搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂晶格动力学与能源材料的中子散射研究

任清勇 王建立 李昺 马杰 童欣

引用本文:
Citation:

复杂晶格动力学与能源材料的中子散射研究

任清勇, 王建立, 李昺, 马杰, 童欣

Neutron scattering studies of complex lattice dynamics in energy materials

Ren Qing-yong, Wang Jian-li, Li Bing, Ma Jie, Tong Xin
PDF
导出引用
  • 晶格动力学是众多前沿能源材料的重要物理基础。许多优秀的能源材料具有亚晶格嵌套结构,其晶格动力学非常复杂,这给理解材料的物理机制带来了巨大挑战。中子散射技术兼具高的能量和动量分辨率,可以同时表征物质结构和复杂晶格动力学,近年来在研究能源材料物理机制方面发挥了重要作用。本文详细介绍了能源材料研究中常用的几种中子散射技术,包括中子衍射、中子全散射、准弹性中子散射以及非弹性中子散射等。然后,综述了近年来以中子散射为主要表征方法在能源材料领域所取得的一些重要研究进展,包括超离子热电材料中的超低晶格热导率、固态电解质中的离子扩散机制、压卡材料中的塑晶态相变与构型熵、光伏材料中的晶格非谐性与载流子输运、以及磁卡制冷材料中的一级磁-结构相变等。在这些能源转换与存储材料中,晶格动力学并不是独立起作用的,它们在宏观物理性质中的作用总是通过不同自由度如亚晶格、电荷、自旋等的复杂关联作用或相互耦合来实现的。通过这些典型实例,希望为能源材料与晶格动力学的进一步深入研究提供参考。
    Lattice dynamics play a crucial role in understanding the physical mechanisms of cutting-edge energy materials. Many excellent energy materials have complex multiple-sublattice structures, and their lattice dynamics are intricate and the underlying mechanisms are difficult to understand. Neutron scattering technologies, known for their high energy and momentum resolution, are powerful tools for simultaneously characterizing material structure and complex lattice dynamics. In recent years, neutron scattering techniques have significantly contributed to the study of energy materials, shedding light on their physical mechanisms. Starting from the basic properties of neutrons and double differential scattering cross sections, this paper introduces in detail the working principles, spectrometer structures, and comparisons with other technologies of several neutron scattering techniques commonly used in energy material research, including neutron diffraction and neutron total scattering to characterize material structure, quasi-elastic neutron scattering and inelastic neutron scattering to characterize lattice dynamics. Then, this article showcases significant research advancements in the field of energy materials utilizing neutron scattering as a primary characterization method:
    1. In the case of Ag8SnSe6 superionic thermoelectric materials, single crystal inelastic neutron scattering experiments debunk the "liquid-like phonon model" as the primary contributor to ultra-low lattice thermal conductivity. Instead, extreme phonon anharmonic scattering is identified as the key factor based on the special temperature dependence of phonon linewidth.
    2. Analysis of quasi-elastic and inelastic neutron scattering spectra reveals changes in the correlation between framework and Ag+ sublattices during the superionic phase transition of Ag8SnSe6 compounds. Further investigations using neutron diffraction and molecular dynamics simulations unveil a new superionic phase transition and ion diffusion mechanism, primarily governed by weakly bonded Se atoms.
    3. Research on NH4I compounds demonstrates a strong coupling between molecular orientation rotation and lattice vibration, and the strengthening of phonon anharmonicity with temperature can decouple this interaction and induce plastic phase transition. This phenomenon results in a significant configuration entropy change, showing potential applications in barocaloric refrigeration.
    4. In the CsPbBr3 perovskite photovoltaic materials, inelastic neutron scattering uncovers low-energy phonon damping of the [PbBr6] sublattice, influencing electron-phonon coupling and the band edge electronic state. This special anharmonic vibration of the [PbBr6] sublattice prolongs the lifetime of hot carriers, impacting the material's electronic properties.
    5. In MnCoGe magnetic refrigeration materials, in-situ neutron diffraction experiments highlight the role of valence electron transfer between sublattices in altering crystal structural stability and magnetic interactions. This process triggers a transformation from a ferromagnetic to an incommensurate spiral antiferromagnetic structure, expanding our understanding of magnetic phase transition regulation.
    These examples underscore the interconnected nature of lattice dynamics with other degrees of freedom, such as sublattices, charge, and spin, in energy conversion and storage materials. Through these typical examples, this article aims to provide a reference for further exploration and understanding of energy materials and lattice dynamics.
  • [1]

    Huang K, Han R Q 1988 Solid State Physics (Higher Education Press) (黄昆, 韩汝琦 1988 固体物理学 (高等教育出版社))

    [2]

    Ashcroft N W, Mermin N D 1976 Solid state physics (Holt, Rinehart and Winston)

    [3]

    He J, Tritt T M 2017 Science 357 1369

    [4]

    (叶良修 2007 半导体物理学 (高等教育出版社))

    Ye L X 2007 Semiconductor Physics (Higher Education Press)

    [5]

    Chen Z, Zhang X, Pei Y 2018 Adv. Mater. 30 1705617

    [6]

    Qiu W, Xi L, Wei P, Ke X, Yang J, Zhang W 2014 Proc. Natl. Acad. Sci. U.S.A. 111 15031

    [7]

    Fu C, Wu H, Liu Y, He J, Zhao X, Zhu T 2016 Adv Sci 3 1600035

    [8]

    Qian X, Zhou J, Chen G 2021 Nat. Mater. 20 1188

    [9]

    Wei B, Sun Q, Li C, Hong J 2021 Sci. China Phys. Mech. Astron. 64 117001

    [10]

    Akkerman Q A, Manna L 2020 ACS Energy Lett. 5 604

    [11]

    Muy S, Bachman J C, Giordano L, Chang H-H, Abernathy D L, Bansal D, Delaire O, Hori S, Kanno R, Maglia F, Lupart S, Lamp P, Shao-Horn Y 2018 Energy Environ. Sci. 11 850

    [12]

    Cazorla C 2019 Nature 567 470

    [13]

    Shen J J, Fang T, Fu T Z, Xin J Z, Zhao X B, Zhu T J 2019 J. Inorg. Mater. 34 260 (沈家骏, 方腾, 傅铁铮, 忻佳展, 赵新兵, 朱铁军 2019 无机材料学报 34 260)

    [14]

    Lin S, Li W, Li S, Zhang X, Chen Z, Xu Y, Chen Y, Pei Y 2017 Joule 1 816

    [15]

    Li W, Lin S, Weiss M, Chen Z, Li J, Xu Y, Zeier W G, Pei Y 2018 Adv. Energy Mater. 8 1800030

    [16]

    Xia K, Hu C, Fu C, Zhao X, Zhu T 2021 Appl. Phys. Lett. 118 140503

    [17]

    Zhu J, Ren Q, Chen C, Wang C, Shu M, He M, Zhang C, Le M D, Torri S, Wang C-W, Wang J, Cheng Z, Li L, Wang G, Jiang Y, Wu M, Qu Z, Tong X, Chen Y, Zhang Q, Ma J 2024 Nat. Commun. 15 2618

    [18]

    Li X, Liu P-F, Zhao E, Zhang Z, Guidi T, Le M D, Avdeev M, Ikeda K, Otomo T, Kofu M, Nakajima K, Chen J, He L, Ren Y, Wang X-L, Wang B-T, Ren Z, Zhao H, Wang F 2020 Nat. Commun. 11 942

    [19]

    Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder G J 2012 Nat. Mater. 11 422

    [20]

    Li L, Liu Y, Dai J, Hong A, Zeng M, Yan Z, Xu J, Zhang D, Shan D, Liu S, Ren Z, Liu J-M 2016 J. Mater. Chem. C 4 5806

    [21]

    Christensen M, Abrahamsen A B, Christensen N B, Juranyi F, Andersen N H, Lefmann K, Andreasson J, Bahl C R, Iversen B B 2008 Nat. Mater. 7 811

    [22]

    Koza M M, Johnson M R, Viennois R, Mutka H, Girard L, Ravot D 2008 Nat. Mater. 7 805

    [23]

    Lee S, Esfarjani K, Luo T, Zhou J, Tian Z, Chen G 2014 Nat. Commun. 5 3525

    [24]

    Delaire O, Ma J, Marty K, May A F, McGuire M A, Du M H, Singh D J, Podlesnyak A, Ehlers G, Lumsden M D, Sales B C 2011 Nat. Mater. 10 614

    [25]

    Voneshen D J, Walker H C, Refson K, Goff J P 2017 Phys. Rev. Lett. 118 145901

    [26]

    Li C W, Hong J, May A F, Bansal D, Chi S, Hong T, Ehlers G, Delaire O 2015 Nat. Phys. 11 1063

    [27]

    Ren Q, Gupta M K, Jin M, Ding J, Wu J, Chen Z, Lin S, Fabelo O, Rodríguez-Velamazán J A, Kofu M, Nakajima K, Wolf M, Zhu F, Wang J, Cheng Z, Wang G, Tong X, Pei Y, Delaire O, Ma J 2023 Nat. Mater. 22 999

    [28]

    Delaire O, Marty K, Stone M B, Kent P R C, Lucas M S, Abernathy D L, Mandrus D, Sales B C 2011 Proc. Natl. Acad. Sci. U.S.A. 108 4725

    [29]

    Li C W, Hellman O, Ma J, May A F, Cao H B, Chen X, Christianson A D, Ehlers G, Singh D J, Sales B C, Delaire O 2014 Phys. Rev. Lett. 112 175501

    [30]

    Han S, Dai S, Ma J, Ren Q, Hu C, Gao Z, Duc Le M, Sheptyakov D, Miao P, Torii S, Kamiyama T, Felser C, Yang J, Fu C, Zhu T 2023 Nat. Phys. 19 1649

    [31]

    Bachman J C, Muy S, Grimaud A, Chang H-H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y 2015 Chem. Rev. 116 140

    [32]

    Gao Y, Nolan A M, Du P, Wu Y, Yang C, Chen Q, Mo Y, Bo S H 2020 Chem. Rev. 120 5954

    [33]

    Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278

    [34]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682

    [35]

    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 Nat. Energy 1 16030

    [36]

    Lanigan-Atkins T, He X, Krogstad M J, Pajerowski D M, Abernathy D L, Xu G, Xu Z, Chung D Y, Kanatzidis M G, Rosenkranz S, Osborn R, Delaire O 2021 Nat. Mater. 20 977

    [37]

    Li B, Kawakita Y, Liu Y, Wang M, Matsuura M, Shibata K, Ohira-Kawamura S, Yamada T, Lin S, Nakajima K, Liu S F 2017 Nat. Commun. 8 16086

    [38]

    Leguy A M, Frost J M, McMahon A P, Sakai V G, Kochelmann W, Law C, Li X, Foglia F, Walsh A, O'Regan B C, Nelson J, Cabral J T, Barnes P R 2015 Nat. Commun. 6 7124

    [39]

    Li B, Kawakita Y, Ohira-Kawamura S, Sugahara T, Wang H, Wang J, Chen Y, Kawaguchi S I, Kawaguchi S, Ohara K, Li K, Yu D, Mole R, Hattori T, Kikuchi T, Yano S-i, Zhang Z, Zhang Z, Ren W, Lin S, Sakata O, Nakajima K, Zhang Z 2019 Nature 567 506

    [40]

    Xie M X, Ren J 2022 Wuli 51 855 (谢梦祥, 任捷 2022 物理 51 855)

    [41]

    Ren Q Y, Chen M N, Geng Y S, Ma J, Tong X 2021 Sci. Sin.: Phys. Mech. Astron. 51 087332 (任清勇, 陈闽楠, 耿艳胜, 马杰, 童欣 2021 中国科学:物理学 力学 天文学 51 087332)

    [42]

    Ma J, Ren Q Y, 2017 J. Northwestern Uni. (Nat. Sci. Ed.) 47 783 (马杰, 任清勇 2017 西北大学学报 (自然科学版) 47 783)

    [43]

    Squires G L 1978 Introduction to the Theory of Thermal Neutron Scattering (Cambridge: Cambridge University Press)

    [44]

    Furrer A, Mesot J, Strässle T 2009 Neutron Scattering in Condensed Matter Physics (Vol. 4) (Singapore: World Scientific)

    [45]

    Wang Y X, Gong W, Su Y H, Li B 2024 Acta Metall. Sin. 60 1001 (王延绪, 龚武, 苏玉华, 李昺2024 金属学报 60 1001)

    [46]

    Delaire O A, Stassis C 2012 Phonon Studies (John Wiley & Sons)

    [47]

    Sears V F 1992 Neutron News 3 26

    [48]

    Berrod Q, Lagrené K, Ollivier J, Zanotti J-M 2018 EPJ Web Conf. 188 05001

    [49]

    Li B, Wang H, Kawakita Y, Zhang Q, Feygenson M, Yu H L, Wu D, Ohara K, Kikuchi T, Shibata K, Yamada T, Ning X K, Chen Y, He J Q, Vaknin D, Wu R Q, Nakajima K, Kanatzidis M G 2018 Nat. Mater. 17 226

    [50]

    Božin E S, Malliakas C D, Souvatzis P, Proffen T, Spaldin N A, Kanatzidis M G, Billinge S J L 2010 Science 330 1660

    [51]

    Sakata M, Sato M 1990 Acta Crystallogr. Sec. A 46 263

    [52]

    Keen D A, Goodwin A L 2015 Nature 521 303

    [53]

    Neder R B, Proffen T 2008 Diffuse Scattering and Defect Structure Simulations: A cook book using the program DISCUS (Vol. 11) (OUP Oxford)

    [54]

    Weber T, Simonov A 2012 Zeitschrift für Kristallographie 227 238

    [55]

    Cai G, Li Y, Fu Y, Yang H, Mei L, Nie Z, Li T, Liu H, Ke Y, Wang X-L, Brédas J-L, Tang M-C, Chen X, Zhan X, Lu X 2024 Nat. Commun. 15 2784

    [56]

    Jeffries C M, Ilavsky J, Martel A, Hinrichs S, Meyer A, Pedersen J S, Sokolova A V, Svergun D I 2021 Nature Reviews Methods Primers 1 70

    [57]

    Skoda M W A 2019 Current Opinion in Colloid & Interface Science 42 41

    [58]

    Combet S, Cousin F, Fadda G, Schirò G 2020 EPJ Web Conf. 236 04001

    [59]

    Aswal D K, Sarkar P S, Kashyap Y S 2022 Neutron imaging: basics, techniques and applications (Springer)

    [60]

    Strobl M, Manke I, Kardjilov N, Hilger A, Dawson M, Banhart J 2009 J. Phys. D: Appl. Phys. 42

    [61]

    Kardjilov N, Manke I, Hilger A, Strobl M, Banhart J 2011 Mater. Today 14 248

    [62]

    Luo W, Feng Y, Liu X, Wang M, Zhu D, Gao W, Geng Y, Ren Q, Shen J, Sun Y, Zhang X, Xia Y, Zuo T, Zheng Y, Tong X 2023 Nucl. Instrum. Methods Phys. Res., Sect. A 1046 167676

    [63]

    Embs J P, Juranyi F, Hempelmann R 2010 Z. Phys. Chem. 224 5

    [64]

    B??e M 1988 Quasielastic neutron scattering: principles and applications in solid state chemistry, biology, and materials science (Bristol, England; Philadelphia: Adam Hilger)

    [65]

    Ren Q, Qi J, Yu D, Zhang Z, Song R, Song W, Yuan B, Wang T, Ren W, Zhang Z, Tong X, Li B 2022 Nat. Commun. 13 2293

    [66]

    Jobic H, Theodorou D N 2007 Microporous Mesoporous Mater. 102 21

    [67]

    Verdal N, Udovic T J, Rush J J, Skripov A V 2015 J. Alloys Compd. 645 S513

    [68]

    Merklein M, Kabakova I V, Zarifi A, Eggleton B J 2022 Appl. Phys. Rev. 9 041306

    [69]

    Wolff C, Smith M J A, Stiller B, Poulton C G 2021 J. Opt. Soc. Am. B 38

    [70]

    Baron A Q 2015 arXiv:1504.01098

    [71]

    Ishikawa D, Ellis D S, Uchiyama H, Baron A Q 2015 J. Synchrotron. Radiat. 22 3

    [72]

    Wu M, Shi R, Qi R, Li Y, Du J, Gao P 2023 Ultramicroscopy 253 113818

    [73]

    Delaire O, May A F, McGuire M A, Porter W D, Lucas M S, Stone M B, Abernathy D L, Ravi V A, Firdosy S A, Snyder G J 2009 Phys. Rev. B 80 184302

    [74]

    Shi X, He J 2021 Science 371 343

    [75]

    Mao J, Chen G, Ren Z 2021 Nat. Mater. 20 454

    [76]

    Toberer E S, Zevalkink A, Snyder G J 2011 J. Mater. Chem. 21 15843

    [77]

    Wei P C, Liao C N, Wu H J, Yang D, He J, Biesold-McGee G V, Liang S, Yen W T, Tang X, Yeh J W, Lin Z, He J H 2020 Adv. Mater. 32 e1906457

    [78]

    Hanus R, Agne M T, Rettie A J E, Chen Z, Tan G, Chung D Y, Kanatzidis M G, Pei Y, Voorhees P W, Snyder G J 2019 Adv. Mater. 31 1900108

    [79]

    Wu Y, Chen Z, Nan P, Xiong F, Lin S, Zhang X, Chen Y, Chen L, Ge B, Pei Y 2019 Joule 3 1276

    [80]

    Jiang B, Yu Y, Cui J, Liu X, Xie L, Liao J, Zhang Q, Huang Y, Ning S, Jia B, Zhu B, Bai S, Chen L, Pennycook S J, He J 2021 Science 371 830

    [81]

    Zhang Z, Zhao K, Wei T-R, Qiu P, Chen L, Shi X 2020 Energy Environ. Sci. 13 3307

    [82]

    Zhao K, Qiu P, Shi X, Chen L 2019 Adv. Funct. Mater. 30 1903867

    [83]

    Niedziela J L, Bansal D, May A F, Ding J, Lanigan-Atkins T, Ehlers G, Abernathy D L, Said A, Delaire O 2019 Nat. Phys. 15 73

    [84]

    Jiang B, Qiu P, Eikeland E, Chen H, Song Q, Ren D, Zhang T, Yang J, Iversen B B, Shi X, Chen L 2017 J. Mater. Chem. C 5 943

    [85]

    Ding J, Niedziela J L, Bansal D, Wang J, He X, May A F, Ehlers G, Abernathy D L, Said A, Alatas A, Ren Y, Arya G, Delaire O 2020 Proc. Natl. Acad. Sci. U.S.A. 117 3930

    [86]

    Xie L, Feng J H, Li R, He J Q 2020 Phys. Rev. Lett. 125 245901

    [87]

    Trachenko K 2008 Phys. Rev. B 78 104201

    [88]

    Xie L, Wu D, Yang H, Yu Y, Wang Y, He J 2019 J. Mater. Chem. C 7 9263

    [89]

    Li W, Lin S, Ge B, Yang J, Zhang W, Pei Y 2016 Adv. Sci. 3 1600196

    [90]

    de Boissieu M 2023 Nat. Mater. 22 931

    [91]

    Janek J, Zeier W G 2016 Nat. Energy 1 16141

    [92]

    Zhao Q, Stalin S, Zhao C-Z, Archer L A 2020 Nat. Rev. Mater. 5 229

    [93]

    He X, Zhu Y, Mo Y 2017 Nat. Commun. 8 15893

    [94]

    Zou Z, Li Y, Lu Z, Wang D, Cui Y, Guo B, Li Y, Liang X, Feng J, Li H, Nan C-W, Armand M, Chen L, Xu K, Shi S 2020 Chem. Rev. 120 4169

    [95]

    Wang K, Ren Q, Gu Z, Duan C, Wang J, Zhu F, Fu Y, Hao J, Zhu J, He L, Wang C-W, Lu Y, Ma J, Ma C 2021 Nat. Commun. 12 4410

    [96]

    Zhu L, Wang Y, Chen J, Li W, Wang T, Wu J, Han S, Xia Y, Wu Y, Wu M, Wang F, Zheng Y, Peng L, Liu J, Chen L, Tang W 2022 Sci. Adv. 8 eabj7698

    [97]

    Wang Y, Richards W D, Ong S P, Miara L J, Kim J C, Mo Y, Ceder G 2015 Nat. Mater. 14 1026

    [98]

    Kraft M A, Culver S P, Calderon M, Böcher F, Krauskopf T, Senyshyn A, Dietrich C, Zevalkink A, Janek J, Zeier W G 2017 J. Am. Chem. Soc. 139 10909

    [99]

    Zhang Z, Nazar L F 2022 Nat. Rev. Mater. 7 389

    [100]

    Muy S, Schlem R, Shao‐Horn Y, Zeier W G 2021 Adv. Energy Mater. 11 2002787

    [101]

    The Royal Society, 2021 https://royalsociety.org/topics

    [102]

    United Nations Environmental Programme, 2018 May https://ozone.unep.org/sites/default/files/2019

    [103]

    Peters T 2018 Technical Report. Birmingham Energy Institute, The Institute for Global Innovation https://www.birmingham.ac.uk/Documents/college

    [104]

    Hou H, Qian S, Takeuchi I 2022 Nat. Rev. Mater. 7 633

    [105]

    Chen Y, Wang Y, Sun W, Qian S, Liu J 2022 The Innovation 3 100205

    [106]

    Aprea C, Greco A, Maiorino A, Masselli C 2019 Climate 7 115

    [107]

    Maier L M, Corhan P, Barcza A, Vieyra H A, Vogel C, Koenig J D, Schäfer-Welsen O, Wöllenstein J, Bartholomé K 2020 Commun. Phys. 3 186

    [108]

    Aprea C, Greco A, Maiorino A, Masselli C 2020 Energy 190 116404

    [109]

    Lloveras P, Zhang Z, Zeng M, Barrio M, Kawakita Y, Yu D, Lin S, Li K, Moya X, Tamarit J-L, Li B 2023 Colossal barocaloric plastic crystals (IOP Publishing) p7-1-7-30

    [110]

    Zhang K, Zhang Z, Pan H, Wang H, Zhao X, Qi J, Zhang Z, Song R, Yu C, Huang B, Li X, Chen H, Yin W, Tan C, Hu W, Wübbenhorst M, Luo J, Yu D, Zhang Z, Li B 2024 The Innovation 5 100577

    [111]

    Li B, Zhang Z D 2021 Sci. Sin.: Phys. Mech. Astron. 51 067505 (李昺, 张志东 2021 中国科学:物理学 力学 天文学 51 067505)

    [112]

    Qian X, Han D, Zheng L, Chen J, Tyagi M, Li Q, Du F, Zheng S, Huang X, Zhang S, Shi J, Huang H, Shi X, Chen J, Qin H, Bernholc J, Chen X, Chen L-Q, Hong L, Zhang Q M 2021 Nature 600 664

    [113]

    Hao J Z, Hu F X, Wei Z B, Shen F R, Zhou H B, Gao Y H, Qiao K M, Liang W H, Zhang C, Wang J, Sun J R, Shen B G 2021 Sci. Sin.: Phys. Mech. Astron. 51 067520 (郝嘉政, 胡凤霞, 尉紫冰, 沈斐然, 周厚博, 高怡红, 乔凯明, 梁文会, 张丞, 王晶, 孙继荣, 沈保根 2021 中国科学: 物理学 力学 天文学 51 067520)

    [114]

    Aznar A, Lloveras P, Barrio M, Negrier P, Planes A, Manosa L, Mathur N D, Moya X, Tamarit J-L 2020 J. Mater. Chem. A 8 639

    [115]

    Li J, Dunstan D, Lou X, Planes A, Manosa L, Barrio M, Tamarit J-L, Lloveras P 2020 J. Mater. Chem. A 8 20354

    [116]

    Li F B, Li M, Xu X, Yang Z C, Xu H, Jia C K, Li K, He J, Li B, Wang H 2020 Nat. Commun. 11 4190 4190

    [117]

    Lloveras P, Aznar A, Barrio M, Negrier P, Popescu C, Planes A, Manosa L, Stern-Taulats E, Avramenko A, Mathur N D, Moya X, Tamarit J L 2019 Nat. Commun. 10 1803

    [118]

    Zhang Z, Li K, Lin S, Song R, Yu D, Wang Y, Wang J, Kawaguchi S, Zhang Z, Yu C, Li X, Chen J, He L, Mole R, Yuan B, Ren Q, Qian K, Cai Z, Yu J, Wang M, Zhao C, Tong X, Zhang Z, Li B 2023 Sci. Adv. 9 eadd0374

    [119]

    Staveley L A K 1962 Annu. Rev. Phys. Chem. 13 351

    [120]

    Seo J, Ukani R, Zheng J, Braun J D, Wang S, Chen F E, Kim H K, Zhang S, Thai C, McGillicuddy R D, Yan H, Vlassak J J, Mason J A 2024 J. Am. Chem. Soc. 146 2736

    [121]

    Yu Z, Zhou H, Hu F, Liu C, Yuan S, Wang D, Hao J, Gao Y, Wang Y, Wang B, Tian Z, Lin Y, Zhang C, Yin Z, Wang J, Chen Y, Li Y, Sun J, Zhao T, Shen B 2022 NPG Asia Mater. 14 96

    [122]

    Sakata M, Harada J, Cooper M J, Rouse K D 1980 Acta Crystallogr. Sec. A 36 7

    [123]

    Songvilay M, Giles-Donovan N, Bari M, Ye Z G, Minns J L, Green M A, Xu G, Gehring P M, Schmalzl K, Ratcliff W D, Brown C M, Chernyshov D, van Beek W, Cochran S, Stock C 2019 Phys. Rev. Mater. 3 093602

    [124]

    Lee W, Li H, Wong A B, Zhang D, Lai M, Yu Y, Kong Q, Lin E, Urban J J, Grossman J C, Yang P 2017 Proc. Natl. Acad. Sci. U.S.A. 114 8693

    [125]

    Li W, Vasenko A S, Tang J, Prezhdo O V 2019 J. Phys. Chem. Lett. 10 6219

    [126]

    Ren Q, Fu C, Qiu Q, Dai S, Liu Z, Masuda T, Asai S, Hagihala M, Lee S, Torri S, Kamiyama T, He L, Tong X, Felser C, Singh D J, Zhu T, Yang J, Ma J 2020 Nat. Commun. 11 3142

    [127]

    de Campos A, Rocco D L, Carvalho A M, Caron L, Coelho A A, Gama S, da Silva L M, Gandra F C, dos Santos A O, Cardoso L P, von Ranke P J, de Oliveira N A 2006 Nat. Mater. 5 802

    [128]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Manosa L, Planes A 2005 Nat. Mater. 4 450

    [129]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620

    [130]

    Choe W, Pecharsky V K, Pecharsky A O, Gschneidner Jr K A, Young Jr V G, Miller G J 2000 Phys. Rev. Lett. 84 4617

    [131]

    Ren Q Y, Hutchison W D, Wang J L, Cobas R, Cadogan J M, Campbell S J 2015 Hyperfine Interactions 231 75

    [132]

    Ren Q Y, Hutchison W D, Wang J L, Studer A J, Campbell S J 2017 J. Alloys Compd. 693 32

    [133]

    Ren Q Y, Hutchison W D, Wang J L, Studer A J, Din M F M, Pérez S M, Cadogan J M, Campbell S J 2016 J. Phys. D: Appl. Phys. 49 175003

    [134]

    Ren Q Y, Hutchison W D, Wang J L, Muñoz Pérez S, Cadogan J M, Campbell S J 2014 Phys. Status Solidi A 211 1101

    [135]

    Liu E, Wang W, Feng L, Zhu W, Li G, Chen J, Zhang H, Wu G, Jiang C, Xu H, de Boer F 2012 Nat. Commun. 3 873

    [136]

    Ren Q, Hutchison W, Wang J, Studer A, Wang G, Zhou H, Ma J, Campbell S J 2019 ACS Appl. Mater. Interfaces 11 17531

    [137]

    Ren Q, Hutchison W D, Wang J, Studer A J, Campbell S J 2018 Chem. Mater. 30 1324

    [138]

    Landrum G A, Hoffmann R, Evers J, Boysen H 1998 Inorg. Chem. 37 5754

    [139]

    Zhu Y, Xia Y, Wang Y, Sheng Y, Yang J, Fu C, Li A, Zhu T, Luo J, Wolverton C, Snyder G J, Liu J, Zhang W 2020 Research 2020 4589786

    [140]

    Lin S, Li W, Pei Y 2021 Mater. Today 48 198

    [141]

    Wang Y, Lin R, Zhu P, Zheng Q, Wang Q, Li D, Zhu J 2018 Nano Lett. 18 2772

    [142]

    Bernges T, Hanus R, Wankmiller B, Imasato K, Lin S, Ghidiu M, Gerlitz M, Peterlechner M, Graham S, Hautier G, Pei Y, Hansen M R, Wilde G, Snyder G J, George J, Agne M T, Zeier W G 2022 Adv. Energy Mater. 12 2200717

    [143]

    Luo Y, Yang X, Feng T, Wang J, Ruan X 2020 Nat. Commun. 11 2554

    [144]

    Simoncelli M, Marzari N, Mauri F 2019 Nat. Phys. 15 809

    [145]

    Mukhopadhyay S, Parker D S, Sales B C, Puretzky A A, McGuire M A, Lindsay L 2018 Science 360 1455

  • [1] 何俊松, 罗丰, 王剑, 杨士冠, 翟立军, 程林, 刘虹霞, 张艳, 李艳丽, 孙志刚, 胡季帆. 熔融旋甩制备Co掺杂TiNiCoxSn合金的热电性能. 物理学报, doi: 10.7498/aps.73.20240112
    [2] 杨源, 胡乃方, 金永成, 马君, 崔光磊. 富锂正极材料在全固态锂电池中的研究进展. 物理学报, doi: 10.7498/aps.72.20230258
    [3] 刘超, 杨岳洋, 南策文, 林元华. MAX及其衍生MXene相碳化物的热电性能及展望. 物理学报, doi: 10.7498/aps.70.20211050
    [4] 袁珉慧, 乐文凯, 谈小建, 帅晶. 二维共价键子结构Zintl相热电材料研究及进展. 物理学报, doi: 10.7498/aps.70.20211010
    [5] 赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆. Cu1.8–x Sbx S热电材料的相结构与电热输运性能. 物理学报, doi: 10.7498/aps.70.20201852
    [6] 黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程. Mn-In-Cu共掺杂优化SnTe基材料的热电性能. 物理学报, doi: 10.7498/aps.70.20202020
    [7] 游逸玮, 崔建文, 张小锋, 郑锋, 吴顺情, 朱梓忠. 锂磷氧氮(LiPON)固态电解质与Li负极界面特性. 物理学报, doi: 10.7498/aps.70.20202214
    [8] 王雅宁, 陈少平, 樊文浩, 郭敬云, 吴玉程, 王文先. PbTe基热电接头界面性能. 物理学报, doi: 10.7498/aps.69.20201080
    [9] 郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程. 改善Te基热电材料与复合电极界面性能. 物理学报, doi: 10.7498/aps.69.20200436
    [10] 余启鹏, 刘琦, 王自强, 李宝华. 全固态金属锂电池负极界面问题及解决策略. 物理学报, doi: 10.7498/aps.69.20201218
    [11] 曹文卓, 李泉, 王胜彬, 李文俊, 李泓. 金属锂在固态电池中的沉积机理、策略及表征. 物理学报, doi: 10.7498/aps.69.20201293
    [12] 陶颖, 祁宁, 王波, 陈志权, 唐新峰. 氧化铟/聚(3,4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究. 物理学报, doi: 10.7498/aps.67.20180382
    [13] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军. PbSe-MnSe纳米复合热电材料的微结构和电热输运性能. 物理学报, doi: 10.7498/aps.65.107201
    [14] 李世超, 甘远, 王靖珲, 冉柯静, 温锦生. 铁基超导体Fe1+yTe1-xSex中磁性的中子散射研究. 物理学报, doi: 10.7498/aps.64.097503
    [15] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究. 物理学报, doi: 10.7498/aps.62.097301
    [16] 霍凤萍, 吴荣归, 徐桂英, 牛四通. 热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能. 物理学报, doi: 10.7498/aps.61.087202
    [17] 葛振华, 张波萍, 于昭新, 刘勇, 李敬锋. 机械合金化过程对硫化铋块体热电性能的影响机理. 物理学报, doi: 10.7498/aps.61.048401
    [18] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征. 物理学报, doi: 10.7498/aps.59.1243
    [19] 鄢永高, 唐新峰, 刘海君, 尹玲玲, 张清杰. Ag偏离化学计量比Ag1-xPb18SbTe20材料的热电传输性能. 物理学报, doi: 10.7498/aps.56.3473
    [20] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响. 物理学报, doi: 10.7498/aps.54.3321
计量
  • 文章访问数:  24
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-25

/

返回文章
返回