搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂晶格动力学与能源材料的中子散射研究

任清勇 王建立 李昺 马杰 童欣

引用本文:
Citation:

复杂晶格动力学与能源材料的中子散射研究

任清勇, 王建立, 李昺, 马杰, 童欣

Studies of complex lattice dynamics and neutron scattering in energy materials

Ren Qing-Yong, Wang Jian-Li, Li Bing, Ma Jie, Tong Xin
PDF
HTML
导出引用
  • 晶格动力学是众多前沿能源材料的重要物理基础. 许多优秀的能源材料具有亚晶格嵌套结构, 其晶格动力学非常复杂, 这给理解材料的物理机制带来了巨大挑战. 中子散射技术兼具高的能量和动量分辨率, 可以同时表征物质结构和复杂晶格动力学, 近年来在研究能源材料物理机制方面发挥了重要作用. 本文首先详细介绍了能源材料研究中常用的几种中子散射技术, 包括中子衍射、中子全散射、准弹性中子散射以及非弹性中子散射等. 然后, 综述了近年来以中子散射为主要表征方法在能源材料领域所取得的一些重要研究进展, 包括超离子热电材料中的超低晶格热导率、固态电解质中的离子扩散机制、压卡材料中的塑晶态相变与构型熵、光伏材料中的晶格非谐性与载流子输运、以及磁卡制冷材料中的一级磁-结构相变等. 在这些能源转换与存储材料中, 晶格动力学并不是独立起作用的, 它们在宏观物理性质中的作用总是通过不同自由度如亚晶格、电荷、自旋等的复杂关联作用或相互耦合来实现的. 通过这些典型实例, 希望为能源材料与晶格动力学的进一步深入研究提供参考.
    Lattice dynamics play a crucial role in understanding the physical mechanisms of cutting-edge energy materials. Many excellent energy materials have complex multiple-sublattice structures, with intricate lattice dynamics, and the underlying mechanisms are difficult to understand. Neutron scattering technologies, which are known for their high energy and momentum resolution, are powerful tools for simultaneously characterizing material structure and complex lattice dynamics. In recent years, neutron scattering techniques have made significant contributions to the study of energy materials, shedding light on their physical mechanisms. Starting from the basic properties of neutrons and double differential scattering cross sections, this work provides a detailed introduction to the working principles, spectrometer structures, and comparisons with other neutron scattering techniques commonly used in energy materials research, including neutron diffraction and neutron total scattering. which characterize material structures, and quasi-elastic neutron scattering and inelastic neutron scattering, which characterize lattice dynamics. Then, this work presents significant research progress in the field of energy materials utilizing neutron scattering as a primary characterization method:1) In the case of Ag8SnSe6 superionic thermoelectric materials, single crystal inelastic neutron scattering experiments have revealed that the "liquid-like phonon model" is the primary contributor to ultra-low lattice thermal conductivity. Instead, extreme phonon anharmonic scattering is identified as a key factor based on the special temperature dependence of phonon linewidth.2) Analysis of quasi-elastic and inelastic neutron scattering spectra reveals the changes in the correlation between framework and Ag+ sublattices during the superionic phase transition of Ag8SnSe6 compounds. Further investigations using neutron diffraction and molecular dynamics simulations reveal a new mechanism of superionic phase transition and ion diffusion , primarily governed by weakly bonded Se atoms.3) Research on NH4I compounds demonstrates a strong coupling between molecular orientation rotation and lattice vibration, and the strengthening of phonon anharmonicity with temperature rising can decouple this interaction and induce plastic phase transition. This phenomenon results in a significant configuration entropy change, showing its potential applications in barocaloric refrigeration.4) In the CsPbBr3 perovskite photovoltaic materials, inelastic neutron scattering uncovers low-energy phonon damping of the [PbBr6] sublattice, influencing electron-phonon coupling and the band edge electronic state. This special anharmonic vibration of the [PbBr6] sublattice prolongs the lifetime of hot carriers, affecting the material's electronic properties.5) In MnCoGe magnetic refrigeration materials, in-situ neutron diffraction experiments highlight the role of valence electron transfer between sublattices in changing crystal structural stability and magnetic interactions. This process triggers off a transformation from a ferromagnetic to an incommensurate spiral antiferromagnetic structure, expanding our understanding of magnetic phase transition regulation.These examples underscore theinterdependence between lattice dynamics and other degrees of freedom in energy conversion and storage materials, such as sublattices, charge, and spin. Through these typical examples, this work can provide a reference for further exploring and understanding the energy materials and lattice dynamics.
  • 图 1  晶格动力学与能源材料 (a) 声学声子振动、光学声子振动及声子色散谱; (b) 热电转换材料与输运性质; (c) 压卡相变制冷与相变熵; (d) 固态电池之固态电解质与离子扩散动力学; (e) 光伏电池与晶格振动

    Fig. 1.  Lattice dynamics and energy materials: (a) Lattice vibrations and phonon dispersion; (b) thermoelectric materials and transport properties; (c) barocaloric effect and phase transition entropy change; (d) solid-state electrolyte and ionic diffusion; (e) solar cell and lattice vibrations in perovskites

    图 2  中子散射技术概述 (a) 由一个上夸克和两个下夸克组成的中子为电中性粒子, 并带一个磁矩; (b) 中子、电子和X射线与物质的作用方式; (c) 中子散射界面与X射线散射界面对比[44,47]; (d) 弹性、准弹性和非弹性中子散射技术覆盖的能量范围以及可测量的物理内容[48]

    Fig. 2.  Overview of neutron scattering technology: (a) Neutron is a neutral particle with a magnetic moment; (b) the interactions of neutrons, electrons and X-rays with matter; (c) neutron and X-ray cross sections for some typical elements[44,47]; (d) the energy range spanned by the elastic, quasi-elastic and inelastic neutron scattering technologies and the typical physical contents in the energy range[48].

    图 3  弹性中子散射谱仪 (a), (b) 基于连续式中子源的中子衍射谱仪结构及其测量原理; (c), (d) 基于脉冲式中子源的中子衍射谱仪结构及其“时间-距离飞行图”与测量原理. 两种不同类型衍射谱仪的布拉格公式及其变量不同, 由蓝色字体给出, 图中蓝色线代表宽波段中子的飞行路线, 其他颜色代表单色中子飞行路线; (e) 中子全散射与对分布函数原理, 通过对结构因子S(Q)进行傅里叶变换, 可以测量实空间的分布函数G(r); (f) 原子散射因子f(Q)的对比, X射线的f(Q)随动量转移Q的增大迅速衰减, 而中子的几乎不变, 因此中子衍射更容易获得大Q处的布拉格衍射峰, 动量转移Q = kikf, ki表示入射中子波矢, kf表示散射中子波矢

    Fig. 3.  Neutron diffraction spectrometers: (a), (b) Structure and measurement principle of a neutron diffraction spectrometer based on a continuous neutron source; (c), (d) the structure of a neutron diffraction spectrometer based on a pulsed neutron source and its time-distance diagram or measurement principle, the formats of the Bragg function for these two kinds of diffractometers are different and their variables are marked with blue color. The blue line in the figure represents the flight path of broadband neutrons, and other colors represent the flight paths of monochromatic neutrons; (e) neutron total scattering and pair distribution function principle, through the Fourier transform of the structure factor S(Q), the real space distribution, G(r), could be measured; (f) comparison of atomic scattering factor, f(Q), f(Q) for X-ray decays rapidly with momentum transfer Q, while f(Q) for neutron remains almost unchanged, so neutron diffraction is more easily to obtain Bragg diffraction peaks at large Q, the momentum transfer Q can be obtained by subtract scattered neutron wavevector kf from the incident neutron wavevector ki, Q = kikf.

    图 4  非弹性中子散射谱仪 (a) 基于连续式中子源的三轴谱仪示意图, 具有3个可以独立转角的运动机构, 分别是单色器、样品台和分析器; (b) 三轴谱仪测量色散谱的两种方式, 恒定能量扫动量和恒定动量扫能量; (c) 基于脉冲式中子源的直接几何非弹性中子散射飞行时间谱仪(简称直接几何)示意图; (d) 直接几何非弹谱仪的“时间-距离飞行图”与工作原理, 脉冲式白光中子通过单色斩波器选出单一能量中子, 该单色中子与样品发生非弹性散射后, 能量和速度发生增减, 通过中子通过样品和探测器之间固定距离的飞行时间可以确定散射后的中子能量, 结合散射中子的角度和散射前的中子能量, 便可确定非弹性散射过程中的能量转移和动量转移; (e) 基于脉冲式中子源的间接几何非弹性中子散射飞行时间谱仪(简称间接几何或逆几何)示意图; (f) 间接几何非弹谱仪的“时间-距离飞行图”与工作原理, 该类型谱仪在样品前没有单色斩波器, 但在样品后放置单色分析器. 图中蓝色线代表宽波段中子的飞行路线, 其他颜色代表单色中子飞行路线

    Fig. 4.  Inelastic neutron scattering spectrometer: (a) Schematic diagram of a triple-axis spectrometer based on a continuous neutron source, which has three independently rotating axis, corresponding to the monochromator, the sample stage, and the analyzer; (b) two methods for a three-axis spectrometer to scan a dispersion, constant-energy scan and constant-momentum scan; (c) schematic diagram of a direct-geometry inelastic neutron scattering time-of-flight spectrometer based on a pulsed neutron source; (d) the time-distance diagram or measurement principle of a direct geometry inelastic spectrometer, a bunch of single-energy neutrons are selected by a monochromatic chopper from the pulsed white beam. Then the single-energy neutrons will be inelastically scattered by the sample and their energy and speed will become larger or smaller; the neutron energy after scattering can be determined by the neutron flight time through a fixed distance between the sample and the detector; combined with the angle of the scattered neutron and the neutron energy before scattering, the energy transfer and momentum transfer during the inelastic scattering process can be determined; (e) Schematic diagram of an indirect geometry inelastic neutron scattering time-of-flight spectrometer based on a pulsed neutron source; (f) the “time-distance flight diagram” and working principle of the indirect geometry non-elastic spectrometer, this type of spectrometer does not have a monochromator before the sample, but a monochromator analyzer is placed after the sample; the blue line in the figure represents the flight path of broadband neutrons, and other colors represent the flight paths of monochromatic neutrons.

    图 5  准弹性中子散射数据分析方法 (a) 准弹性中子散射谱的拟合, 一般包括由δ函数卷积谱仪分辨率来描述的弹性散射部分和由洛伦兹峰描述的准弹性散射部分, 弹性峰面积AE与总面积AE+AQ之间的比例构成弹性非相干结构因子EISF[63]; (b) 准弹性散射的半高宽的动量依赖曲线可以用于研究不同的离子扩散模型[66]; (c) EISF与不同几何限域下的分子旋转模型[67]

    Fig. 5.  Data analysis methods for QENS data: (a) A general discomposing of a QENS spectrum, comprising an elastic part described by a δ-function convoluted with instrumental resolution and a quasielastic part described with a Lorentzian profile, the ratio of the elastic area, AE, to the total area, AE+AQ, defines the elastic incoherent structure factor (EISF)[63]; (b) the Q-dependent width of QENS signal can be used to study different ionic diffusion models[66]; (c) molecular rotation models under different geometric confinements and corresponding EISF profiles[67] .

    图 6  超离子热电材料与超低晶格热导率[82] (a) 超离子热电材料的晶体结构示意图, 包括刚性亚晶格和类液态亚晶格; (b) 几种主要的超离子热电材料的晶格热导率及其与其他传统热电材料的对比[82]; (c)—(e) 通过比热测量和粉末样品非弹性中子散射实验尝试说明类液态声子的有效性[19,20,49]

    Fig. 6.  Superionic thermoelectric materials and ultra-low lattice thermal conductivity: (a) Schematic diagram of the crystal structure of superionic thermoelectric materials, comprising a rigid sublattice and a liquid-like sublattice[82]; (b) lattice thermal conductivity of several main superionic thermoelectric materials and a comparison with that for other typical thermoelectric materials[82]; (c)–(e) the attempts to demonstrate the validity of the liquid-phonon models for the ultralow lattice thermal conductivity through specific heat measurements and inelastic neutron scattering measurements on powder samples[19,20,49] .

    图 7  Ag8SnSe6硫银锗矿化合物的晶格动力学与超低晶格热导率[27] (a), (b) 300 K和450 K温度下, 在日本J-PARC的冷非弹谱仪AMATERAS上测得的Ag8SnSe6单晶样品在(440)布里渊区研[00l]方向的TA声子; (c)—(e) Ag8SnSe6粉末样品在8 K, 50 K和100 K温度下的动力学结构因子S(Q, E); (f) 声子态密度峰形随温度而升高

    Fig. 7.  Lattice dynamics and ultra-low lattice thermal conductivity of Ag8SnSe6 argyrodite compounds[27]: (a), (b) TA phonons along the [00l] direction in the (440) Brillouin zone of the Ag8SnSe6 single crystal samples measured on the cold neutron spectrometer AMATERAS at J-PARC at 300 K and 450 K, respectively; (c)–(e) Dynamic structure factors S(Q, E) of the Ag8SnSe6 powder samples at 8 K, 50 K and 100 K; (f) the peaks in the phonon density of states become broad quickly with increasing temperature.

    图 8  固态电解质的离子扩散与晶格振动 (a) 离子扩散通道与扩散势垒示意图[96]; (b) 晶格软化对离子跳跃的影响示意图[98]; (c) 通过INS测得的LISICON和橄榄石型固态电解质中低频声子中心能量与离子扩散激活能之间的关系[11]; (d) γ-Na3PO4化合物中Na+离子输运的桨轮模型, 即[PO4]3-聚阴离子四面体旋转带动Na+离子的迁移[99]

    Fig. 8.  Ion diffusion and lattice dynamics of solid-state electrolytes: (a) Schematic diagram of ion diffusion channels and diffusion barriers in Na3Zr2Si2PO12[96]; (b) schematic diagram of the effect of lattice softening on hopping of ions[98]; (c) relationship between low-frequency phonon center energies measured by INS and ion diffusion activation energies in LISICON and olivine-type solid-state electrolytes[11]; (d) paddle wheel model of Na+ ion transport in γ-Na3PO4 compounds, i.e., the rotation of [PO4]3- polyanion tetrahedron drives the migration of Na+ ions[99].

    图 9  Ag8SnSe6超离子相变过程中的晶格动力学与亚晶格耦合行为[27] (a), (b) 在日本J-PARC中子源的AMATERAS谱仪测得的300 K和450 K温度下, [4 4 0.3]和[4 4 0.6] TA声子模的实验数据; (c), (d) 在德国FRM II中子源的TOFTOF直接几何谱仪测得的Ag8SnSe6多晶样品在300 K和410 K的动力学结构因子S(Q, E); (e) 在[2.0, 2.4] Å–1的动量Q范围内对S(Q, E)进行积分获得的动力学结构因子曲线; (f) 通过对(e)图中的曲线进行阻尼谐振子模型和洛伦兹模型拟合获得的声子能量、半高宽和QENS信号展宽; (g) 法国ILL中子源D9单晶中子衍射谱仪上获得的300 K和400 K下的正交结构(O)和立方结构(C)的对比; (h), (i) 通过精修原位XRD衍射谱获得的A, B, C位置的Se原子在超离子相变过程中的原子坐标位移|L|和各向同性原子位移参数Ueq的变化, A对应低温相的Se5和高温相的Se1, B对应低温相的Se4和高温相的Se2

    Fig. 9.  Lattice dynamics and coupling of sublattices during the superionic phase transition of Ag8SnSe6[27]: (a), (b) Experimental data of [4 4 0.3] and [4 4 0.6] TA phonon modes at 300 K and 450 K measured on the AMATERAS spectrometer at the J-PARC spallation neutron source in Japan, respectively; (c), (d) dynamical structure factors, S(Q, E), of Ag8SnSe6 polycrystalline samples at 300 K and 410 K, respectively, measured on the TOFTOF direct-geometry spectrometer at the FRM II neutron source in Germany; (e) dynamical structure factor curves obtained by integrating S(Q, E) over the momentum Q range of [2.0, 2.4] Å–1. (f) Phonon energy, phonon width and QENS broadening obtained by fitting the curve in (e) with the damped harmonic oscillator (DHO) and Lorentz profiles; (g) comparison of the orthorhombic structure (O) and cubic structure (C) at 300 K and 400 K obtained on the D9single-crystal neutron diffractometer at the ILL neutron source in France; (h), (i) the changes in the atomic displacement |L| and isotropic atomic displacement parameters, Ueq, of Se atoms at positions A, B, and C during the superionic phase transition obtained by analyzing in situ XRD patterns, A corresponds to Se5 in the low-T phase and Se1 in the hig-T phase, and B corresponds to Se4 in the low-T phase and Se2 in the high-T phase, respectively.

    图 10  NH4I压卡材料中的塑晶态相变与晶格动力学行为[65] (a) 有非弹性中子散射测量获得的三个不同相变区间的动力学结构因子S(Q, E); (b) 通过在一定Q范围内对图(a)中的 S(Q, E)进行积分, 可获得不同相变区间的准弹性展宽信息; (c) 声子态密度随温度的软化与宽化行为; (d) 不同相变区间对应的晶体结构和铵基[NH4]四面体的可能空间取向

    Fig. 10.  Plastic-crystal phase transition and lattice dynamics in NH4I barocaloric material[65]: (a) Dynamic structure factors, S(Q, E), in three different phases measured by INS; (b) quasielastic broadening in different phases obtained by integrating S(Q, E) in (a) over a certain Q range; (c) softening and broadening processes of the phonon DOSs with temperature; (d) crystal structures in the three different phases and possible orientations of the [NH4] tetrahedron.

    图 11  CsPbBr3中晶格振动与能带之间的关系[36] (a) 433 K高温立方相中(H, K, L = 0.5)平面内的漫散射信号, 上半部分数据由XRD获得, 下半部分来自中子数据; (b) 419 K高温相中Γ-M-R-Γ方向的S(Q, E), 其中声子在布里渊区边界沿着M-R方向上有过阻尼行为; (c) 由分子动力学模拟获得的Pb-Br-Pb夹角分布及其与能带带隙之间的关系

    Fig. 11.  Relationship between lattice vibration and energy band in CsPbBr3[36]: (a) Diffuse scattering signal in the (H, K, L = 0.5) plane in the high-temperature cubic phase at 433 K, the upper half of the data is obtained from XRD, and the lower half is from neutron data; (b) S(Q, E) along the Γ-M-R-Γ direction in the high-temperature phase at 419 K, where the phonons have overdamping behavior along the M-R direction at the Brillouin zone boundary; (c) Pb-Br-Pb angle distribution obtained by molecular dynamics simulation and its relationship with the energy band gap.

    图 12  MnCoGe基磁卡材料中的磁-结构相变 (a) 通过原位中子衍射实验分析得到的Mn0.95Ni0.05CoGe化合物中Mn磁性亚晶格和Co-Ge骨架亚晶格对外加磁场的响应[136]; (b) 以Ni含量或价电子数目(Co: 3d74s2, Ni: 3d84s2)和温度为参数的Mn(Co1–xNix)Ge化合物磁-结构相图[137]

    Fig. 12.  Magneto-structural transitions in MnCoGe-based magnetocaloric materials: (a) Response of the Mn magnetic sublattice and Co-Ge skeleton sublattice in the Mn0.95Ni0.05CoGe compound to an applied magnetic field obtained by in situ neutron diffraction experiments[136]; (b) magnetic structural phase diagram of the Mn(Co1–xNix)Ge compound with Ni content or valence electron number (Co: 3d74s2, Ni: 3d84s2) and temperature[137].

  • [1]

    黄昆, 韩汝琦 1988 固体物理学 (北京: 高等教育出版社)

    Huang K, Han R Q 1988 Solid State Physics (Beijing: Higher Education Press

    [2]

    Ashcroft N W, Mermin N D 1976 Solid State Physics (Holt, Rinehart and Winston

    [3]

    He J, Tritt T M 2017 Science 357 1369

    [4]

    叶良修 2007 半导体物理学 (北京: 高等教育出版社)

    Ye L X 2007 Semiconductor Physics (Beijing: Higher Education Press

    [5]

    Chen Z W, Zhang X Y, Pei Y Z 2018 Adv. Mater. 30 1705617Google Scholar

    [6]

    Qiu W, Xi L, Wei P, Ke X, Yang J, Zhang W 2014 Proc. Natl. Acad. Sci. U. S. A. 111 15031Google Scholar

    [7]

    Fu C G, Wu H J, Liu Y T, He J Q, Zhao X B, Zhu T J 2016 Adv. Sci. 3 1600035Google Scholar

    [8]

    Qian X, Zhou J W, Chen G 2021 Nat. Mater. 20 1188Google Scholar

    [9]

    Wei B, Sun Q Y, Li C, Hong J W 2021 Sci. China Phys. Mech. Astron. 64 117001Google Scholar

    [10]

    Akkerman Q A, Manna L 2020 ACS Energy Lett. 5 604Google Scholar

    [11]

    Muy S, Bachman J C, Giordano L, Chang H H, Abernathy D L, Bansal D, Delaire O, Hori S, Kanno R, Maglia F, Lupart S, Lamp P, Shao-Horn Y 2018 Energy Environ. Sci. 11 850Google Scholar

    [12]

    Cazorla C 2019 Nature 567 470Google Scholar

    [13]

    沈家骏, 方腾, 傅铁铮, 忻佳展, 赵新兵, 朱铁军 2019 无机材料学报 34 260Google Scholar

    Shen J J, Fang T, Fu T Z, Xin J Z, Zhao X B, Zhu T J 2019 J. Inorg. Mater. 34 260Google Scholar

    [14]

    Lin S Q, Li W, Li S S, Zhang X Y, Chen Z W, Xu Y D, Chen Y, Pei Y Z 2017 Joule 1 816Google Scholar

    [15]

    Li W, Lin S Q, Weiss M, Chen Z W, Li J, Xu Y D, Zeier W G, Pei Y Z 2018 Adv. Energy Mater. 8 1800030Google Scholar

    [16]

    Xia K Y, Hu C L, Fu C G, Zhao X B, Zhu T J 2021 Appl. Phys. Lett. 118 140503Google Scholar

    [17]

    Zhu J F, Ren Q Y, Chen C, Wang C, Shu M F, He M, Zhang C P, Le M D, Torri S, Wang C W, Wang J L, Cheng Z X, Li L S, Wang G H, Jiang Y X, Wu M Z, Qu Z, Tong X, Chen Y, Zhang Q, Ma J 2024 Nat. Commun. 15 2618Google Scholar

    [18]

    Li X Y, Liu P F, Zhao E Y, Zhang Z G, Guidi T, Le M D, Avdeev M, Ikeda K, Otomo T, Kofu M, Nakajima K, Chen J, He L H, Ren Y, Wang X L, Wang B T, Ren Z F, Zhao H Z, Wang F W 2020 Nat. Commun. 11 942Google Scholar

    [19]

    Liu H L, Shi X, Xu F F, Zhang L L, Zhang W Q, Chen L D, Li Q, Uher C, Day T, Snyder G J 2012 Nat. Mater. 11 422Google Scholar

    [20]

    Li L, Liu Y, Dai J Y, Hong A J, Zeng M, Yan Z B, Xu J, Zhang D, Shan D, Liu S L, Ren Z F, Liu J M 2016 J. Mater. Chem. C 4 5806Google Scholar

    [21]

    Christensen M, Abrahamsen A B, Christensen N B, Juranyi F, Andersen N H, Lefmann K, Andreasson J, Bahl C R, Iversen B B 2008 Nat. Mater. 7 811Google Scholar

    [22]

    Koza M M, Johnson M R, Viennois R, Mutka H, Girard L, Ravot D 2008 Nat. Mater. 7 805Google Scholar

    [23]

    Lee S, Esfarjani K, Luo T F, Zhou J W, Tian Z T, Chen G 2014 Nat. Commun. 5 3525Google Scholar

    [24]

    Delaire O, Ma J, Marty K, May A F, McGuire M A, Du M H, Singh D J, Podlesnyak A, Ehlers G, Lumsden M D, Sales B C 2011 Nat. Mater. 10 614Google Scholar

    [25]

    Voneshen D J, Walker H C, Refson K, Goff J P 2017 Phys. Rev. Lett. 118 145901Google Scholar

    [26]

    Li C W, Hong J, May A F, Bansal D, Chi S, Hong T, Ehlers G, Delaire O 2015 Nat. Phys. 11 1063Google Scholar

    [27]

    Ren Q Y, Gupta M K, Jin M, Ding J, Wu J, Chen Z W, Lin S Q, Fabelo O, Rodríguez-Velamazán J A, Kofu M, Nakajima K, Wolf M, Zhu F, Wang J L, Cheng Z, Wang G, Tong X, Pei Y Z, Delaire O, Ma J 2023 Nat. Mater. 22 999Google Scholar

    [28]

    Delaire O, Marty K, Stone M B, Kent P R C, Lucas M S, Abernathy D L, Mandrus D, Sales B C 2011 Proc. Natl. Acad. Sci. U. S. A. 108 4725Google Scholar

    [29]

    Li C W, Hellman O, Ma J, May A F, Cao H B, Chen X, Christianson A D, Ehlers G, Singh D J, Sales B C, Delaire O 2014 Phys. Rev. Lett. 112 175501Google Scholar

    [30]

    Han S, Dai S N, Ma J, Ren Q Y, Hu C L, Gao Z H, Duc Le M, Sheptyakov D, Miao P, Torii S, Kamiyama T, Felser C, Yang J, Fu C G, Zhu T J 2023 Nat. Phys. 19 1649Google Scholar

    [31]

    Bachman J C, Muy S, Grimaud A, Chang H H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y 2015 Chem. Rev. 116 140

    [32]

    Gao Y R, Nolan A M, Du P, Wu Y F, Yang C, Chen Q L, Mo Y F, Bo S H 2020 Chem. Rev. 120 5954Google Scholar

    [33]

    Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278Google Scholar

    [34]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682Google Scholar

    [35]

    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 Nat. Energy 1 16030Google Scholar

    [36]

    Lanigan-Atkins T, He X, Krogstad M J, Pajerowski D M, Abernathy D L, Xu G, Xu Z, Chung D Y, Kanatzidis M G, Rosenkranz S, Osborn R, Delaire O 2021 Nat. Mater. 20 977Google Scholar

    [37]

    Li B, Kawakita Y, Liu Y, Wang M, Matsuura M, Shibata K, Ohira-Kawamura S, Yamada T, Lin S Q, Nakajima K, Liu S F 2017 Nat. Commun. 8 16086Google Scholar

    [38]

    Leguy A M, Frost J M, McMahon A P, Sakai V G, Kochelmann W, Law C, Li X, Foglia F, Walsh A, O'Regan B C, Nelson J, Cabral J T, Barnes P R 2015 Nat. Commun. 6 7124Google Scholar

    [39]

    Li B, Kawakita Y, Ohira-Kawamura S, Sugahara T, Wang H, Wang J L, Chen Y, Kawaguchi S I, Kawaguchi S, Ohara K, Li K, Yu D, Mole R, Hattori T, Kikuchi T, Yano S I, Zhang Z, Zhang Z, Ren W, Lin S Q, Sakata O, Nakajima K, Zhang Z 2019 Nature 567 506Google Scholar

    [40]

    谢梦祥, 任捷 2022 物理 51 855Google Scholar

    Xie M X, Ren J 2022 Wuli 51 855Google Scholar

    [41]

    任清勇, 陈闽楠, 耿艳胜, 马杰, 童欣 2021 中国科学: 物理学 力学 天文学 51 087332

    Ren Q Y, Chen M N, Geng Y S, Ma J, Tong X 2021 Sci. Sin. : Phys. Mech. Astron. 51 087332 (

    [42]

    马杰, 任清勇 2017 西北大学学报 (自然科学版) 47 783

    Ma J, Ren Q Y, 2017 J. Northwestern Uni. (Nat. Sci. Ed. ) 47 783

    [43]

    Squires G L 1978 Introduction to the Theory of Thermal Neutron Scattering (Cambridge: Cambridge University Press

    [44]

    Furrer A, Mesot J, Strässle T 2009 Neutron Scattering in Condensed Matter Physics (Vol. 4) (Singapore: World Scientific

    [45]

    王延绪, 龚武, 苏玉华, 李昺 2024 金属学报 60 1001Google Scholar

    Wang Y X, Gong W, Su Y H, Li B 2024 Acta Metall. Sin. 60 1001Google Scholar

    [46]

    Delaire O A, Stassis C 2012 Phonon Studies (John Wiley & Sons

    [47]

    Sears V F 1992 Neutron News 3 26Google Scholar

    [48]

    Berrod Q, Lagrené K, Ollivier J, Zanotti J M 2018 EPJ Web Conf. 188 05001Google Scholar

    [49]

    Li B, Wang H, Kawakita Y, Zhang Q, Feygenson M, Yu H L, Wu D, Ohara K, Kikuchi T, Shibata K, Yamada T, Ning X K, Chen Y, He J Q, Vaknin D, Wu R Q, Nakajima K, Kanatzidis M G 2018 Nat. Mater. 17 226Google Scholar

    [50]

    Božin E S, Malliakas C D, Souvatzis P, Proffen T, Spaldin N A, Kanatzidis M G, Billinge S J L 2010 Science 330 1660Google Scholar

    [51]

    Sakata M, Sato M 1990 Acta Crystallogr. Sec. A 46 263Google Scholar

    [52]

    Keen D A, Goodwin A L 2015 Nature 521 303Google Scholar

    [53]

    Neder R B, Proffen T 2008 Diffuse Scattering and Defect Structure Simulations: A Cook Book Using the Program DISCUS (Vol. 11) (OUP Oxford

    [54]

    Weber T, Simonov A 2012 Zeitschrift für Kristallographie 227 238

    [55]

    Cai G L, Li Y H, Fu Y, Yang H, Mei L, Nie Z Y, Li T F, Liu H, Ke Y B, Wang X L, Brédas J L, Tang M C, Chen X K, Zhan X W, Lu X H 2024 Nat. Commun. 15 2784Google Scholar

    [56]

    Jeffries C M, Ilavsky J, Martel A, Hinrichs S, Meyer A, Pedersen J S, Sokolova A V, Svergun D I 2021 Nature Reviews Methods Primers 1 70Google Scholar

    [57]

    Skoda M W A 2019 Current Opinion in Colloid & Interface Science 42 41

    [58]

    Combet S, Cousin F, Fadda G, Schirò G 2020 EPJ Web Conf. 236 04001Google Scholar

    [59]

    Aswal D K, Sarkar P S, Kashyap Y S 2022 Neutron imaging: basics, techniques and applications (Springer

    [60]

    Strobl M, Manke I, Kardjilov N, Hilger A, Dawson M, Banhart J 2009 J. Phys. D: Appl. Phys. 42

    [61]

    Kardjilov N, Manke I, Hilger A, Strobl M, Banhart J 2011 Mater. Today 14 248Google Scholar

    [62]

    Luo W, Feng Y, Liu X Z, Wang M, Zhu D H, Gao W, Geng Y S, Ren Q Y, Shen J Y, Sun Y, Zhang X Y, Xia Y G, Zuo T S, Zheng Y, Tong X 2023 Nucl. Instrum. Methods Phys. Res. , Sect. A 1046 167676Google Scholar

    [63]

    Embs J P, Juranyi F, Hempelmann R 2010 Z. Phys. Chem. 224 5Google Scholar

    [64]

    Bee M 1988 Quasielastic Neutron Scattering : Principles and Applications in Solid State Chemistry, Biology, and Materials Science (Bristol, England; Philadelphia: Adam Hilger

    [65]

    Ren Q Y, Qi J, Yu D H, Zhang Z, Song R Q, Song W L, Yuan B, Wang T H, Ren W J, Zhang Z D, Tong X, Li B 2022 Nat. Commun. 13 2293Google Scholar

    [66]

    Jobic H, Theodorou D N 2007 Microporous Mesoporous Mater. 102 21Google Scholar

    [67]

    Verdal N, Udovic T J, Rush J J, Skripov A V 2015 J. Alloys Compd. 645 S513Google Scholar

    [68]

    Merklein M, Kabakova I V, Zarifi A, Eggleton B J 2022 Appl. Phys. Rev. 9 041306Google Scholar

    [69]

    Wolff C, Smith M J A, Stiller B, Poulton C G 2021 J. Opt. Soc. Am. B 38

    [70]

    Baron A Q 2015 arXiv: 1504.01098

    [71]

    Ishikawa D, Ellis D S, Uchiyama H, Baron A Q 2015 J. Synchrotron. Radiat. 22 3Google Scholar

    [72]

    Wu M, Shi R C, Qi R S, Li Y H, Du J L, Gao P 2023 Ultramicroscopy 253 113818Google Scholar

    [73]

    Delaire O, May A F, McGuire M A, Porter W D, Lucas M S, Stone M B, Abernathy D L, Ravi V A, Firdosy S A, Snyder G J 2009 Phys. Rev. B 80 184302Google Scholar

    [74]

    Shi X, He J 2021 Science 371 343Google Scholar

    [75]

    Mao J, Chen G, Ren Z F 2021 Nat. Mater. 20 454Google Scholar

    [76]

    Toberer E S, Zevalkink A, Snyder G J 2011 J. Mater. Chem. 21 15843Google Scholar

    [77]

    Wei P C, Liao C N, Wu H J, Yang D, He J, Biesold-McGee G V, Liang S, Yen W T, Tang X, Yeh J W, Lin Z, He J H 2020 Adv. Mater. 32 e1906457Google Scholar

    [78]

    Hanus R, Agne M T, Rettie A J E, Chen Z W, Tan G, Chung D Y, Kanatzidis M G, Pei Y Z, Voorhees P W, Snyder G J 2019 Adv. Mater. 31 1900108Google Scholar

    [79]

    Wu Y X, Chen Z W, Nan P F, Xiong F, Lin S Q, Zhang X Y, Chen Y, Chen L D, Ge B H, Pei Y Z 2019 Joule 3 1276Google Scholar

    [80]

    Jiang B B, Yu Y, Cui J, Liu X X, Xie L, Liao J C, Zhang Q H, Huang Y, Ning S C, Jia B H, Zhu B, Bai S Q, Chen L D, Pennycook S J, He J Q 2021 Science 371 830Google Scholar

    [81]

    Zhang Z X, Zhao K P, Wei T R, Qiu P F, Chen L D, Shi X 2020 Energy Environ. Sci. 13 3307Google Scholar

    [82]

    Zhao K P, Qiu P F, Shi X, Chen L D 2019 Adv. Funct. Mater. 30 1903867

    [83]

    Niedziela J L, Bansal D, May A F, Ding J, Lanigan-Atkins T, Ehlers G, Abernathy D L, Said A, Delaire O 2019 Nat. Phys. 15 73Google Scholar

    [84]

    Jiang B B, Qiu P F, Eikeland E, Chen H Y, Song Q F, Ren D D, Zhang T S, Yang J, Iversen B B, Shi X, Chen L D 2017 J. Mater. Chem. C 5 943Google Scholar

    [85]

    Ding J, Niedziela J L, Bansal D, Wang J L, He X, May A F, Ehlers G, Abernathy D L, Said A, Alatas A, Ren Y, Arya G, Delaire O 2020 Proc. Natl. Acad. Sci. U. S. A. 117 3930Google Scholar

    [86]

    Xie L, Feng J H, Li R, He J Q 2020 Phys. Rev. Lett. 125 245901Google Scholar

    [87]

    Trachenko K 2008 Phys. Rev. B 78 104201Google Scholar

    [88]

    Xie L, Wu D, Yang H L, Yu Y, Wang Y F, He J Q 2019 J. Mater. Chem. C 7 9263Google Scholar

    [89]

    Li W, Lin S Q, Ge B H, Yang J, Zhang W Q, Pei Y Z 2016 Adv. Sci. 3 1600196Google Scholar

    [90]

    de Boissieu M 2023 Nat. Mater. 22 931Google Scholar

    [91]

    Janek J, Zeier W G 2016 Nat. Energy 1 16141Google Scholar

    [92]

    Zhao Q, Stalin S, Zhao C Z, Archer L A 2020 Nat. Rev. Mater. 5 229Google Scholar

    [93]

    He X F, Zhu Y Z, Mo Y F 2017 Nat. Commun. 8 15893Google Scholar

    [94]

    Zou Z Y, Li Y J, Lu Z H, Wang D, Cui Y H, Guo B K, Li Y J, Liang X M, Feng J W, Li H, Nan C W, Armand M, Chen L Q, Xu K, Shi S Q 2020 Chem. Rev. 120 4169Google Scholar

    [95]

    Wang K, Ren Q Y, Gu Z Q, Duan C M, Wang J Z, Zhu F, Fu Y Y, Hao J P, Zhu J F, He L H, Wang C W, Lu Y Y, Ma J, Ma C 2021 Nat. Commun. 12 4410Google Scholar

    [96]

    Zhu L, Wang Y W, Chen J C, Li W L, Wang T T, Wu J, Han S Y, Xia Y H, Wu Y M, Wu M Q, Wang F W, Zheng Y, Peng L M, Liu J J, Chen L Q, Tang W P 2022 Sci. Adv. 8 eabj7698Google Scholar

    [97]

    Wang Y, Richards W D, Ong S P, Miara L J, Kim J C, Mo Y, Ceder G 2015 Nat. Mater. 14 1026Google Scholar

    [98]

    Kraft M A, Culver S P, Calderon M, Böcher F, Krauskopf T, Senyshyn A, Dietrich C, Zevalkink A, Janek J, Zeier W G 2017 J. Am. Chem. Soc. 139 10909Google Scholar

    [99]

    Zhang Z, Nazar L F 2022 Nat. Rev. Mater. 7 389Google Scholar

    [100]

    Muy S, Schlem R, Shao-Horn Y, Zeier W G 2021 Adv. Energy Mater. 11 2002787Google Scholar

    [101]

    The Royal Society, 2021 https://royalsociety.org/topics

    [102]

    United Nations Environmental Programme, 2018 May https://ozone.unep.org/sites/default/files/2019

    [103]

    Peters T 2018 Technical Report. Birmingham Energy Institute, The Institute for Global Innovation https://www.birmingham.ac.uk/Documents/college

    [104]

    Hou H, Qian S, Takeuchi I 2022 Nat. Rev. Mater. 7 633Google Scholar

    [105]

    Chen Y L, Wang Y, Sun W, Qian S X, Liu J 2022 The Innovation 3 100205

    [106]

    Aprea C, Greco A, Maiorino A, Masselli C 2019 Climate 7 115Google Scholar

    [107]

    Maier L M, Corhan P, Barcza A, Vieyra H A, Vogel C, Koenig J D, Schäfer-Welsen O, Wöllenstein J, Bartholomé K 2020 Commun. Phys. 3 186Google Scholar

    [108]

    Aprea C, Greco A, Maiorino A, Masselli C 2020 Energy 190 116404Google Scholar

    [109]

    Lloveras P, Zhang Z, Zeng M, Barrio M, Kawakita Y, Yu D, Lin S Q, Li K, Moya X, Tamarit J L, Li B 2023 Colossal barocaloric plastic crystals (IOP Publishing) p7-1-7-30

    [110]

    Zhang K, Zhang Z, Pan H L, Wang H Y, Zhao X T, Qi J, Zhang Z, Song R Q, Yu C Y, Huang B H, Li X J, Chen H C, Yin W, Tan C L, Hu W J, Wübbenhorst M, Luo J S, Yu D H, Zhang Z D, Li B 2024 The Innovation 5 100577

    [111]

    李昺, 张志东 2021 中国科学: 物理学 力学 天文学 51 067505Google Scholar

    Li B, Zhang Z D 2021 Sci. Sin. Phys. Mech. Astron. 51 067505Google Scholar

    [112]

    Qian X, Han D, Zheng L, Chen J, Tyagi M, Li Q, Du F, Zheng S, Huang X, Zhang S, Shi J, Huang H, Shi X, Chen J, Qin H, Bernholc J, Chen X, Chen L Q, Hong L, Zhang Q M 2021 Nature 600 664Google Scholar

    [113]

    郝嘉政, 胡凤霞, 尉紫冰, 沈斐然, 周厚博, 高怡红, 乔凯明, 梁文会, 张丞, 王晶, 孙继荣, 沈保根 2021 中国科学: 物理学 力学 天文学 51 067520Google Scholar

    Hao J Z, Hu F X, Wei Z B, Shen F R, Zhou H B, Gao Y H, Qiao K M, Liang W H, Zhang C, Wang J, Sun J R, Shen B G 2021 Sci. Sin. : Phys. Mech. Astron. 51 067520Google Scholar

    [114]

    Aznar A, Lloveras P, Barrio M, Negrier P, Planes A, Manosa L, Mathur N D, Moya X, Tamarit J L 2020 J. Mater. Chem. A 8 639Google Scholar

    [115]

    Li J, Dunstan D, Lou X, Planes A, Manosa L, Barrio M, Tamarit J L, Lloveras P 2020 J. Mater. Chem. A 8 20354Google Scholar

    [116]

    Li F B, Li M, Xu X, Yang Z C, Xu H, Jia C K, Li K, He J, Li B, Wang H 2020 Nat. Commun. 11 4190Google Scholar

    [117]

    Lloveras P, Aznar A, Barrio M, Negrier P, Popescu C, Planes A, Manosa L, Stern-Taulats E, Avramenko A, Mathur N D, Moya X, Tamarit J L 2019 Nat. Commun. 10 1803Google Scholar

    [118]

    Zhang Z, Li K, Lin S Q, Song R, Yu D, Wang Y, Wang J L, Kawaguchi S, Zhang Z, Yu C, Li X, Chen J, He L, Mole R, Yuan B, Ren Q Y, Qian K, Cai Z, Yu J, Wang M, Zhao C, Tong X, Zhang Z, Li B 2023 Sci. Adv. 9 eadd0374Google Scholar

    [119]

    Staveley L A K 1962 Annu. Rev. Phys. Chem. 13 351Google Scholar

    [120]

    Seo J, Ukani R, Zheng J, Braun J D, Wang S, Chen F E, Kim H K, Zhang S, Thai C, McGillicuddy R D, Yan H, Vlassak J J, Mason J A 2024 J. Am. Chem. Soc. 146 2736Google Scholar

    [121]

    Yu Z B, Zhou H B, Hu F X, Liu C, Yuan S K, Wang D H, Hao J Z, Gao Y H, Wang Y X, Wang B J, Tian Z Y, Lin Y, Zhang C, Yin Z, Wang J, Chen Y Z, Li Y L, Sun J R, Zhao T Y, Shen B G 2022 NPG Asia Mater. 14 96Google Scholar

    [122]

    Sakata M, Harada J, Cooper M J, Rouse K D 1980 Acta Crystallogr. Sec. A 36 7

    [123]

    Songvilay M, Giles-Donovan N, Bari M, Ye Z G, Minns J L, Green M A, Xu G, Gehring P M, Schmalzl K, Ratcliff W D, Brown C M, Chernyshov D, van Beek W, Cochran S, Stock C 2019 Phys. Rev. Mater. 3 093602Google Scholar

    [124]

    Lee W, Li H, Wong A B, Zhang D, Lai M, Yu Y, Kong Q, Lin E, Urban J J, Grossman J C, Yang P 2017 Proc. Natl. Acad. Sci. U. S. A. 114 8693Google Scholar

    [125]

    Li W, Vasenko A S, Tang J, Prezhdo O V 2019 J. Phys. Chem. Lett. 10 6219Google Scholar

    [126]

    Ren Q Y, Fu C G, Qiu Q Y, Dai S N, Liu Z Y, Masuda T, Asai S, Hagihala M, Lee S, Torri S, Kamiyama T, He L H, Tong X, Felser C, Singh D J, Zhu T J, Yang J, Ma J 2020 Nat. Commun. 11 3142Google Scholar

    [127]

    de Campos A, Rocco D L, Carvalho A M, Caron L, Coelho A A, Gama S, da Silva L M, Gandra F C, dos Santos A O, Cardoso L P, von Ranke P J, de Oliveira N A 2006 Nat. Mater. 5 802Google Scholar

    [128]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Manosa L, Planes A 2005 Nat. Mater. 4 450Google Scholar

    [129]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620Google Scholar

    [130]

    Choe W, Pecharsky V K, Pecharsky A O, Gschneidner Jr K A, Young Jr V G, Miller G J 2000 Phys. Rev. Lett. 84 4617Google Scholar

    [131]

    Ren Q Y, Hutchison W D, Wang J L, Cobas R, Cadogan J M, Campbell S J 2015 Hyperfine Interactions 231 75Google Scholar

    [132]

    Ren Q Y, Hutchison W D, Wang J L, Studer A J, Campbell S J 2017 J. Alloys Compd. 693 32Google Scholar

    [133]

    Ren Q Y, Hutchison W D, Wang J L, Studer A J, Din M F M, Pérez S M, Cadogan J M, Campbell S J 2016 J. Phys. D: Appl. Phys. 49 175003Google Scholar

    [134]

    Ren Q Y, Hutchison W D, Wang J L, Muñoz Pérez S, Cadogan J M, Campbell S J 2014 Phys. Status Solidi A 211 1101Google Scholar

    [135]

    Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, Jiang C B, Xu H B, de Boer F 2012 Nat. Commun. 3 873Google Scholar

    [136]

    Ren Q Y, Hutchison W, Wang J L, Studer A, Wang G, Zhou H B, Ma J, Campbell S J 2019 ACS Appl. Mater. Interfaces 11 17531Google Scholar

    [137]

    Ren Q Y, Hutchison W D, Wang J L, Studer A J, Campbell S J 2018 Chem. Mater. 30 1324Google Scholar

    [138]

    Landrum G A, Hoffmann R, Evers J, Boysen H 1998 Inorg. Chem. 37 5754Google Scholar

    [139]

    Zhu Y F, Xia Y, Wang Y C, Sheng Y, Yang J, Fu C G, Li A R, Zhu T J, Luo J, Wolverton C, Snyder G J, Liu J J, Zhang W Q 2020 Research 2020 4589786

    [140]

    Lin S Q, Li W, Pei Y Z 2021 Mater. Today 48 198Google Scholar

    [141]

    Wang Y X, Lin R X, Zhu P C, Zheng Q H, Wang Q J, Li D Y, Zhu J 2018 Nano Lett. 18 2772Google Scholar

    [142]

    Bernges T, Hanus R, Wankmiller B, Imasato K, Lin S Q, Ghidiu M, Gerlitz M, Peterlechner M, Graham S, Hautier G, Pei Y Z, Hansen M R, Wilde G, Snyder G J, George J, Agne M T, Zeier W G 2022 Adv. Energy Mater. 12 2200717Google Scholar

    [143]

    Luo Y X, Yang X L, Feng T L, Wang J Y, Ruan X L 2020 Nat. Commun. 11 2554Google Scholar

    [144]

    Simoncelli M, Marzari N, Mauri F 2019 Nat. Phys. 15 809Google Scholar

    [145]

    Mukhopadhyay S, Parker D S, Sales B C, Puretzky A A, McGuire M A, Lindsay L 2018 Science 360 1455Google Scholar

  • [1] 何俊松, 罗丰, 王剑, 杨士冠, 翟立军, 程林, 刘虹霞, 张艳, 李艳丽, 孙志刚, 胡季帆. 熔融旋甩制备Co掺杂TiNiCoxSn合金的热电性能. 物理学报, doi: 10.7498/aps.73.20240112
    [2] 杨源, 胡乃方, 金永成, 马君, 崔光磊. 富锂正极材料在全固态锂电池中的研究进展. 物理学报, doi: 10.7498/aps.72.20230258
    [3] 刘超, 杨岳洋, 南策文, 林元华. MAX及其衍生MXene相碳化物的热电性能及展望. 物理学报, doi: 10.7498/aps.70.20211050
    [4] 袁珉慧, 乐文凯, 谈小建, 帅晶. 二维共价键子结构Zintl相热电材料研究及进展. 物理学报, doi: 10.7498/aps.70.20211010
    [5] 赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆. Cu1.8–x Sbx S热电材料的相结构与电热输运性能. 物理学报, doi: 10.7498/aps.70.20201852
    [6] 黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程. Mn-In-Cu共掺杂优化SnTe基材料的热电性能. 物理学报, doi: 10.7498/aps.70.20202020
    [7] 游逸玮, 崔建文, 张小锋, 郑锋, 吴顺情, 朱梓忠. 锂磷氧氮(LiPON)固态电解质与Li负极界面特性. 物理学报, doi: 10.7498/aps.70.20202214
    [8] 王雅宁, 陈少平, 樊文浩, 郭敬云, 吴玉程, 王文先. PbTe基热电接头界面性能. 物理学报, doi: 10.7498/aps.69.20201080
    [9] 郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程. 改善Te基热电材料与复合电极界面性能. 物理学报, doi: 10.7498/aps.69.20200436
    [10] 余启鹏, 刘琦, 王自强, 李宝华. 全固态金属锂电池负极界面问题及解决策略. 物理学报, doi: 10.7498/aps.69.20201218
    [11] 曹文卓, 李泉, 王胜彬, 李文俊, 李泓. 金属锂在固态电池中的沉积机理、策略及表征. 物理学报, doi: 10.7498/aps.69.20201293
    [12] 陶颖, 祁宁, 王波, 陈志权, 唐新峰. 氧化铟/聚(3,4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究. 物理学报, doi: 10.7498/aps.67.20180382
    [13] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军. PbSe-MnSe纳米复合热电材料的微结构和电热输运性能. 物理学报, doi: 10.7498/aps.65.107201
    [14] 李世超, 甘远, 王靖珲, 冉柯静, 温锦生. 铁基超导体Fe1+yTe1-xSex中磁性的中子散射研究. 物理学报, doi: 10.7498/aps.64.097503
    [15] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究. 物理学报, doi: 10.7498/aps.62.097301
    [16] 霍凤萍, 吴荣归, 徐桂英, 牛四通. 热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能. 物理学报, doi: 10.7498/aps.61.087202
    [17] 葛振华, 张波萍, 于昭新, 刘勇, 李敬锋. 机械合金化过程对硫化铋块体热电性能的影响机理. 物理学报, doi: 10.7498/aps.61.048401
    [18] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征. 物理学报, doi: 10.7498/aps.59.1243
    [19] 鄢永高, 唐新峰, 刘海君, 尹玲玲, 张清杰. Ag偏离化学计量比Ag1-xPb18SbTe20材料的热电传输性能. 物理学报, doi: 10.7498/aps.56.3473
    [20] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响. 物理学报, doi: 10.7498/aps.54.3321
计量
  • 文章访问数:  283
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-26
  • 修回日期:  2024-10-23
  • 上网日期:  2024-11-25

/

返回文章
返回