搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

V型三能级金刚石氮空位色心电磁诱导透明体系中孤子的存取

谭聪 王登龙 董耀勇 丁建文

引用本文:
Citation:

V型三能级金刚石氮空位色心电磁诱导透明体系中孤子的存取

谭聪, 王登龙, 董耀勇, 丁建文

Storage and retrieval of solitons in electromagnetically induced transparent system of V-type three-level diamond nitrogen-vacancy color centers

Tan Cong, Wang Deng-Long, Dong Yao-Yong, Ding Jian-Wen
PDF
HTML
导出引用
  • 本文先构建一束弱探测场和一束强控制场所形成的V型三能级金刚石氮空位(NV)色心电磁诱导透明(EIT)模型, 随后研究探测场在体系的线性吸收和非线性传播特性. 结果表明, 一旦开启强控制场, 体系就会呈现出EIT窗口, 且透明窗口的宽度随着控制场磁感应强度的增加而变宽. 在非线性情况下, 探测场能形成稳定传播的孤子, 且可通过开启和关闭控制场的磁场实现孤子的存储和读取, 可以有效地克服冷原子介质和量子点介质孤子存取的缺陷. 值得一提的是, 体系所存取孤子的振幅还可以通过控制场的磁感应强度来进行调节.
    Compared with light, the solitons, which are from the balance between dispersion and nonlinearity of the system, possess high stability and fidelity as the information carries in quantum information processing and transmission, and have gained considerable attention in ultra-cold atomic electromagnetically induced transparent (EIT) media. To date, the EIT models on the three-level ultra-cold atoms realized experimentally, are ladder-, $\Lambda $-, and V-type mode. Current studies show that the solitons cannot be stored in V-type three-level ultra-cold atomic EIT media but they can be stored in ladder- and$\Lambda $-type three-level ultra-cold atomic EIT media. It is mainly because the atoms of the V-type system initially are in a excited state, while the atoms of the ladder- and $\Lambda $-type systems initially are in the ground state. For the practical applications, it is a large challenge to control accurately the solitons stored in the ultra-cold atomic EIT media due to their ultralow temperature and rarefaction. Fortunately, with the maturity of semiconductor quantum technology, quantum dots have extensively application prospect in quantum information processing and transmission. However, the solitons cannot be stored in V-type three level InAs/GaAs quantum dot EIT media either, while it can be stored in ladder-type system and $\Lambda $-type system.Therefore, herein we propose a V-type three-level nitrogen-vacancy (NV) center EIT model in which a weakprobe field and a strong control field are coupled to different energy levels of NV center in diamond. Subsequently, the linear and nonlinear properties of system are studied by using semiclassical theory combined with multi-scale method. It is shown that when control field is turned on, the linear absorption curve of the system presents an EIT window. And the width of the EIT window increases with the strength of magnetic induction of the control field increasing. In the nonlinear case, the solitons formed can stably propagate over a long distance. Interestingly, the solitons can be stored and retrieved by switching off and on the magnetic field of control field. Moreover, the amplitude of the stored solitons can be modulated by the magnetic induction strength of control field. This result indicates that solitons as information carriers in quantum information processing and transmission of NV center can greatly improve the fidelity of information processing.
      通信作者: 王登龙, dlwang@xtu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 11832016)资助的课题.
      Corresponding author: Wang Deng-Long, dlwang@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11832016).
    [1]

    Haus H A, Wong W S 1996 Rev. Mod. Phys. 68 423Google Scholar

    [2]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904Google Scholar

    [3]

    Huang G, Jiang K, Payne M G, Deng L 2006 Phys. Rev. E 73 056606Google Scholar

    [4]

    任波, 佘彦超, 徐小凤, 叶伏秋 2021 物理学报 70 224205Google Scholar

    Ren B, She Y C, Xu X F, Ye F Q 2021 Acta Phys. Sin. 70 224205Google Scholar

    [5]

    高洁, 杭超 2022 物理学报 71 133202Google Scholar

    Gao J, Hang C 2022 Acta Phys. Sin. 71 133202Google Scholar

    [6]

    Dong Y Y, Wang D L, Wang Y, Ding J W 2018 Phys. Lett. A 382 2006Google Scholar

    [7]

    Zhang X F, Yang Q, Zhang J F, Chen X Z, Liu W M 2008 Phys. Rev. A 77 023613Google Scholar

    [8]

    Wang Y, Ding J W, Wang D L 2020 Eur. Phys. J. D 74 190Google Scholar

    [9]

    Harris S E 1997 Phys. Today 50 36

    [10]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [11]

    Huang G, Deng L, Payne M G 2005 Phys. Rev. E 72 016617Google Scholar

    [12]

    Hang C, Huang G X 2008 Phys. Rev. A 77 033830Google Scholar

    [13]

    Shou C, Huang G X 2019 Phys. Rev. A 99 043821Google Scholar

    [14]

    Bai Z Y, Hang C, Huang G X 2013 Chin. Opt. Lett. 11 012701Google Scholar

    [15]

    Chen Y, Bai Z Y, Huang G X 2014 Phys. Rev. A 89 023835Google Scholar

    [16]

    Wu Y, Yang X X 2005 Phys. Rev. A 71 053806Google Scholar

    [17]

    王胤, 周驷杰, 陈桥, 邓永和 2023 物理学报 72 084204Google Scholar

    Wang Y, Zhou S J, Chen Q, Deng Y H 2023 Acta Phys. Sin. 72 084204Google Scholar

    [18]

    Li P B, Xiang Z L, Rabl P, Nori F 2016 Phys. Rev. Lett. 117 015502Google Scholar

    [19]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1Google Scholar

    [20]

    Robledo L, Bernien H, Sar T V D, Hanson R 2011 New J. Phys. 13 025013Google Scholar

    [21]

    Yang W L, Yin Z Q, Hu Y, Feng M, Du J F 2011 Phys. Rev. A 84 010301Google Scholar

    [22]

    Lee D, Lee K W, Cady J V, Ovartchaiyapong P, Jayich A C B 2017 J. Opt. 19 033001Google Scholar

    [23]

    Ghaderi Goran Abad M, Mahmoudi M 2019 Eur. Phys. J. D 73 1Google Scholar

    [24]

    Yang X Y, Zhang N, Yuan H, Bian G D, Fan P C, Li M X 2019 AIP Adv. 9 075213Google Scholar

    [25]

    Lü X Y, Xiang Z L, Cui W, You J Q, Nori F 2013 Phys. Rev. A 88 012329Google Scholar

    [26]

    Grezes C, Julsgaard B, Kubo Y, Stern M, Umeda T, Isoya J, Sumiya H, Abe H, Onoda S, Ohshima T, Jacques V, Esteve J, Vion D, Esteve D, Mølmer K, Bertet P 2014 Phys. Rev. X 4 021049

    [27]

    Dutt M V, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A S, Hemmer P R, Lukin M D 2007 Science 316 1312Google Scholar

    [28]

    Zhang M Q, Zheng A S, Chen Q L, Liu J B 2020 Optik 218 165255Google Scholar

    [29]

    Liu Y, Raza F, Li K, Ullah H, Zhang Y, Zhang W, Zhao W 2019 J. Opt. Soc. Am. B: Opt. Phys. 36 002727

    [30]

    吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟 2022 物理学报 71 117601Google Scholar

    Wu J D, Cheng Z, Ye X Y, Li Z K, Wang P F, Tian C L, Chen H W 2022 Acta Phys. Sin. 71 117601Google Scholar

    [31]

    董杨, 杜博, 张少春, 陈向东, 孙方稳 2018 物理学报 67 160301Google Scholar

    Dong Y, Du B, Zhang S C, Chen X D, Sun F W 2018 Acta Phys. Sin. 67 160301Google Scholar

    [32]

    沈翔, 赵立业, 黄璞, 孔熙, 季鲁敏 2021 物理学报 70 068501Google Scholar

    Shen X, Zhao L Y, Huang P, Kong X, Ji L M 2021 Acta Phys. Sin. 70 068501Google Scholar

    [33]

    Wu Y, Yang X X 2007 Appl. Phys. Lett. 91 094104Google Scholar

    [34]

    Liu J, Liu N, Shan C, Liu T, Li H, Zheng A, Xie X T 2016 Phys. Lett. A 380 2458Google Scholar

    [35]

    Dong X L, Li P B 2019 Phys. Rev. A 100 043825Google Scholar

    [36]

    Shou C, Huang G 2021 Front. Phys. 9 594680Google Scholar

    [37]

    Dong Y Y, Zheng X J, Wang D L, Ding J W 2021 Opt. Express 29 5367Google Scholar

    [38]

    Mu Y, Qin L, Shi Z Y, Huang G X 2021 Phys. Rev. A 103 043709Google Scholar

    [39]

    Xu Y B, Bai Z Y, Huang G X 2020 Phys. Rev. A 101 053859Google Scholar

    [40]

    Santori C, Fattal D, Spillane S M, Fiorentino M, Beausoleil R G, Greentree A D, Olivero P, Draganski M, Rabeau J R, Reichart P, Gibson B C, Rubanov S, Jamieson D N, Prawer S 2006 Opt. Express 14 7986Google Scholar

    [41]

    Liu D Q, Liu G Q, Chang Y C, Pan X Y 2014 Physica B 432 84Google Scholar

    [42]

    El-Ella H A R, Ahmadi S, Wojciechowski A M, Huck A, Andersen U L 2017 Opt. Express 25 14809Google Scholar

    [43]

    Ahmadi S, El-Ella H A R, Wojciechowski A M, Gehring T, Hansen J O B, Huck A, Andersen U L 2018 Phys. Rev. B 97 024105Google Scholar

  • 图 1  (a) 金刚石NV色心的晶格结构[18]; (b) V型三能级NV色心EIT构型示意图

    Fig. 1.  (a) Lattice structure of the NV center in diamond[18]; (b) schematic diagram of V-type three energy level in the NV center EIT configuration.

    图 2  不同控制场磁感应强度${B_{\text{c}}}$下, 线性吸收特性${K_{{\text{0 i}}}}$随失谐量${\varDelta _{\text{p}}}$的变化情况. 图中参数为${\varGamma _{31}} = 0.35{\text{ MHz}}$, ${\varGamma _{21}} = 0.11{\text{ MHz}}$, $ {\gamma _{21}} = {\gamma _{31}} = 44{\text{ MHz}} $, ${\gamma _{32}} = 0.5{\text{ MHz}}$, ${\varDelta _{\text{c}}} = 1{\text{ MHz}}$, $ {k_{13}} = 2.3 \times {10^{10}}{\text{ cm}} \cdot {{\text{s}}^{ - 1}} $

    Fig. 2.  Linear absorption coefficient ${K_{{\text{0 i}}}}$ as a function of the detuning ${\varDelta _{\text{p}}}$ with different magnetic induction strength ${B_{\text{c}}}$ of the control field. Parameters used are ${\varGamma _{31}} = 0.35{\text{ MHz}}$, ${\varGamma _{21}} = 0.11{\text{ MHz}}$, $ {\gamma _{21}} = {\gamma _{31}} = 44{\text{ MHz}} $, ${\gamma _{32}} = 0.5{\text{ MHz}}$, ${\varDelta _{\text{c}}} = 1{\text{ MHz}}$, $ {k_{13}} = 2.3 \times {10^{10}}{\text{ cm}} \cdot {{\text{s}}^{ - 1}} $.

    图 3  孤子的传播稳定性分析. 参数为$|{\varDelta _{\text{p}}}{\tau _0}| = 42.5$, $|{\varDelta _{\text{p}}}{\tau _0}| = 41.1$, $|{\varOmega _{\text{c}}}{\tau _0}| = 45$, ${\tau _0} = 7 \times {10^{ - 8}}\;{\text{s}}$, 其余参数与图2一致

    Fig. 3.  Analysis of the propagation stability of solitons. Parameters used are $|{\varDelta _{\text{p}}}{\tau _0}| = 42.5$, $|{\varDelta _{\text{p}}}{\tau _0}| = 41.1$, $|{\varOmega _{\text{c}}}{\tau _0}| = $$ 45$, ${\tau _0} = 7 \times {10^{ - 8}}\;{\text{s}}$, other parameters used are the same as in Fig. 2.

    图 4  探测场的存储与读取 (a) 弱探测脉冲的存储与读取; (b) 孤子的存储与读取; (c)强探测脉冲的存储与读取. 图中使用的参数${T_{\text{s}}}/{\tau _0} = 0.2$, ${T_{{\text{on}}}}/{\tau _0} = 5$, ${T_{{\text{off}}}}/{\tau _0} = 10$, 其他参数与图3相同

    Fig. 4.  Storage and retrieval of probe field: (a) Storage and retrieval of a weak probe pulse; (b) storage and retrieval of a soliton pulse; (c) storage and retrieval of a strong probe pulse. Parameters used are ${T_{\text{s}}}/{\tau _0} = 0.2$, ${T_{{\text{on}}}}/{\tau _0} = 5$, ${T_{{\text{off}}}}/{\tau _0} = 10$, other parameters used are the same as in Fig. 3.

    图 5  ${\varDelta _{\text{p}}} = 600$ MHz时, 存取孤子的振幅随控制场磁感应强度${B_{\text{c}}}$的变化. 其余参数与图2一致

    Fig. 5.  Amplitude of the storgae and retrieval of soliton as a function of control fields magnetic induction strength ${B_{\text{c}}}$ at ${\varDelta _{\text{p}}} = 600$MHz. Other parameters used are the same as in Fig. 2.

  • [1]

    Haus H A, Wong W S 1996 Rev. Mod. Phys. 68 423Google Scholar

    [2]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904Google Scholar

    [3]

    Huang G, Jiang K, Payne M G, Deng L 2006 Phys. Rev. E 73 056606Google Scholar

    [4]

    任波, 佘彦超, 徐小凤, 叶伏秋 2021 物理学报 70 224205Google Scholar

    Ren B, She Y C, Xu X F, Ye F Q 2021 Acta Phys. Sin. 70 224205Google Scholar

    [5]

    高洁, 杭超 2022 物理学报 71 133202Google Scholar

    Gao J, Hang C 2022 Acta Phys. Sin. 71 133202Google Scholar

    [6]

    Dong Y Y, Wang D L, Wang Y, Ding J W 2018 Phys. Lett. A 382 2006Google Scholar

    [7]

    Zhang X F, Yang Q, Zhang J F, Chen X Z, Liu W M 2008 Phys. Rev. A 77 023613Google Scholar

    [8]

    Wang Y, Ding J W, Wang D L 2020 Eur. Phys. J. D 74 190Google Scholar

    [9]

    Harris S E 1997 Phys. Today 50 36

    [10]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [11]

    Huang G, Deng L, Payne M G 2005 Phys. Rev. E 72 016617Google Scholar

    [12]

    Hang C, Huang G X 2008 Phys. Rev. A 77 033830Google Scholar

    [13]

    Shou C, Huang G X 2019 Phys. Rev. A 99 043821Google Scholar

    [14]

    Bai Z Y, Hang C, Huang G X 2013 Chin. Opt. Lett. 11 012701Google Scholar

    [15]

    Chen Y, Bai Z Y, Huang G X 2014 Phys. Rev. A 89 023835Google Scholar

    [16]

    Wu Y, Yang X X 2005 Phys. Rev. A 71 053806Google Scholar

    [17]

    王胤, 周驷杰, 陈桥, 邓永和 2023 物理学报 72 084204Google Scholar

    Wang Y, Zhou S J, Chen Q, Deng Y H 2023 Acta Phys. Sin. 72 084204Google Scholar

    [18]

    Li P B, Xiang Z L, Rabl P, Nori F 2016 Phys. Rev. Lett. 117 015502Google Scholar

    [19]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1Google Scholar

    [20]

    Robledo L, Bernien H, Sar T V D, Hanson R 2011 New J. Phys. 13 025013Google Scholar

    [21]

    Yang W L, Yin Z Q, Hu Y, Feng M, Du J F 2011 Phys. Rev. A 84 010301Google Scholar

    [22]

    Lee D, Lee K W, Cady J V, Ovartchaiyapong P, Jayich A C B 2017 J. Opt. 19 033001Google Scholar

    [23]

    Ghaderi Goran Abad M, Mahmoudi M 2019 Eur. Phys. J. D 73 1Google Scholar

    [24]

    Yang X Y, Zhang N, Yuan H, Bian G D, Fan P C, Li M X 2019 AIP Adv. 9 075213Google Scholar

    [25]

    Lü X Y, Xiang Z L, Cui W, You J Q, Nori F 2013 Phys. Rev. A 88 012329Google Scholar

    [26]

    Grezes C, Julsgaard B, Kubo Y, Stern M, Umeda T, Isoya J, Sumiya H, Abe H, Onoda S, Ohshima T, Jacques V, Esteve J, Vion D, Esteve D, Mølmer K, Bertet P 2014 Phys. Rev. X 4 021049

    [27]

    Dutt M V, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A S, Hemmer P R, Lukin M D 2007 Science 316 1312Google Scholar

    [28]

    Zhang M Q, Zheng A S, Chen Q L, Liu J B 2020 Optik 218 165255Google Scholar

    [29]

    Liu Y, Raza F, Li K, Ullah H, Zhang Y, Zhang W, Zhao W 2019 J. Opt. Soc. Am. B: Opt. Phys. 36 002727

    [30]

    吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟 2022 物理学报 71 117601Google Scholar

    Wu J D, Cheng Z, Ye X Y, Li Z K, Wang P F, Tian C L, Chen H W 2022 Acta Phys. Sin. 71 117601Google Scholar

    [31]

    董杨, 杜博, 张少春, 陈向东, 孙方稳 2018 物理学报 67 160301Google Scholar

    Dong Y, Du B, Zhang S C, Chen X D, Sun F W 2018 Acta Phys. Sin. 67 160301Google Scholar

    [32]

    沈翔, 赵立业, 黄璞, 孔熙, 季鲁敏 2021 物理学报 70 068501Google Scholar

    Shen X, Zhao L Y, Huang P, Kong X, Ji L M 2021 Acta Phys. Sin. 70 068501Google Scholar

    [33]

    Wu Y, Yang X X 2007 Appl. Phys. Lett. 91 094104Google Scholar

    [34]

    Liu J, Liu N, Shan C, Liu T, Li H, Zheng A, Xie X T 2016 Phys. Lett. A 380 2458Google Scholar

    [35]

    Dong X L, Li P B 2019 Phys. Rev. A 100 043825Google Scholar

    [36]

    Shou C, Huang G 2021 Front. Phys. 9 594680Google Scholar

    [37]

    Dong Y Y, Zheng X J, Wang D L, Ding J W 2021 Opt. Express 29 5367Google Scholar

    [38]

    Mu Y, Qin L, Shi Z Y, Huang G X 2021 Phys. Rev. A 103 043709Google Scholar

    [39]

    Xu Y B, Bai Z Y, Huang G X 2020 Phys. Rev. A 101 053859Google Scholar

    [40]

    Santori C, Fattal D, Spillane S M, Fiorentino M, Beausoleil R G, Greentree A D, Olivero P, Draganski M, Rabeau J R, Reichart P, Gibson B C, Rubanov S, Jamieson D N, Prawer S 2006 Opt. Express 14 7986Google Scholar

    [41]

    Liu D Q, Liu G Q, Chang Y C, Pan X Y 2014 Physica B 432 84Google Scholar

    [42]

    El-Ella H A R, Ahmadi S, Wojciechowski A M, Huck A, Andersen U L 2017 Opt. Express 25 14809Google Scholar

    [43]

    Ahmadi S, El-Ella H A R, Wojciechowski A M, Gehring T, Hansen J O B, Huck A, Andersen U L 2018 Phys. Rev. B 97 024105Google Scholar

  • [1] 王胤, 胡明君, 陈桥, 邓永和. 纵波光学声子耦合驰豫对GaAs/AlGaAs量子阱EIT介质中光孤子存取的调幅效应. 物理学报, 2025, 74(4): . doi: 10.7498/aps.74.20241143
    [2] 王胤, 周驷杰, 陈桥, 邓永和. 能级构型对InAs/GaAs量子点电磁感应透明介质中光孤子存储的影响. 物理学报, 2023, 72(8): 084204. doi: 10.7498/aps.72.20221965
    [3] 张跃斌, 马成举, 张垚, 金嘉升, 鲍士仟, 李咪, 李东明. 基于非对称结构全介质超材料的类电磁诱导透明效应研究. 物理学报, 2021, 70(19): 194201. doi: 10.7498/aps.70.20210070
    [4] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [5] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性. 物理学报, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [6] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [7] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性. 物理学报, 2018, 67(21): 213201. doi: 10.7498/aps.67.20181168
    [8] 王磊, 郭浩, 陈宇雷, 伍大锦, 赵锐, 刘文耀, 李春明, 夏美晶, 赵彬彬, 朱强, 唐军, 刘俊. 基于金刚石色心自旋磁共振效应的微位移测量方法. 物理学报, 2018, 67(4): 047601. doi: 10.7498/aps.67.20171914
    [9] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数. 物理学报, 2017, 66(10): 103201. doi: 10.7498/aps.66.103201
    [10] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究. 物理学报, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [11] 唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国. 纵波光学声子耦合对级联型电磁感应透明半导体量子阱中暗-亮光孤子类型的调控. 物理学报, 2017, 66(3): 034202. doi: 10.7498/aps.66.034202
    [12] 陆赫林, 杜春光. 回音壁微腔光力系统的相干控制与完全相干透射. 物理学报, 2016, 65(21): 214204. doi: 10.7498/aps.65.214204
    [13] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子. 物理学报, 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [14] 边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平. 基于电磁诱导透明的原子自旋波读出效率实验研究. 物理学报, 2013, 62(17): 174207. doi: 10.7498/aps.62.174207
    [15] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现. 物理学报, 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [16] 吕纯海, 谭磊, 谭文婷. 压缩真空中的电磁诱导透明. 物理学报, 2011, 60(2): 024204. doi: 10.7498/aps.60.024204
    [17] 李晓莉, 张连水, 杨宝柱, 杨丽君. 闭合Λ型4能级系统中的电磁诱导透明和电磁诱导吸收. 物理学报, 2010, 59(10): 7008-7014. doi: 10.7498/aps.59.7008
    [18] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收. 物理学报, 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [19] 王 丽, 宋海珍. 四能级原子系统中的电磁诱导吸收. 物理学报, 2006, 55(8): 4145-4149. doi: 10.7498/aps.55.4145
    [20] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究. 物理学报, 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
计量
  • 文章访问数:  1738
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-23
  • 修回日期:  2024-03-21
  • 上网日期:  2024-03-30
  • 刊出日期:  2024-05-20

/

返回文章
返回