搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄铜矿Cu1–xNixGaTe2热电输运性质的优化

黄露露 张建 孔源 李地 辛红星 秦晓英

引用本文:
Citation:

黄铜矿Cu1–xNixGaTe2热电输运性质的优化

黄露露, 张建, 孔源, 李地, 辛红星, 秦晓英

Optimization of thermoelectric transport performance of nickel-doped CuGaTe2

Huang Lu-Lu, Zhang Jian, Kong Yuan, Li Di, Xin Hong-Xing, Qin Xiao-Ying
PDF
HTML
导出引用
  • 热电材料是一种可实现热能和电能之间直接转换的新型功能材料, 因用途广泛而受到大量的关注. 但是当今热电转换效率较低, 限制了热电器件的大范围应用, 而热电转换效率主要局限于材料的热电性能. 本文选取了一种黄铜矿结构的化合物CuGaTe2作为研究对象, 利用真空熔炼法合成了一系列磁性元素Ni掺杂的样品Cu1–xNixGaTe2 (x = 0—0.75%), 并探究了其热、电输运性能的变化规律. 研究结果表明, Ni原子可以有效地替代该材料的Cu原子并引起载流子浓度的略微下降和迁移率的提升. 同时, 掺杂Ni后样品的Seebeck系数显著提高. 一方面, Seebeck系数的提升是由于样品载流子浓度的下降; 另一方面, 掺杂后费米能级附近态密度的有效提升是Seebeck系数明显增强的主要原因. 其次, Ni掺杂引起点缺陷散射的增强有效地降低了材料的热导率, 其晶格热导率最小值比基体下降了约30%. 最终, 在873 K下, 在Cu0.095Ni0.005GaTe2样品中获得了最大ZT值, 约为1.26, 比基体CuGaTe2ZT值增大了约56%. 本文的工作表明, 在Cu位掺杂磁性元素Ni是提升CuGaTe2体系材料热电性能的有效手段之一.
    Thermoelectric material is a new type of functional material that can realize the direct conversion between heat energy and electric energy. It has received a lot of attention because it has wide practical applications. However, the applications of thermoelectric devices are limited by their low conversion efficiencies. The conversion efficiency is determined mainly by the thermoelectric properties of the material. In this work, a compound of CuGaTe2 chalcopyrite is selected as a research object, and a series of Ni-doped samples Cu1–xNixGaTe2 (x = 0–0.75%) is synthesized by the vacuum melting method. The temperature dependent thermal and electrical properties for Cu1–xNixGaTe2 (x = 0–0.75%) compounds are investigated. The results show that the Ni atom can effectively replace the Cu atom of the material, and thus leading the carrier concentration to decrease slightly and inducing the mobility to increase. At the same time, the Seebeck coefficient increases significantly after Ni doping: on the one hand, the increase is due to the decrease of the carrier concentration of the sample; on the other hand, the effective increase of the density of states near the Fermi level plays an important role in increasing Seebeck coefficient. Then, the thermal conductivity decreases effectively due to the enhancement of point defect scattering caused by Ni doping, and the minimum lattice thermal conductivity is reduced by ~30% in comparison with the matrix lattice thermal conductivity. Finally, the maximum ZT value for Cu0.095Ni0.005GaTe2 sample (ZT = 1.26 at 873 K) is obtained to be ~56% larger than that for CuGaTe2. This work indicates that the doping magnetic element Ni at Cu site is also one of the effective ways to improve the thermoelectric properties of CuGaTe2 materials.
      通信作者: 张建, zhangjian@issp.ac.cn ; 秦晓英, xyqin@issp.ac.cn
    • 基金项目: 安徽省自然科学基金(批准号: 2008085MA18)和国家自然科学基金(批准号: 51972307)资助的课题
      Corresponding author: Zhang Jian, zhangjian@issp.ac.cn ; Qin Xiao-Ying, xyqin@issp.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Anhui Province, China (Grant No. 2008085MA18) and the National Natural Science Foundation of China (Grant No. 51972307).
    [1]

    Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G, Zhao X 2017 Adv. Mater. 29 1605884Google Scholar

    [2]

    Bell L E 2008 Science 321 1457Google Scholar

    [3]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818Google Scholar

    [4]

    Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar

    [5]

    Chen X Q, Liu J, Li J 2021 Innovation 2 100134

    [6]

    Riffat S B, Ma X L 2003 Appl. Therm. Eng. 23 913Google Scholar

    [7]

    Sun P, Kumar K R, Lyu M, Wang Z, Xiang J, Zhang W 2021 Innovation 2 100101

    [8]

    Zhang J, Huang L, Zhu C, Zhou C, Jabar B, Li J, Zhu X, Wang L, Song C, Xin H, Li D, Qin X 2019 Adv. Mater. 31 1905210Google Scholar

    [9]

    Shay J L, Wernick J H 1975 Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications (London: Pergamon Press Ltd.) p112

    [10]

    Slack G A, Rowe D 1995 CRC Handbook of Thermoelectrics (Boca Raton: CRC Press) p280

    [11]

    Ioffe A F, Stil'Bans L, Iordanishvili E, Stavitskaya T, Gelbtuch A, Vineyard G 1959 Phys. Today 12 42

    [12]

    Shi X, Huang F, Liu M, Chen L 2009 Appl. Phys. Lett. 94 122103Google Scholar

    [13]

    Cho J, Shi X, Salvador J R, Meisner G P, Yang J, Wang H, Wereszczak A A, Zhou X, Uher C 2011 Phys. Rev. B 84 085207Google Scholar

    [14]

    Liu M L, Chen I W, Huang F Q, Chen L D 2009 Adv. Mater. 21 3808Google Scholar

    [15]

    Shi X, Xi L, Fan J, Zhang W, Chen L 2010 Chem. Mater. 22 6029Google Scholar

    [16]

    Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L 2012 Chem. Commun. 48 3818Google Scholar

    [17]

    Skoug E J, Cain J D, Morelli D T 2010 J. Alloys Compd. 506 18Google Scholar

    [18]

    Skoug E J, Cain J D, Majsztrik P, Kirkham M, Lara-Curzio E, Morelli D T 2011 Sci. Adv. Mater. 3 602Google Scholar

    [19]

    Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder G J 2012 Nat. Mater. 11 422Google Scholar

    [20]

    Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder G J, Harnwunggmoung A, Sugahara T, Ohishi Y 2012 Adv. Mater. 24 3622Google Scholar

    [21]

    Li Y, Meng Q, Deng Y, Zhou H, Gao Y, Li Y, Yang J, Cui J 2012 Appl. Phys. Lett. 100 231903Google Scholar

    [22]

    Zeier WG, LaLonde A, Gibbs Z M, Heinrich C P, Panthöfer M, Snyder G J, Tremel W 2012 J. Am. Chem. Soc. 134 7147Google Scholar

    [23]

    Parker D, Singh D J 2012 Phys. Rev. B 85 125209Google Scholar

    [24]

    Wu W, Wu K, Ma Z, Sa R 2012 Chem. Phys. Lett. 537 62Google Scholar

    [25]

    Kosuga A, Plirdpring T, Higashine R, Matsuzawa M, Kurosaki K, Yamanaka S 2012 Appl. Phys. Lett. 100 042108Google Scholar

    [26]

    Yusufu A, Kurosaki K, Kosuga A, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2011 Appl. Phys. Lett. 99 061902Google Scholar

    [27]

    Kuhn B, Kaefer W, Fess K, Friemelt K, Turner C, Wendl M, Bucher E 1997 Phys. Status Solidi 162 661Google Scholar

    [28]

    Zhang J, Qin X Y, Li D, Xin H X, Song C J, Li L L, Wang Z M, Guo G L, Wang L 2014 J. Alloys Compd. 586 285Google Scholar

    [29]

    Cui J, Li Y, Du Z, Meng Q, Zhou H 2013 J. Mater. Chem. A 1 677Google Scholar

    [30]

    Shen J W, Zhang X Y, Lin S Q, Li J, Chen Z W, Li W, Pei Y Z 2016 J. Mater. Chem. A 4 15464Google Scholar

    [31]

    Ahmed F, Tsujii N, Mori T 2017 J. Mater. Chem. A 5 7545Google Scholar

    [32]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [33]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [34]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 169

    [35]

    Grimme S, Ehrlich S, Goerigk L 2011 J. Comput. Chem. 32 1456Google Scholar

    [36]

    Moellmann J, Grimme S 2014 J. Phys. Chem. C 118 7615Google Scholar

    [37]

    Cao Y, Su X, Meng F, Bailey T P, Zhao J, Xie H, He J, Uher C, Tang X 2020 Adv. Funct. Mater. 30 2005861Google Scholar

    [38]

    Jonson M, Mahan G 1980 Phys. Rev. B 21 4223Google Scholar

    [39]

    Xu R, Huang L, Zhang J, Li D, Liu J, Liu J, Fang J, Wang M, Tang G 2019 J. Mater. Chem. A 7 15757Google Scholar

  • 图 1  (a) Cu1–xNixGaTe2 (x = 0, 0.25%, 0.50%, 0.75%)样品室温下的XRD图谱, 其中, 在右上角附注(112)衍射峰的放大图; (b) Cu0.995Ni0.005GaTe2样品的XRD数据结构精修图, λ2Rw为精修的误差参数

    Fig. 1.  (a) XRD results of Cu1–xNixGaTe2 (x = 0, 0.25%, 0.50%, 0.75%) samples at room temperature, and the enlarged view of (112) diffraction peak is attached in the upper right corner; (b) results of refined XRD for Cu0.995Ni0.005GaTe2 sample, λ2 and Rw are the refined error parameters.

    图 2  Cu1–xNixGaTe2 (x = 0, 0.25%, 0.50%, 0.75%)样品晶格参数随Ni含量x的变化

    Fig. 2.  Lattice parameters of Cu1–xNixGaTe2 (x = 0, 0.25%, 0.50%, 0.75%) samples.

    图 3  Cu1–xNixGaTe2 (x = 0, 0.25%, 0.50%, 0.75%)样品的 (a)电导率随温度的变化, (b)室温下载流子浓度和迁移率, (c) Seebeck系数和(d)功率因子随温度的变化

    Fig. 3.  Electrical properties of Cu1–xNixGaTe2 (x = 0, 0.25%, 0.50%, 0.75%) samples: (a) Dependence of electrical conductivity with temperature; (b) carrier concentration and carrier mobility at room temperature; dependence of (c) Seebeck coefficient and (d) power factor with temperature.

    图 4  CuGaTe2和Cu0.96875Ni0.03125GaTe2 样品 (a), (b)晶体结构示意图; (c), (d)能带结构图; (e), (f)总态密度和分态密度图

    Fig. 4.  (a), (b) Visual patterns of structures, (c), (d) band structures, (e), (f) total density of states and partial density of states for CuGaTe2 and Cu0.96875Ni0.03125GaTe2, respectively.

    图 5  CuGaTe2和 Cu0.995Ni0.005GaTe2 样品的紫外光电子能谱图 (a)全谱图; (b)图(a)中绿色虚线框内的放大图

    Fig. 5.  UV photoelectron spectra of CuGaTe2 and Cu0.995Ni0.005GaTe2 samples: (a) Full spectrum; (b) enlarged view in the green dashed box in panel (a).

    图 6  Cu1–xNixGaTe2 (x = 0, 0.25%, 0.50%, 0.75%)样品的(a)总热导率和(b)晶格热导率随温度的变化

    Fig. 6.  Temperature dependence of (a) total thermal conductivity and (b) lattice thermal conductivity for Cu1–xNixGaTe2 (x = 0, 0.25%, 0.50%, 0.75%) samples.

    图 7  Cu1–xNixGaTe2 (x = 0, 0.25%, 0.50%, 0.75%)样品的ZT值随温度的变化

    Fig. 7.  Temperature dependence of ZT value for Cu1–xNixGaTe2 (x = 0, 0.25%, 0.50%, 0.75%) samples.

  • [1]

    Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G, Zhao X 2017 Adv. Mater. 29 1605884Google Scholar

    [2]

    Bell L E 2008 Science 321 1457Google Scholar

    [3]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818Google Scholar

    [4]

    Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar

    [5]

    Chen X Q, Liu J, Li J 2021 Innovation 2 100134

    [6]

    Riffat S B, Ma X L 2003 Appl. Therm. Eng. 23 913Google Scholar

    [7]

    Sun P, Kumar K R, Lyu M, Wang Z, Xiang J, Zhang W 2021 Innovation 2 100101

    [8]

    Zhang J, Huang L, Zhu C, Zhou C, Jabar B, Li J, Zhu X, Wang L, Song C, Xin H, Li D, Qin X 2019 Adv. Mater. 31 1905210Google Scholar

    [9]

    Shay J L, Wernick J H 1975 Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications (London: Pergamon Press Ltd.) p112

    [10]

    Slack G A, Rowe D 1995 CRC Handbook of Thermoelectrics (Boca Raton: CRC Press) p280

    [11]

    Ioffe A F, Stil'Bans L, Iordanishvili E, Stavitskaya T, Gelbtuch A, Vineyard G 1959 Phys. Today 12 42

    [12]

    Shi X, Huang F, Liu M, Chen L 2009 Appl. Phys. Lett. 94 122103Google Scholar

    [13]

    Cho J, Shi X, Salvador J R, Meisner G P, Yang J, Wang H, Wereszczak A A, Zhou X, Uher C 2011 Phys. Rev. B 84 085207Google Scholar

    [14]

    Liu M L, Chen I W, Huang F Q, Chen L D 2009 Adv. Mater. 21 3808Google Scholar

    [15]

    Shi X, Xi L, Fan J, Zhang W, Chen L 2010 Chem. Mater. 22 6029Google Scholar

    [16]

    Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L 2012 Chem. Commun. 48 3818Google Scholar

    [17]

    Skoug E J, Cain J D, Morelli D T 2010 J. Alloys Compd. 506 18Google Scholar

    [18]

    Skoug E J, Cain J D, Majsztrik P, Kirkham M, Lara-Curzio E, Morelli D T 2011 Sci. Adv. Mater. 3 602Google Scholar

    [19]

    Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder G J 2012 Nat. Mater. 11 422Google Scholar

    [20]

    Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder G J, Harnwunggmoung A, Sugahara T, Ohishi Y 2012 Adv. Mater. 24 3622Google Scholar

    [21]

    Li Y, Meng Q, Deng Y, Zhou H, Gao Y, Li Y, Yang J, Cui J 2012 Appl. Phys. Lett. 100 231903Google Scholar

    [22]

    Zeier WG, LaLonde A, Gibbs Z M, Heinrich C P, Panthöfer M, Snyder G J, Tremel W 2012 J. Am. Chem. Soc. 134 7147Google Scholar

    [23]

    Parker D, Singh D J 2012 Phys. Rev. B 85 125209Google Scholar

    [24]

    Wu W, Wu K, Ma Z, Sa R 2012 Chem. Phys. Lett. 537 62Google Scholar

    [25]

    Kosuga A, Plirdpring T, Higashine R, Matsuzawa M, Kurosaki K, Yamanaka S 2012 Appl. Phys. Lett. 100 042108Google Scholar

    [26]

    Yusufu A, Kurosaki K, Kosuga A, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2011 Appl. Phys. Lett. 99 061902Google Scholar

    [27]

    Kuhn B, Kaefer W, Fess K, Friemelt K, Turner C, Wendl M, Bucher E 1997 Phys. Status Solidi 162 661Google Scholar

    [28]

    Zhang J, Qin X Y, Li D, Xin H X, Song C J, Li L L, Wang Z M, Guo G L, Wang L 2014 J. Alloys Compd. 586 285Google Scholar

    [29]

    Cui J, Li Y, Du Z, Meng Q, Zhou H 2013 J. Mater. Chem. A 1 677Google Scholar

    [30]

    Shen J W, Zhang X Y, Lin S Q, Li J, Chen Z W, Li W, Pei Y Z 2016 J. Mater. Chem. A 4 15464Google Scholar

    [31]

    Ahmed F, Tsujii N, Mori T 2017 J. Mater. Chem. A 5 7545Google Scholar

    [32]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [33]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [34]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 169

    [35]

    Grimme S, Ehrlich S, Goerigk L 2011 J. Comput. Chem. 32 1456Google Scholar

    [36]

    Moellmann J, Grimme S 2014 J. Phys. Chem. C 118 7615Google Scholar

    [37]

    Cao Y, Su X, Meng F, Bailey T P, Zhao J, Xie H, He J, Uher C, Tang X 2020 Adv. Funct. Mater. 30 2005861Google Scholar

    [38]

    Jonson M, Mahan G 1980 Phys. Rev. B 21 4223Google Scholar

    [39]

    Xu R, Huang L, Zhang J, Li D, Liu J, Liu J, Fang J, Wang M, Tang G 2019 J. Mater. Chem. A 7 15757Google Scholar

  • [1] 刘超, 杨岳洋, 南策文, 林元华. MAX及其衍生MXene相碳化物的热电性能及展望. 物理学报, 2021, 70(20): 206501. doi: 10.7498/aps.70.20211050
    [2] 袁珉慧, 乐文凯, 谈小建, 帅晶. 二维共价键子结构Zintl相热电材料研究及进展. 物理学报, 2021, 70(20): 207304. doi: 10.7498/aps.70.20211010
    [3] 赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆. Cu1.8–x Sbx S热电材料的相结构与电热输运性能. 物理学报, 2021, 70(12): 128401. doi: 10.7498/aps.70.20201852
    [4] 黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程. Mn-In-Cu共掺杂优化SnTe基材料的热电性能. 物理学报, 2021, 70(15): 157401. doi: 10.7498/aps.70.20202020
    [5] 王雅宁, 陈少平, 樊文浩, 郭敬云, 吴玉程, 王文先. PbTe基热电接头界面性能. 物理学报, 2020, 69(24): 246801. doi: 10.7498/aps.69.20201080
    [6] 郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程. 改善Te基热电材料与复合电极界面性能. 物理学报, 2020, 69(14): 146801. doi: 10.7498/aps.69.20200436
    [7] 王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东. 具有本征低晶格热导率的硫化银快离子导体的热电性能. 物理学报, 2019, 68(9): 090201. doi: 10.7498/aps.68.20190073
    [8] 陶颖, 祁宁, 王波, 陈志权, 唐新峰. 氧化铟/聚(3,4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究. 物理学报, 2018, 67(19): 197201. doi: 10.7498/aps.67.20180382
    [9] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军. PbSe-MnSe纳米复合热电材料的微结构和电热输运性能. 物理学报, 2016, 65(10): 107201. doi: 10.7498/aps.65.107201
    [10] 王鸿翔, 应鹏展, 杨江锋, 陈少平, 崔教林. Mn掺杂后三元黄铜矿结构半导体CuInTe2的缺陷特征与热电性能. 物理学报, 2016, 65(6): 067201. doi: 10.7498/aps.65.067201
    [11] 薛丽, 任一鸣. CuGaTe2和CuInTe2的电子和热电性质的第一性原理研究. 物理学报, 2016, 65(15): 156301. doi: 10.7498/aps.65.156301
    [12] 刘海云, 刘湘涟, 田定琪, 杜正良, 崔教林. 含硫宽禁带Ga2Te3基热电半导体的声电输运特性. 物理学报, 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [13] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究. 物理学报, 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [14] 葛振华, 张波萍, 于昭新, 刘勇, 李敬锋. 机械合金化过程对硫化铋块体热电性能的影响机理. 物理学报, 2012, 61(4): 048401. doi: 10.7498/aps.61.048401
    [15] 霍凤萍, 吴荣归, 徐桂英, 牛四通. 热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能. 物理学报, 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [16] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征. 物理学报, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [17] 穆武第, 程海峰, 陈朝辉, 唐耿平, 吴志桥. 粗糙界面对Bi2Te3/PbTe超晶格热电优值影响的理论分析. 物理学报, 2009, 58(2): 1212-1218. doi: 10.7498/aps.58.1212
    [18] 鄢永高, 唐新峰, 刘海君, 尹玲玲, 张清杰. Ag偏离化学计量比Ag1-xPb18SbTe20材料的热电传输性能. 物理学报, 2007, 56(6): 3473-3478. doi: 10.7498/aps.56.3473
    [19] 陈晓阳, 徐象繁, 胡荣星, 任 之, 许祝安, 曹光旱. LixNayCoO2的制备和热电性质. 物理学报, 2007, 56(3): 1627-1631. doi: 10.7498/aps.56.1627
    [20] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响. 物理学报, 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
计量
  • 文章访问数:  3262
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-21
  • 修回日期:  2021-09-09
  • 上网日期:  2021-09-10
  • 刊出日期:  2021-10-20

/

返回文章
返回