Ouyang M, Zhang Q 2022 Sci. Adv. 8 eadd5189Google Scholar
[23] Zhang A B, Wang J, Yu R Z, Zhuo H X, Wang C H, Ren Z M, Wang J T 2023 ACS Appl. Mater. Inter. 15 8190Google Scholar
[24] Zheng Y, Hirayama M, Taminato S, Lee S, Oshima Y, Takayanagi K, Suzuki K, Kanno R 2015 J. Power Sources 300 413Google Scholar
[25] Sugawara Y, Taminato S, Hirayama T, Hirayama M, Kanno R, Ukyo Y, Ikuhara Y 2018 J. Electrochem. Soc. 165 A55Google Scholar
[26] Hikima K, Shimizu K, Kiuchi H, Hinuma Y, Suzuki K, Hirayama M, Matsubara E, Kanno R 2022 J. Am. Chem. Soc. 144 236Google Scholar
[27] Li S, Sun Y P, Li N, Tong W, Sun X L, Black C T, Hwang S 2022 Nano Lett. 22 4905Google Scholar
[28] Yin X, Li D Y, Hao L W, Wang Y Z, Wang Y T, Guo X W, Zhao S, Wang B Y, Wu L Q, Yu H J 2023 Chem. Commun. 59 639Google Scholar
[29] Hikima K, Suzuki K, Taminato S, Hirayama M, Yasuno S, Kanno R 2019 Chem. Lett. 48 192Google Scholar
[30] Hikima K, Hinuma Y, Shimizu K, Suzuki K, Taminato S, Hirayama M, Masuda T, Tamura K, Kanno R 2021 ACS Appl. Mater. Inter. 13 7650Google Scholar
[31] Gao M X, Yan C H, Shao Q N, Chen J, Zhang C Y, Chen G R, Jiang Y Z, Zhu T J, Sun W P, Liu Y F, Gao M X, Pan H G 2021 Small 17 2008132Google Scholar
[32] Xue J P, Jiang C H, Pan B X, Zou Z M 2019 J. Electroanal. Chem. 850 113419Google Scholar
[33] Karina A, Mirco R, Andrey V, Bastian B, Xiaofei Y, Tobias P, Martin W, Markus B 2022 J. Power Sources 552 232252Google Scholar
[34] Kobayashi S, Watanabe H, Kato T, Mizuno F, Kuwabara A 2022 ACS Appl. Mater. Inter. 14 39459Google Scholar
[35] Liu X S, Cheng Y, Su Y, Ren F C, Zhao J, Liang Z T, Zheng B Z, Shi J W, Zhou K, Xiang Y X, Zheng J M, Wang M-S, Huang J Y, Shao M H, Yang Y 2023 Energy Stor. Mater. 54 713Google Scholar
[36] Yuan S H, Zhang H Z, Song D W, Ma Y, Shi X X, Li C L, Zhang L Q 2022 Chem. Eng. J. 439 135677Google Scholar
[37] Cui S L, Wang Y Y, Liu S, Li G R, Gao X P 2019 Electrochim. Acta 328 135109Google Scholar
[38] Zhou T, Yu X R, Li F, Zhang J W, Liu B W, Wang L L, Yang Y, Hu Z W, Ma J, Li C, Cui G L 2022 Energy Stor. Mater. 55 691Google Scholar
[39] Sun X W, Wang L L, Ma J, Yu X R, Zhang S, Zhou X H, Cui G L 2022 ACS Appl. Mater. Inter. 14 17674Google Scholar
[40] Ding P, Lin Z, Guo X W, Wu L Q, Wang Y Z, Guo H, Li L, Yu H J 2021 Mater. Today 51 449Google Scholar
[41] Zhang Q, Cao D X, Ma Y, Natan A, Aurora P, Zhu H L 2019 Adv. Mater. 31 1901131Google Scholar
[42] Nikodimos Y, Su W N, Hwang B 2022 Adv. Energy Mater. 13 2202854Google Scholar
[43] Sakakura M, Mitsuishi K, Okumura T, Ishigaki N, Iriyama Y 2022 ACS Appl. Mater. Inter. 14 48547Google Scholar
[44] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682Google Scholar
[45] Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M 2013 Energy Environ. Sci. 7 627Google Scholar
[46] Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 Nat. Energy 1 16030Google Scholar
[47] Whitfield P, Davidson I, Cranswick L, Swainson I, Stephens P 2005 Solid State Ionics 176 463Google Scholar
[48] Shi J L, Xiao D D, Ge M, Yu X, Chu Y, Huang X, Zhang X D, Yin Y X, Yang X Q, Guo Y G, Gu L, Wan L J 2018 Adv. Mater. 30 201705575Google Scholar
[49] Song D P, Yang Z W, Zhao Q, Sun X L, Wu Y, Zhang Y, Gao J, Wang C, Yang L, Ohsaka T, Matsumoto F, Wu J F 2022 ACS Appl. Mater. Inter. 14 12264Google Scholar
[50] Lee J S, Park Y J 2021 ACS Appl. Mater. Inter. 13 38333Google Scholar
[51] Ohta N, Takada K, Zhang L, Ma R, Osada M, Sasaki T 2006 Adv. Mater. 18 2226Google Scholar
[52] Walther F, Strauss F, Wu X, Mogwitz B, Hertle J, Sann J, Rohnke M, Brezesinski T, Janek J 2021 Chem. Mater. 33 2110Google Scholar
[53] Kim K J, Balaish M, Wadaguchi M, Kong L, Rupp J L M 2020 Adv. Energy Mater. 11 2002689Google Scholar
[54] Fan X M, Hu G R, Zhang B, Ou X, Zhang J F, Zhao W G, Jia H P, Zou L F, Li P, Yang Y 2020 Nano Energy 70 104450Google Scholar
[55] Fan Z Z, Xiang J Y, Yu Q, Wu X Z, Li M, Wang X L, Xia X H, Tu J P 2022 ACS Appl. Mater. Interfaces 14 726Google Scholar
[56] Li X L, Peng W X, Tian R Z, Song D W, Wang Z Y, Zhang H Z, Zhu L Y, Zhang L Q 2020 Electrochim. Acta 363 137185Google Scholar
-
图 2 富锂固态复合正极界面电子和离子迁移的示意图[21] (a) 传统的无碳富锂固态复合正极; (b) 含碳富锂固态复合正极; (c) 具有改性富锂正极的含碳固态复合电极
Fig. 2. Schematic illustrations of the electronic and ionic migration at the interface of Li-rich composite cathode[21]: (a) Conventional carbon-free Li-rich solid-state composite cathode; (b) carbon-containing Li-rich solid-state composite cathode; (c) carbon-containing solid-state composite cathode with modified Li-rich cathode materials.
图 3 富锂硫化物全固态锂电池 (a) 原始和第11次充电状态下LRO的O-K mRIXs图谱(红色箭头和黄色圆圈表示阴离子氧氧化还原的特征), 在531 eV激发能量下提取的LRO在完全充电状态和相应放电状态(浅灰色图)下的RIXs图谱(红色箭头和蓝色线圈中的强度对应于在充电状态下由氧氧化还原反应触发的氧化氧)[18]; (b) LRCox和LRCo10@yLN正极的电子电导率, 离子电导率和C2/m相含量[20]; (c)(LPSCl+VGCF)|LPSCl|Li-In电池在2.0—4.8 V(vs. Li/Li+), 0.1 mV/s下初始4个循环期间的CV曲线; (d) Pt|LLO|LPSCl|Pt的原位加电装置图和原位电荷密度分布[19]
Fig. 3. Lithium-rich cathode sulfide ASSLB: (a) O-K mRIXS of LRO at the pristine and upon 11th charge states (the red arrows and the yellow circle indicated the features of anionic oxygen redox), and RIXs spectra extracted at 531 eV excitation energy of LRO in the fully charged states and corresponding discharges states (light gray plot) (the intensity in the red arrow and the blue coil corresponds to the oxidized oxygen triggered by oxygen redox reaction at the charged state)[18]; (b) electronic conductivity, ionic conductivity and C2/m phase content of LRCox and LRCo10@yLN cathodes[20]; (c) CV curves of the (LPSCl+VGCF)|LPSCl|Li-In cell during the initial four cycles between 2.0 and 4.8 V vs. Li/Li+ at 0.1 mV/s; (d) in-situ power-up installation diagram and in-situ charge-density-distribution characterization of Pt|LLO|LPSCl|Pt[19].
图 4 富锂卤化物全固态锂电池 (a) 由碳添加剂和LPO包覆的LLO组成全固态锂电池示意图[21]; (b) 采用LNO离子导电涂层材料对LRM进行表面化学修饰[23]; (c) 通过S—O键以稳定LRMO/SE界面[22]
Fig. 4. Lithium-rich cathode halide ASSLB: (a) Schematic illustration of ASSLB consisting of carbon additives and coated-LPO LLO[21]; (b) surface chemistry modification of LRM with an ionic conductive coating material of LNO[23]; (c) stabilization of LRMO/SE interface by S—O bonding[22].
图 5 富锂氧化物全固态锂电池 (a) 第一次充放电期间Li1+x+yAlx(Ti, Ge)2–xSiyP3–yO12(LASGTP)基板上Li2MnO3原位HAXPES光谱的O 1s和Mn 3s峰值偏移[26]; (b) 原位实验装置示意图和脱锂前后LNMO颗粒的HAADF-STEM图像[27]; (c) 单晶富锂石榴石型氧化物全固态锂电池的结构示意图及其在0.05 C和80 °C条件下的初始充放电曲线以及相应的dQ/dV曲线[28]
Fig. 5. Lithium-rich cathode oxide ASSLB: (a) O 1s and Mn 3s peak shifts in the in situ hard X-ray photoelectron spectroscopy (HAXPES) spectra of Li2MnO3 on Li1+x+yAlx(Ti, Ge)2–xSiyP3–yO12 (LASGTP) substrates during the first charge/discharge[26]; (b) schematic of the in situ experimental setup and HAADF-STEM images of other LNMO particle before and after delithiation[27]; (c) structural schematic of a single-crystal lithium garnet-rich oxide all-solid-state lithium battery and its initial charge/discharge curves at 0.05 C, 80 ℃ and the corresponding dQ/dV curves [28].
表 1 典型的富锂全固态锂电池电化学性能
Table 1. Representative of reported lithium-rich cathode all-solid-state lithium batteries.
类型 电池结构 测试条件 放电比容量/
(mAh·g–1)容量保持率 文献 硫
化
物Li2RuO3-Li6PS5Cl-AB| Li7P3S11| Li-In 60 ℃, 2.0—4.3 V
(1 C = 200 mA/g)220, 0.1 C
210, 1 C
(after 10 activation cycles, 0.05 C)90%–1 C, 1000 cycles [18] Li1.2Ni0.13Co0.13Mn0.54O2- Li6PS5Cl-
conductive| Li6PS5Cl| Li-In30 ℃, 2.0—4.7 V
(1 C = 250 mA/g)110.4, 0.1 C — [19] Li6PS5Cl|LiNbO3-coated Li1.18Ni0.21Co0.15Mn0.45O2-Li6PS5Cl-VGCF| Li6PS5Cl | Li-In 27 ℃, 2.0—4.8 V
(1 C = 200 mA/g)~170, 0.1 C
~160, 0.5 C83%–0.5 C, 1000 cycles [20] 卤
化
物Li2SO3-coated Li1.2Mn0.54Co0.13Ni0.13O2-Li3InCl4.8F1.2 -CN|Li3InCl4.8F1.2-
Li6PS5Cl|Li-In30 ℃, 2.3—4.6 V
(1 C = 200 mA/g)248, 0.1 C
130, 1 C81.2%–1 C, 300 cycles [22] Li3PO4-coated Li1.17Mn0.55Ni0.24Co0.05O2-Li3InCl6-AB|Li3InCl6- Li6PS5Cl|In 25 ℃, 2.0—4.8 V
(1 C = 200 mA/g)230.7, 0.1 C
~200, 0.2 C87.9%–0.2 C, 100 cycles [21] LiNbO3-coated Li1.15Mn0.53Ni0.265Co0.055O2-Li3InCl6|Li3InCl6|Li-In 25 ℃, 2—4.8 V
(1 C = 200 mA/g)221, 0.1 C 49%–0.1 C, 100 cycles [23] 氧
化
物
Li2RuO3|Li3PO4|Li30 ℃, 3—4.0 V
(0.1 C=1.67 mA/cm2)101.4, 0.1 C 99%–0.1 C, 30 cycles [24]
Li2MnO3|Li3PO4|Li30 ℃, 2—4.8 V
(0.2 C =1.17 µA/cm2)180, 0.2 C 99%–0.2 C, 100 cycles [25] Li1.2Mn0.567Ni0.167Co0.067O2-Ta-doped Li7La3Zr2O12-Li3BO3|Ta-doped Li7La3Zr2O12|Li 80 ℃, 2—4.7 V
(1 C = 200 mA/g)226, 0.05 C 80%–0.05 C, 30 cycles [28] -
[1] Li M, Lu J, Chen Z W, Amine K 2017 Adv. Mater. 30 1063Google Scholar
[2] Manthiram A 2017 ACS Cent. Sci. 3 1063Google Scholar
[3] Tarascon J M, Armand M 2001 Nature 414 359Google Scholar
[4] Tan S J, Wang W P, Tian Y F, Xin S, Guo Y G 2021 Adv. Funct. Mater. 31 2105253Google Scholar
[5] Chen J, Wu J W, Wang X D, Zhou A A, Yang Z L 2021 Energy Stor. Mater. 35 70Google Scholar
[6] Chen L K, Huang Y F, Ma J B, Ling H J, Kang F Y, He Y B 2020 Energy Fuels 34 13456Google Scholar
[7] Xu J J, Cai X Y, Cai S M, Shao Y X, Hu C, Lu S R, Ding S J 2022 Energy Environ. Mater. 0 e12450Google Scholar
[8] Li W D, Song B H, Manthiram A 2017 Chem. Soc. Rev. 46 3006Google Scholar
[9] Zuo W H, Luo M Z, Liu X S, Wu J, Liu H D, Li J, Winter M, Fu R Q, Yang W L, Yang Y 2020 Energy Environ. Sci. 13 4450Google Scholar
[10] He W, Guo W B, Wu H L, Lin L, Liu Q, Han X, Xie Q S, Liu P F, Zheng H F, Wang L S, Yu X Q, Peng D L 2021 Adv. Mater. 33 2005937Google Scholar
[11] Kim J-S, Johnson C S, Vaughey J T, Thackeray M M, Hackney S A, Yoon W, Grey C P 2004 Chem. Mater. 16 1996Google Scholar
[12] Hodeau J L, Marezio M, Santoro A, Roth R S 1982 J. Solid State Chem. 45 170Google Scholar
[13] Pearce P E, Perez A J, Rousse G, Saubanere M, Batuk D, Foix D, McCalla E, Abakumov A M, Van Tendeloo G, Doublet M L, Tarascon J M 2017 Nat. Mater. 16 580Google Scholar
[14] Lyu Y C, Hu E Y, Xiao D D, Wang Y, Yu X Q, Xu G L, Ehrlich S N, Amine K, Gu L, Yang X Q, Li H 2017 Chem. Mater. 29 9053Google Scholar
[15] Zhao S Q, Yan K, Zhang J Q, Sun B, Wang G X 2020 Angew. Chem. Int. Ed. 60 2208Google Scholar
[16] Liu T C, Liu J J, Li L X, Yu L, Diao J C, Zhou T, Li S N, Dai A, Zhao W G, Xu S Y, Ren Y, Wang L G, Wu T P, Qi R, Xiao Y G, Zheng J X, Cha W, Harder R, Robinson I, Wen J G, Lu J, Pan F, Amine K 2022 Nature 606 305Google Scholar
[17] Aditya Narayan S, Anand Kumar S, Kyung-Wan N 2022 Matter 5 2587Google Scholar
[18] Wu Y Q, Zhou K, Ren F C, Ha Y, Liang Z T, Zheng X F, Wang Z Y, Yang W, Zhang M J, Luo M Z, Battaglia C, Yang W L, Zhu L Y, Gong Z L, Yang Y 2022 Energy Environ. Sci. 15 3470Google Scholar
[19] Liu B W, Hu N F, Li C, Ma J, Zhang J W, Yang Y, Sun D Y, Yin B X, Cui G L 2022 Angew. Chem. Int. Ed. 61 e202209626Google Scholar
[20] Du W B, Shao Q N, Wei Y Q, Yan C H, Gao P P, Lin Y Z, Jiang Y Z, Liu Y F, Yu X B, Gao M X, Sun W P, Pan H G 2022 ACS Energy Lett. 7 3006Google Scholar
[21] Yu R Z, Wang C H, Duan H, Jiang M, Zhang A B, Fraser A, Zuo J X, Wu Y L, Sun Y P, Zhao Y, Liang J W, Fu J M, Deng S X, Ren Z M, Li G H, Huang H, Li R Y, Chen N, Wang J T, Li X F, Singh C V, Sun X L 2022 Adv. Mater. 35 2370029Google Scholar
[22] Sun S, Zhao C Z, Yuan H, Fu Z H, Chen X, Lu Y, Li Y F, Hu J K, Dong J, Huang J Q, Ouyang M, Zhang Q 2022 Sci. Adv. 8 eadd5189Google Scholar
[23] Zhang A B, Wang J, Yu R Z, Zhuo H X, Wang C H, Ren Z M, Wang J T 2023 ACS Appl. Mater. Inter. 15 8190Google Scholar
[24] Zheng Y, Hirayama M, Taminato S, Lee S, Oshima Y, Takayanagi K, Suzuki K, Kanno R 2015 J. Power Sources 300 413Google Scholar
[25] Sugawara Y, Taminato S, Hirayama T, Hirayama M, Kanno R, Ukyo Y, Ikuhara Y 2018 J. Electrochem. Soc. 165 A55Google Scholar
[26] Hikima K, Shimizu K, Kiuchi H, Hinuma Y, Suzuki K, Hirayama M, Matsubara E, Kanno R 2022 J. Am. Chem. Soc. 144 236Google Scholar
[27] Li S, Sun Y P, Li N, Tong W, Sun X L, Black C T, Hwang S 2022 Nano Lett. 22 4905Google Scholar
[28] Yin X, Li D Y, Hao L W, Wang Y Z, Wang Y T, Guo X W, Zhao S, Wang B Y, Wu L Q, Yu H J 2023 Chem. Commun. 59 639Google Scholar
[29] Hikima K, Suzuki K, Taminato S, Hirayama M, Yasuno S, Kanno R 2019 Chem. Lett. 48 192Google Scholar
[30] Hikima K, Hinuma Y, Shimizu K, Suzuki K, Taminato S, Hirayama M, Masuda T, Tamura K, Kanno R 2021 ACS Appl. Mater. Inter. 13 7650Google Scholar
[31] Gao M X, Yan C H, Shao Q N, Chen J, Zhang C Y, Chen G R, Jiang Y Z, Zhu T J, Sun W P, Liu Y F, Gao M X, Pan H G 2021 Small 17 2008132Google Scholar
[32] Xue J P, Jiang C H, Pan B X, Zou Z M 2019 J. Electroanal. Chem. 850 113419Google Scholar
[33] Karina A, Mirco R, Andrey V, Bastian B, Xiaofei Y, Tobias P, Martin W, Markus B 2022 J. Power Sources 552 232252Google Scholar
[34] Kobayashi S, Watanabe H, Kato T, Mizuno F, Kuwabara A 2022 ACS Appl. Mater. Inter. 14 39459Google Scholar
[35] Liu X S, Cheng Y, Su Y, Ren F C, Zhao J, Liang Z T, Zheng B Z, Shi J W, Zhou K, Xiang Y X, Zheng J M, Wang M-S, Huang J Y, Shao M H, Yang Y 2023 Energy Stor. Mater. 54 713Google Scholar
[36] Yuan S H, Zhang H Z, Song D W, Ma Y, Shi X X, Li C L, Zhang L Q 2022 Chem. Eng. J. 439 135677Google Scholar
[37] Cui S L, Wang Y Y, Liu S, Li G R, Gao X P 2019 Electrochim. Acta 328 135109Google Scholar
[38] Zhou T, Yu X R, Li F, Zhang J W, Liu B W, Wang L L, Yang Y, Hu Z W, Ma J, Li C, Cui G L 2022 Energy Stor. Mater. 55 691Google Scholar
[39] Sun X W, Wang L L, Ma J, Yu X R, Zhang S, Zhou X H, Cui G L 2022 ACS Appl. Mater. Inter. 14 17674Google Scholar
[40] Ding P, Lin Z, Guo X W, Wu L Q, Wang Y Z, Guo H, Li L, Yu H J 2021 Mater. Today 51 449Google Scholar
[41] Zhang Q, Cao D X, Ma Y, Natan A, Aurora P, Zhu H L 2019 Adv. Mater. 31 1901131Google Scholar
[42] Nikodimos Y, Su W N, Hwang B 2022 Adv. Energy Mater. 13 2202854Google Scholar
[43] Sakakura M, Mitsuishi K, Okumura T, Ishigaki N, Iriyama Y 2022 ACS Appl. Mater. Inter. 14 48547Google Scholar
[44] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682Google Scholar
[45] Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M 2013 Energy Environ. Sci. 7 627Google Scholar
[46] Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 Nat. Energy 1 16030Google Scholar
[47] Whitfield P, Davidson I, Cranswick L, Swainson I, Stephens P 2005 Solid State Ionics 176 463Google Scholar
[48] Shi J L, Xiao D D, Ge M, Yu X, Chu Y, Huang X, Zhang X D, Yin Y X, Yang X Q, Guo Y G, Gu L, Wan L J 2018 Adv. Mater. 30 201705575Google Scholar
[49] Song D P, Yang Z W, Zhao Q, Sun X L, Wu Y, Zhang Y, Gao J, Wang C, Yang L, Ohsaka T, Matsumoto F, Wu J F 2022 ACS Appl. Mater. Inter. 14 12264Google Scholar
[50] Lee J S, Park Y J 2021 ACS Appl. Mater. Inter. 13 38333Google Scholar
[51] Ohta N, Takada K, Zhang L, Ma R, Osada M, Sasaki T 2006 Adv. Mater. 18 2226Google Scholar
[52] Walther F, Strauss F, Wu X, Mogwitz B, Hertle J, Sann J, Rohnke M, Brezesinski T, Janek J 2021 Chem. Mater. 33 2110Google Scholar
[53] Kim K J, Balaish M, Wadaguchi M, Kong L, Rupp J L M 2020 Adv. Energy Mater. 11 2002689Google Scholar
[54] Fan X M, Hu G R, Zhang B, Ou X, Zhang J F, Zhao W G, Jia H P, Zou L F, Li P, Yang Y 2020 Nano Energy 70 104450Google Scholar
[55] Fan Z Z, Xiang J Y, Yu Q, Wu X Z, Li M, Wang X L, Xia X H, Tu J P 2022 ACS Appl. Mater. Interfaces 14 726Google Scholar
[56] Li X L, Peng W X, Tian R Z, Song D W, Wang Z Y, Zhang H Z, Zhu L Y, Zhang L Q 2020 Electrochim. Acta 363 137185Google Scholar
计量
- 文章访问数: 12925
- PDF下载量: 825
- 被引次数: 0