搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PbSe-MnSe纳米复合热电材料的微结构和电热输运性能

张玉 吴立华 曾李骄开 刘叶烽 张继业 邢娟娟 骆军

引用本文:
Citation:

PbSe-MnSe纳米复合热电材料的微结构和电热输运性能

张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军

Microstructures and thermoelectric transports in PbSe-MnSe nano-composites

Zhang Yu, Wu Li-Hua, Zengli Jiao-Kai, Liu Ye-Feng, Zhang Ji-Ye, Xing Juan-Juan, Luo Jun
PDF
导出引用
  • 相比于常见的热电材料PbTe, 另一种硫族铅化合物PbSe具有熔点高、Se储量更丰富等优势, 从而越来越受到科学界的关注. 本文采用熔融淬火结合快速热压烧结工艺制备了Pb0.98-xMnxNa0.02Se(0 x 0.12)纳米复合热电材料, 系统地研究了不同Mn含量对材料微纳结构、机械性能和热电性能的影响规律. 发现纳米复合样品中有面心立方结构的MnSe球状和薄层状析出物, 显微硬度得到显著增强. 少量固溶的Mn增加了能带简并度, 使功率因子提高, 球状析出物使声子散射增强、热导率降低, 体系的热电优值ZT得到优化; 但是当Mn含量更高时, 赛贝克系数趋于饱和, 连续析出物使晶格热导率反常增大, ZT 没有得到进一步改善. 通过进一步调节Na含量优化了载流子浓度, 获得了ZT=0.65的PbSe-MnSe纳米复合热电材料.
    Thermoelectric materials can generate electricity by harnessing the temperature gradient and lowering the temperature through applying electromotive force. Lead chalcogenides based materials, especially PbTe-based ones, have shown extremely high thermoelectric performance. PbSe has a similar crystal structure and band structure to PbTe. Compared with the commonly-used PbTe, PbSe possesses a high melting point and has an abundant reserve of Se, making it attractive to high temperature thermoelectric applications. It has been theoretically proposed that Mn-doping in lead chalcogenide should be able to lower the temperature of band degeneracy, and experimental evidences have been represented in Mn-PbTe. However, such an experimental study as well as the investigations of influences of Mn on microstructure, mechanical, electrical and thermal properties has not been conducted in Mn-PbSe. In this work, Pb0.98-xMnxNa0.02Se (0 x 0.12) materials are prepared by the melting-quenching techniques combined with rapid hot-press sintering. Effects of Mn doping on the microstructures, mechanical and thermoelectric properties of PbSe samples are systematically studied. The refined lattice parameters from X-ray powder diffraction patterns show that the solubility of Mn in the matrix is in a range from 0 to 0.04. The back-scattered electron images and elemental maps reveal that the MnSe-rich impurity phases exist in the PbSe matrix, which makes the PbSe-MnSe system a nano-composite system. Pb0.96Mn0.02Na0.02Se has also such microstructures, implying that the solubility of Mn should be below 0.02. Cubic-phase MnSe-rich precipitates have the sizes ranging from 50 nanometers to 1-5 micrometers. They are well dispersed in the PbSe-rich matrix, as round or layered microstructures. The mechanical properties of the nanocomposites can be determined by micro-hardness measurements. Interestingly, the average Vickers hardness values of the PbSe-MnSe nanocomposites are significantly improved, which are 16.6% and 51.6% harder respectively in x= 0.02 and 0.06 samples than those of pristine PbSe. Smaller Mn content can optimize the figure of merit ZT due to the band convergence and additional phonon scattering by precipitates, while higher Mn content has little influence on ZT because of the saturated Seebeck coefficient and anomalous increase in lattice thermal conductivity. As a result, the highest figure of merit is 0.52 at 712 K, which is achieved in the Pb0.96Mn0.02Na0.02Se sample. By further adjusting the Na content from 2% to 0.7%, the carrier concentration is optimized. Thus, the Seebeck coefficient and power factor become higher. A figure of merit of 0.65 is achieved at 710 K in the PbSe-MnSe nano-composite with a nominal composition of Pb0.973Mn0.02Na0.007Se. We suggest that further optimizing the electrical properties may achieve a higher thermoelectric performance in the PbSe-MnSe system.
      通信作者: 骆军, junluo@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51371194,51172276)资助的课题.
      Corresponding author: Luo Jun, junluo@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51371194, 51172276).
    [1]

    Shi X, Xi L, Yang J, Zhang W, Chen L 2011 Physics 40 710

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [3]

    Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357

    [4]

    Zhang X, Zhao L D 2015 J. Materiomics 1 92

    [5]

    Yang J, Yip H L, Jen A K Y 2013 Adv. Energy Mater. 3 549

    [6]

    Ioffe A 1957 Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch Limited)

    [7]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043

    [8]

    Zhang F, Zhu H T, Luo J, Liang J K, Rao G H, Liu Q L 2010 Acta Phys. Sin. 59 7232 (in Chinese) [张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林 2010 物理学报 59 7232]

    [9]

    Chen L, Xiong Z, Bai S 2010 J. Inorg. Mater. 25 561

    [10]

    Li L L, Qin X Y, Liu Y F, Liu Q Z 2015 Chin. Phys. B 24 067202

    [11]

    Wang S F, Yan G Y, Chen S S, Bai Z L, Wang J L, Yu W, Fu G S 2013 Chin. Phys. B 22 037302

    [12]

    Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H 2015 Science 348 109-14

    [13]

    Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287

    [14]

    Wu Z H, Xie H Q, Zhai Y B, Gan L H, Liu J 2015 Chin. Phys. B 24 034402

    [15]

    Liu Y, Li H J 2015 Chin. Phys. B 24 047202

    [16]

    Bennett G L 1995 in Rowe DM ed. CRC Handbook of Thermoelectrics (Boca Raton, US: CRC Press) pp 515-537

    [17]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66

    [18]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554

    [19]

    Kanatzidis M G 2009 Chem. Mater. 22 648

    [20]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E, Kanatzidis M G 2004 Science 303 818

    [21]

    Biswas K, He J, Zhang Q, Wang G, Uher C, Dravid V P, Kanatzidis M G 2011 Nat. Chem. 3 160

    [22]

    Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414

    [23]

    Ravich Y I 1970 Semiconducting Lead Chalcogenides (New York: Springer Science Business Media)

    [24]

    Parker D, Singh D J 2010 Phys. Rev. B 82 035204

    [25]

    Wang H, Pei Y, LaLonde A D, Snyder G J 2011 Adv. Mater. 23 1366

    [26]

    Pei Y, LaLonde A, Iwanaga S, Snyder G J 2011 Energy Environ. Sci. 4 2085

    [27]

    Wang H, Gibbs Z M, Takagiwa Y, Snyder G J 2014 Energy Environ. Sci. 7 804

    [28]

    Wang H, Pei Y, LaLonde A D, Snyder G J 2012 Proc. Natl. Acad. Sci. U.S.A. 109 9705

    [29]

    Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K 2012 Energy Environ. Sci. 5 5246

    [30]

    Tan X, Shao H, Hu T, Liu G Q, Ren S F 2015 J. Phys.: Condens. Matter 27 095501

    [31]

    Pei Y, Wang H, Gibbs Z M, LaLonde A D, Snyder G J 2012 NPG Asia Materials 4 e28

    [32]

    Kiyosawa T, Takahashi S, Koguchi N 1992 J. Mater. Sci. 27 5303

    [33]

    Pei Y, Wang H, Snyder G 2012 Adv. Mater. 24 6125

    [34]

    Rogacheva E I, Krivulkin I M 2001 Fiz. Tverd. Tela. 43 1000

    [35]

    Rogacheva E I 2003 J. Phys. Chem. Solids 64 1579

  • [1]

    Shi X, Xi L, Yang J, Zhang W, Chen L 2011 Physics 40 710

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [3]

    Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357

    [4]

    Zhang X, Zhao L D 2015 J. Materiomics 1 92

    [5]

    Yang J, Yip H L, Jen A K Y 2013 Adv. Energy Mater. 3 549

    [6]

    Ioffe A 1957 Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch Limited)

    [7]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043

    [8]

    Zhang F, Zhu H T, Luo J, Liang J K, Rao G H, Liu Q L 2010 Acta Phys. Sin. 59 7232 (in Chinese) [张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林 2010 物理学报 59 7232]

    [9]

    Chen L, Xiong Z, Bai S 2010 J. Inorg. Mater. 25 561

    [10]

    Li L L, Qin X Y, Liu Y F, Liu Q Z 2015 Chin. Phys. B 24 067202

    [11]

    Wang S F, Yan G Y, Chen S S, Bai Z L, Wang J L, Yu W, Fu G S 2013 Chin. Phys. B 22 037302

    [12]

    Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H 2015 Science 348 109-14

    [13]

    Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287

    [14]

    Wu Z H, Xie H Q, Zhai Y B, Gan L H, Liu J 2015 Chin. Phys. B 24 034402

    [15]

    Liu Y, Li H J 2015 Chin. Phys. B 24 047202

    [16]

    Bennett G L 1995 in Rowe DM ed. CRC Handbook of Thermoelectrics (Boca Raton, US: CRC Press) pp 515-537

    [17]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66

    [18]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554

    [19]

    Kanatzidis M G 2009 Chem. Mater. 22 648

    [20]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E, Kanatzidis M G 2004 Science 303 818

    [21]

    Biswas K, He J, Zhang Q, Wang G, Uher C, Dravid V P, Kanatzidis M G 2011 Nat. Chem. 3 160

    [22]

    Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414

    [23]

    Ravich Y I 1970 Semiconducting Lead Chalcogenides (New York: Springer Science Business Media)

    [24]

    Parker D, Singh D J 2010 Phys. Rev. B 82 035204

    [25]

    Wang H, Pei Y, LaLonde A D, Snyder G J 2011 Adv. Mater. 23 1366

    [26]

    Pei Y, LaLonde A, Iwanaga S, Snyder G J 2011 Energy Environ. Sci. 4 2085

    [27]

    Wang H, Gibbs Z M, Takagiwa Y, Snyder G J 2014 Energy Environ. Sci. 7 804

    [28]

    Wang H, Pei Y, LaLonde A D, Snyder G J 2012 Proc. Natl. Acad. Sci. U.S.A. 109 9705

    [29]

    Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K 2012 Energy Environ. Sci. 5 5246

    [30]

    Tan X, Shao H, Hu T, Liu G Q, Ren S F 2015 J. Phys.: Condens. Matter 27 095501

    [31]

    Pei Y, Wang H, Gibbs Z M, LaLonde A D, Snyder G J 2012 NPG Asia Materials 4 e28

    [32]

    Kiyosawa T, Takahashi S, Koguchi N 1992 J. Mater. Sci. 27 5303

    [33]

    Pei Y, Wang H, Snyder G 2012 Adv. Mater. 24 6125

    [34]

    Rogacheva E I, Krivulkin I M 2001 Fiz. Tverd. Tela. 43 1000

    [35]

    Rogacheva E I 2003 J. Phys. Chem. Solids 64 1579

  • [1] 黄露露, 张建, 孔源, 李地, 辛红星, 秦晓英. 黄铜矿Cu1–xNixGaTe2热电输运性质的优化. 物理学报, 2021, 70(20): 207101. doi: 10.7498/aps.70.20211165
    [2] 刘超, 杨岳洋, 南策文, 林元华. MAX及其衍生MXene相碳化物的热电性能及展望. 物理学报, 2021, 70(20): 206501. doi: 10.7498/aps.70.20211050
    [3] 袁珉慧, 乐文凯, 谈小建, 帅晶. 二维共价键子结构Zintl相热电材料研究及进展. 物理学报, 2021, 70(20): 207304. doi: 10.7498/aps.70.20211010
    [4] 赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆. Cu1.8–x Sbx S热电材料的相结构与电热输运性能. 物理学报, 2021, 70(12): 128401. doi: 10.7498/aps.70.20201852
    [5] 黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程. Mn-In-Cu共掺杂优化SnTe基材料的热电性能. 物理学报, 2021, 70(15): 157401. doi: 10.7498/aps.70.20202020
    [6] 王雅宁, 陈少平, 樊文浩, 郭敬云, 吴玉程, 王文先. PbTe基热电接头界面性能. 物理学报, 2020, 69(24): 246801. doi: 10.7498/aps.69.20201080
    [7] 郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程. 改善Te基热电材料与复合电极界面性能. 物理学报, 2020, 69(14): 146801. doi: 10.7498/aps.69.20200436
    [8] 王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东. 具有本征低晶格热导率的硫化银快离子导体的热电性能. 物理学报, 2019, 68(9): 090201. doi: 10.7498/aps.68.20190073
    [9] 陶颖, 祁宁, 王波, 陈志权, 唐新峰. 氧化铟/聚(3,4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究. 物理学报, 2018, 67(19): 197201. doi: 10.7498/aps.67.20180382
    [10] 刘海云, 刘湘涟, 田定琪, 杜正良, 崔教林. 含硫宽禁带Ga2Te3基热电半导体的声电输运特性. 物理学报, 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [11] 汪昌州, 朱伟玲, 翟继卫, 赖天树. Ga30Sb70/Sb80Te20纳米复合多层薄膜的相变特性研究. 物理学报, 2013, 62(3): 036402. doi: 10.7498/aps.62.036402
    [12] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究. 物理学报, 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [13] 霍凤萍, 吴荣归, 徐桂英, 牛四通. 热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能. 物理学报, 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [14] 葛振华, 张波萍, 于昭新, 刘勇, 李敬锋. 机械合金化过程对硫化铋块体热电性能的影响机理. 物理学报, 2012, 61(4): 048401. doi: 10.7498/aps.61.048401
    [15] 吴子华, 谢华清. 聚对苯撑/LiNi0.5Fe2O4纳米复合热电材料的制备及其性能研究. 物理学报, 2012, 61(7): 076502. doi: 10.7498/aps.61.076502
    [16] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征. 物理学报, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [17] 张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林. Sb2Te3 纳米结构的制备与表征. 物理学报, 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [18] 鄢永高, 唐新峰, 刘海君, 尹玲玲, 张清杰. Ag偏离化学计量比Ag1-xPb18SbTe20材料的热电传输性能. 物理学报, 2007, 56(6): 3473-3478. doi: 10.7498/aps.56.3473
    [19] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响. 物理学报, 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
    [20] 刘先松, 钟伟, 杨森, 姜洪英, 顾本喜, 都有为. 纳米晶复合SrFe12O19γ-Fe2O3永磁铁氧体的制备和交换耦合作用. 物理学报, 2002, 51(5): 1128-1132. doi: 10.7498/aps.51.1128
计量
  • 文章访问数:  5910
  • PDF下载量:  330
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-13
  • 修回日期:  2016-02-25
  • 刊出日期:  2016-05-05

/

返回文章
返回