搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔融旋甩制备Co掺杂TiNiCoxSn合金的热电性能研究

何俊松 罗丰 王剑 杨士冠 翟立军 程林 刘虹霞 张艳 李艳丽 孙志刚 胡季帆

引用本文:
Citation:

熔融旋甩制备Co掺杂TiNiCoxSn合金的热电性能研究

何俊松, 罗丰, 王剑, 杨士冠, 翟立军, 程林, 刘虹霞, 张艳, 李艳丽, 孙志刚, 胡季帆

Thermoelectric properties of Co doped TiNiCoxSn alloys fabricated by melt spinning

Junsong He, Feng Luo, Jian Wang, Shiguan Yang, Lin Cheng, Lijun Zhai, Hongxia Liu, Yan Zhang, Yanli Li, Zhigang Sun, Jifan Hu
PDF
导出引用
  • TiNiSn基half-Heusler高温热电材料具有较高的功率因子,但其较高的晶格热导率极大地阻碍了热电性能的提升。本文采用熔融旋甩快淬与放电等离子烧结工艺制备TiNiCoxSn (x=0~0.05)样品,研究了磁性Co元素掺杂对材料的相组成、微观结构和热电性能。结果表明,该制备工艺能够直接获得纳米晶的TiNiCoxSn样品。在纳米晶影响下的样品的热导率明显低于块体材料的热导率,平均降幅约为17.8%。在Co掺杂后样品的晶粒尺寸进一步降低,与TiNiSn基体相比TiNiCoxSn样品的热导率显著降低,最大降幅约为38.9%,其中晶格热导率最低值为3.19W/mK,最大降幅约为42.6%。随着Co掺杂量x的增加TiNiCoxSn样品出现n/p转变,电导率随x增加而逐渐下降,电输运性能劣化,功率因子缓慢减小,其中TiNiSn样品在700 K时获得29.56W/mK2的最高功率因子。zT值随Co掺杂量x的增加而逐渐降低,TiNiSn样品在900 K时的最大zT值为0.48。本工作表明采用熔融旋甩制备工艺及磁性Co掺杂能够有效降低TiNiSn材料的热导率。
    Although TiNiSn-based half-Heusler thermoelectric materials obtain high power factors, their high lattice thermal conductivity greatly hinders the improvement of thermoelectric properties. In this paper, TiNiCoxSn (x=0~0.05) samples were prepared by melt spinning combined with spark plasma sintering method and their phase, microstructure and thermoelectric properties are studied. The XRD results show that the main phase of all samples is TiNiSn phase, and no other impurity phases are found, indicating that the high purity single phase can be prepared by rapid quenching process combined with SPS process. During the solidification process, the large cooling rate (105-106 K/s) is conducive to obtaining the uniform nanocrystalline structure. The grains are closely packed with a grain size of 200-600 nm. The grain size decrease to 50-400 nm for the Co-doping samples, which indicates that Co doping can reduce the grain size. For the x=0 sample, the thermal conductivity of the rapid quenching sample is significantly lower than that of bulk sample, with an average decrease of about 17.8%. Compared with the TiNiSn matrix, the thermal conductivity of the Co-doping samples are significantly reduced, and the maximum decrease is about 38.9%. The minimum value of lattice thermal conductivity of TiNiCoxSn samples is 3.19 W/mK. Therefore, Co doping can significantly reduce the кl of TiNiCoxSn (x=0.01~0.05) samples. With the increase of Co doping amount x, n/p transition is observed in the TiNiCoxSn samples, resulting in a gradually decrease of the conductivity and the power factor, and finally the deterioration of the electrical transport performance. Among them, the TiNiSn sample obtains the highest power factor of 29.56 W/mK2 at 700 K. The zT value decreases with the Co doping amount x, and the maximum zT value of TiNiSn sample at 900 K is 0.48. This work shows that the thermal conductivity of TiNiSn can be effectively reduced by using the melt spinning process and magnetic Co doping.
  • [1]

    Yang S-G, Lin X, He J-S, Zhai L-J, Cheng L, Lü M H, Liu H-X, Zhang Y. Sun Z-G, 2023Acta Physica Sinica. 72 228401.

    [2]

    Luo F, Zhu C, Wang J, He X, Yang Z, Ke S, Zhang Y, Liu H. Sun Z, 2022ACS Appl. Mater. Interfaces. 14 45503.

    [3]

    Ma S, Li C, Wei P, Zhu W, Nie X, Sang X, Zhang Q. Zhao W, 2020J MATER CHEM A. 8 4816.

    [4]

    Shi L, Chen J, Zhang G. Li B, 2012Phys. Lett. A 376 978.

    [5]

    Ouyang Y, Zhang Z, Li D, Chen J. Zhang G, 2019ANN PHYS-BERLIN. 531(4).

    [6]

    He J, Hu Y, Li D. Chen J, 2021NANO RES. 15 3804.

    [7]

    Xiao F, Hangarter C, Yoo B, Rheem Y, Lee K-H. Myung N V, 2008Electrochimica Acta 538103

    [8]

    Jiang B, Wang W, Liu S, Wang Y, Wang C, Chen Y, Xie L, Huang M. He J, 2022Science. 377 208.

    [9]

    Gelbstein Y, Rosenberg Y, Sadia Y. Dariel M P, 2010INDIAN J CHEM A. 11413126.

    [10]

    Komisarchik G, Gelbstein Y. Fuks D, 2017Intermetallics. 89 16.

    [11]

    Liu H-T, Sun Q, Zhong Y, Deng Q, Gan L, Lv F-L, Shi X-L, Chen Z-G. Ang R, 2022Nano Energy. 91 106706.

    [12]

    Pochet P. Caliste D, 2012MAT SCI SEMICON PROC. 15675.

    [13]

    Khan M R, Gopidi H R, Wlazło M. Malyi O I, 2023J. Phys. Chem. Lett. 14 1962.

    [14]

    Kaller M, Fuks D. Gelbstein Y, 2017J ALLOY COMPD. 729 446.

    [15]

    Chauhan N S, Bathula S, Vishwakarma A, Bhardwaj R, Gahtori B, Kumar A. Dhar A, 2018ACS Appl. Energy Mater. 1 757.

    [16]

    Lim W Y S, Zhang D, Duran S S F, Tan X Y, Tan C K I, Xu J. Suwardi A, 2021FRONT MATER. 8 745.

    [17]

    Wang J, Luo F, Zhu C, Wang J, He X, Zhang Y, Liu H. Sun Z, 2023J MATER CHEM. 11 4056.

    [18]

    Zhu C, Wang J, Zhu X, Zhang S, Xu F, Luo F, Wang J, Zhang Y, Liu H. Sun Z, 2023J MATER CHEM A. 11 1268.

    [19]

    Chen S-Q, Wang J, Yang Z, Zhu C, Luo F, Zhu X-Q, Xu F, Wang J-F, Zhang Y, Liu H-X, et al., 2023Acta Phys Sin. 72 068401.

    [20]

    Santos R, Yamini S A. Dou S X, 2018J MATER CHEM A. 6 3328.

    [21]

    Berry T, Fu C, Auffermann G, Fecher G H, Schnelle W, Serrano-Sanchez F, Yue Y, Liang H. Felser C, 2017Chem. Mater. 29 7042.

    [22]

    Downie R, Maclaren D. Bos J-W, 2014Journal of J MATER CHEM A. 2 6107.

    [23]

    Sanad M F, Shalan A E, Abdellatif S O, Serea E S A, Adly M S. Ahsan M A, 2020Top Curr Chem. 378 48.

    [24]

    Wang J, Zhu C, Luo F, Wang J, He X, Zhang Y, Liu H. Sun Z, 2023ACS Appl. Mater. Interfaces. 15 8105.

    [25]

    Lyu W-Y, Liu W-D, Li M, Hong M, Guo K, Luo J, Xing J, Sun Q, Xu S. Zou J, 2022Chem. Eng. J. 446 137278.

    [26]

    Hu B, Shi X-L, Zou J. Chen Z-G, 2022Chem. Eng. J 135.

    [27]

    Liu H, Zhang S, Zhang Y, Zong S, Li W, Zhu C, Luo F, Wang J. Sun Z, 2022ACS Appl. Energy Mater.5 12.

    [28]

    Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G. Zhao X, 2017Advanced materials. 29 1605884.

    [29]

    Van Du N, Nam W H, Cho J Y, Binh N V, Huy P T, Tuan D A, Shin W H. Lee S, 2021J ALLOY COMPD. 886 161293.

    [30]

    Pei Y, Shi X, Lalonde A, Wang H, Chen L. Snyder G J, 2011Nature. 473 66.

    [31]

    Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A. Vashaee D, 2008Science. 320 634.

    [32]

    Zhao L-D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H. Dravid V P, 2016Science. 351 141.

    [33]

    Hohl H, Ramirez A P, Goldmann C, Ernst G, Wölfing B. Bucher E, 1999J PHYS-CONDENS MAT. 11 1697.

    [34]

    Chauhan N S, Raghuvanshi P R, Tyagi K, Johari K K, Tyagi L, Gahtori B, Bathula S, Bhattacharya A, Mahanti S D. Singh V N, 2020J PHYS-CONDENS MAT. 124 8584.

    [35]

    Shutoh N. Sakurada S, 2005J ALLOY COMPD. 389 204.

    [36]

    Cho J, Park T, Bae K W, Kim H S, Choi S M, Kim S I. Kim S W, 2021Materials. 14(14).

    [37]

    He J, Shen Y, Zhai L, Luo F, Zhang Y, Liu H, Hu J. Sun Z, 2024J ALLOY COMPD. 975 172808.

    [38]

    Wang J, Luo F, Zhu C, Zhang S, Yang Z, Wang J, He X, Zhang Y. Sun Z, 2022J APPL PHYS. 132(13).

    [39]

    Dresselhaus M S, Chen G, Tang M Y, Yang R, Lee H, Wang D, Ren Z, Fleurial J P. Gogna P, 2007ADV MATER. 19 1043.

    [40]

    Dresselhaus M, Chen G, Ren Z, Dresselhaus G, Henry A. Fleurial J-P, 2009Jom. 61 86.

    [41]

    Yang J, Yip H L. Jen A K Y, 2013Adv. Energy Mater. 3 549.

    [42]

    Kim K S, Kim Y-M, Mun H, Kim J, Park J, Borisevich A Y, Lee K H. Kim S W, 2017ADV MATER. 29 1702091.

    [43]

    Katayama T, Kim S W, Kimura Y. Mishima Y, 2003J ELECTRON MATER. 32 1160.

    [44]

    Li C, Zhao W. Zhang Q, 2022Science bulletin. 67891.

    [45]

    Zhao W, Liu Z, Sun Z, Zhang Q, Wei P, Mu X, Zhou H, Li C, Ma S. He D, 2017Nature. 549 247

    [46]

    Luo F, Wang J, Zhu C, He X, Zhang S, Wang J, Liu H. Sun Z, 2022J MATER CHEM A. 10 9655

    [47]

    Du N V, Nam W H, Cho J Y, Binh N V, Huy P T, Trung D Q, Tuan D A, Shin W H. Lee S, 2021J ALLOY COMPD. 886 161293.

    [48]

    Xv H, 2021J NANOTECHNOL. 11 135.

    [49]

    Luo F, 2023. Ph. D. Dissertation (Wuhan:Wuhan University of Technology)(in Chinese)[罗丰,2023博士学位论文(武汉:武汉理工大学)].

    [50]

    An D, Wang J, Zhang J, Zhai X, Kang Z, Fan W, Yan J, Liu Y, Lu L, Jia C-L, et al., 2021Energy Environ. Sci. 14 5469.

    [51]

    Drymiotis F, Lashley J C, Fisk Z, Peterson E. Nakatsuji S, 2003Philos. Mag. 83 3169.

    [52]

    Kim H-S, Gibbs Z M, Tang Y, Wang H. Snyder G J, 2015APL Materials. 3(4).

    [53]

    Baranovskiy A, Harush M. Amouyal Y, 2019ADV THEOR SIMUL. 254.

    [54]

    Chi H, Liu W, Sun K, Su X, Wang G, Lošt'ák P, Kucek V, DrašarČ. Uher C, 2013PHYS REV B. 88(4).

    [55]

    Lkhagvasuren E, Fu C, Fecher G H, Auffermann G, Kreiner G, Schnelle W. Felser C, 2017J PHYS D APPL PHYS. 50 425502.

    [56]

    Gong B, Li Y, Liu F, Zhu J, Wang X, Ao W, Zhang C, Li J, Xie H. Zhu T, 2019ACS Appl. Mater. Interfaces. 1113397.

    [57]

    Mao J, Zhou J, Zhu H, Liu Z, Zhang H, He R, Chen G. Ren Z, 2017Chem. Mater. 2914.

    [58]

    Yan J, Liu F, Ma G, Gong B, Zhu J, Wang X, Ao W, Zhang C, Li Y. Li J, 2018Scripta Materialia. 157129.

    [59]

    Liu Y, Xie H, Fu C, Snyder G J, Zhao X. Zhu T, 2015J MATER CHEM A. 3 22716.

  • [1] 黄露露, 张建, 孔源, 李地, 辛红星, 秦晓英. 黄铜矿Cu1–xNixGaTe2热电输运性质的优化. 物理学报, doi: 10.7498/aps.70.20211165
    [2] 刘超, 杨岳洋, 南策文, 林元华. MAX及其衍生MXene相碳化物的热电性能及展望. 物理学报, doi: 10.7498/aps.70.20211050
    [3] 袁珉慧, 乐文凯, 谈小建, 帅晶. 二维共价键子结构Zintl相热电材料研究及进展. 物理学报, doi: 10.7498/aps.70.20211010
    [4] 赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆. Cu1.8–x Sbx S热电材料的相结构与电热输运性能. 物理学报, doi: 10.7498/aps.70.20201852
    [5] 黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程. Mn-In-Cu共掺杂优化SnTe基材料的热电性能. 物理学报, doi: 10.7498/aps.70.20202020
    [6] 王雅宁, 陈少平, 樊文浩, 郭敬云, 吴玉程, 王文先. PbTe基热电接头界面性能. 物理学报, doi: 10.7498/aps.69.20201080
    [7] 郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程. 改善Te基热电材料与复合电极界面性能. 物理学报, doi: 10.7498/aps.69.20200436
    [8] 王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东. 具有本征低晶格热导率的硫化银快离子导体的热电性能. 物理学报, doi: 10.7498/aps.68.20190073
    [9] 陶颖, 祁宁, 王波, 陈志权, 唐新峰. 氧化铟/聚(3,4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究. 物理学报, doi: 10.7498/aps.67.20180382
    [10] 薛丽, 任一鸣. CuGaTe2和CuInTe2的电子和热电性质的第一性原理研究. 物理学报, doi: 10.7498/aps.65.156301
    [11] 王鸿翔, 应鹏展, 杨江锋, 陈少平, 崔教林. Mn掺杂后三元黄铜矿结构半导体CuInTe2的缺陷特征与热电性能. 物理学报, doi: 10.7498/aps.65.067201
    [12] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军. PbSe-MnSe纳米复合热电材料的微结构和电热输运性能. 物理学报, doi: 10.7498/aps.65.107201
    [13] 刘海云, 刘湘涟, 田定琪, 杜正良, 崔教林. 含硫宽禁带Ga2Te3基热电半导体的声电输运特性. 物理学报, doi: 10.7498/aps.64.197201
    [14] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究. 物理学报, doi: 10.7498/aps.62.097301
    [15] 霍凤萍, 吴荣归, 徐桂英, 牛四通. 热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能. 物理学报, doi: 10.7498/aps.61.087202
    [16] 葛振华, 张波萍, 于昭新, 刘勇, 李敬锋. 机械合金化过程对硫化铋块体热电性能的影响机理. 物理学报, doi: 10.7498/aps.61.048401
    [17] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征. 物理学报, doi: 10.7498/aps.59.1243
    [18] 陈晓阳, 徐象繁, 胡荣星, 任 之, 许祝安, 曹光旱. LixNayCoO2的制备和热电性质. 物理学报, doi: 10.7498/aps.56.1627
    [19] 鄢永高, 唐新峰, 刘海君, 尹玲玲, 张清杰. Ag偏离化学计量比Ag1-xPb18SbTe20材料的热电传输性能. 物理学报, doi: 10.7498/aps.56.3473
    [20] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响. 物理学报, doi: 10.7498/aps.54.3321
计量
  • 文章访问数:  202
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-03-27

/

返回文章
返回