-
基于压电陶瓷精密微位移系统的扫描探测技术是目前精密测量仪器进行微纳区域/结构性能测试的核心系统,但压电陶瓷材料存在迟滞、非线性问题,限制了对微位移分辨能力的提升.本文以金刚石氮空位色心为敏感单元,利用电子自旋效应对磁场强度的高分辨敏感机理,结合永磁体周围不同位置对应的磁场强度变化关系,提出了一种基于金刚石氮空位色心电子自旋敏感机理的微位移检测方法.通过建立电子自旋效应与微位移的关联模型,搭建了相应的微位移测量系统.经实验验证,该系统对微位移测试的灵敏度为16.67 V/mm,检测分辨率达到60 nm,实现了对微位移的高分辨率测量.并通过理论分析,该系统的微位移测量分辨率可进一步提升至亚纳米级水平,为新型微位移测量技术提供了发展方向和研究思路.As one of the excellent piezoelectric materials, piezoelectric ceramic has been widely used to develop a highly precise displacement measurement system, which is the key part of the scanning probe system of the high-precision measuring instrument.Based on the high-precision scanning probe system, the micro/nano structures can be easily and accurately detected by the instrument system.However, due to the limitations caused by the character of hysteresis and nonlinearity, it is difficult to further improve the precision of highly precise displacement measurement system.In this work, we present a novel method to develop the highly precise displacement measurement system based on the quantum spin effect.The nitrogen vacancy (NV) color center of single crystal diamond as a sensitive element senses the change of the micro-displacement.Based on the electron spin magnetic resonance effect of diamond nitrogen vacancy color center, the variation of the magnetic field generated from the magnetic steel can be detected with high precision by the electron spin.The relative relation between the displacement and the magnetic gradient field can be used to establish the correlation model between the displacement and the electron spin resonance peak.In the experiment, a corresponding micro-displacement measurement system is established based on the cylindrical permanent magnet, according to the correlation model between the electron spin resonance effect and micro-displacement.The linear region of magnetic field gradient is designed to detect the micro-displacement.Firstly, the intensity distribution of magnetic field gradient is measured by the gauss meter.As the measurement results show, the gradient value is -7.77 Gauss/mm along the core axis of cylindrical permanent magnet, and the intensity of magnetic field gradient distribution region is linear in the millimeter range.Meanwhile, the electron spin magnetic resonance peak of diamond nitrogen vacancy color center is achieved by the optically detected magnetic resonance technology.The electron spin magnetic resonance peak is approximately 2.79 MHz/Gauss in the magnetic field achieved by the fluorescence spectrum of diamond nitrogen vacancy color center, attributed to the relation model between Zeeman splitting effect and magnetic field. In the experiment, the electron spin magnetic resonance signal of diamond nitrogen vacancy color center is lockedin by the demodulation method to achieve the change of micro-displacement.As the results show, the sensitivity is about 16.67 V/mm at the corresponding demodulation frequency of 3000.56 MHz.By the calculation, the resolution of micro-displacement measurement system is about 60 nm based on our method.It proves out a high precision and well reliability method to detect the micro-displacement.By the further theoretical calculation, based on the electron spin effect, the detection resolution of our method can be enhanced up to sub-nanometer scale by reducing the distance between the NV color center and the magnet.It presents a new research direction and field for the micro-displacement detection system.
-
Keywords:
- diamond nitrogen vacancy color center /
- micro-displacement measurement /
- spin magnetic resonance /
- precision measurement
[1] Dufrene Y F, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C Muller D J 2017 Nat. Nanotechnol. 12 295
[2] Maroufi M, Bazaei A, Moheimani S O R 2015 IEEE T. Contr. Sys. T. 23 504
[3] Swart I, Liljeroth P, Vanmaekelbergh D 2016 Chem. Rev. 116 11181
[4] Jiang C S, Repins I L, Beal C, Moutinho H R, Ramanathan K, Al-Jassim M M 2015 Sol. Energ. Mat. Sol. C 132 342
[5] Braunsmann C, Proksch R, Revenko I, Schaffer T E 2014 Polymer 55 219
[6] Voss A, Stark R W, Dietz C 2014 Macromolecules 47 5236
[7] An P, Guo H, Chen M, Zhao M M, Yang J T, Liu J, Xue C Y, Tang J 2014 Acta Phys. Sin. 63 237306 (in Chinese)[安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军 2014 物理学报 63 237306]
[8] Parali L, Pechousek J, Sabikoglu L, Novak P, Navarik J, Vujtek M 2016 Optik 127 84
[9] Liu Y T, Li B J 2016 Precis. Eng. 46 118
[10] Peng Y X, Ito S, Shimizu Y, Azuma T, Gao W, Niwa E 2014 Sensor Actuat. A:Phys. 211 89
[11] Kronenberg N M, Liehm P, Steude A, Knipper J A, Borger J G, Scarcelli G, Franze K, Powis S J, Gather M C 2017 Nat. Cell Biol. 19 864
[12] Maletinsky P, Hong S, Grinolds M S, Hausmann B, Lukin M D, Walsworth R L, Loncar M, Yacoby A 2012 Nat. Nanotechnol. 7 320
[13] Mamin H J, Kim M, Sherwood M H, Rettner C T, Ohno K, Awschalom D D, Rugar D 2013 Science 339 557
[14] Cai J, Jelezko F, Plenio M B 2014 Nat. Commun. 5 4065
[15] Le S D, Pham L M, Bar G N, Belthangady C, Lukin M D, Yacoby A, Walsworth R L 2012 Phys. Rev. B 85 121202
[16] Clevenson H, Trusheim M E, Teale C, Schroder T, Braje D, Englund D 2015 Nat. Phys. 11 393
[17] Maertz B J, Wijnheijmer A P, Fuchs G D, Nowakowski M E, Awschalom D D 2010 Appl. Phys. Lett. 96 125
[18] Guo H, Chen Y L, Wu D J, Zhao R, Tang J, Ma Z M, Xue C Y, Zhang W D, Liu J 2017 Opt. Lett. 43 403
[19] Jensen K, Leefer N, Jarmola A, Dumeige Y, Acosta V M, Kehayias P, Patton B, Budker D 2014 Phys. Rev. Lett. 112 160802
[20] Liu D Q, Chang Y C, Liu G Q, Pan X Y 2013 Acta Phys. Sin. 62 164208 (in Chinese)[刘东奇, 常艳春, 刘刚钦, 潘新宇 2013 物理学报 62 164208]
[21] Lai N D, Zheng D W, Jelezko F, Treussart F, Roch J F 2009 Appl. Phys. Lett. 95 191
[22] Balasubramanian G, Chan I Y, Kolesov R, Al-Homud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J 2008 Nature 455 648
[23] Matsuzaki Y, Shimooka T, Tanaka H, Tokura Y, Semba K, Mizuoch N 2016 Phys. Rev. A 94 052330
[24] Ma J, Yang W M, Li J W, Wang M, Chen S L 2012 Acta Phys. Sin. 61 137401 (in Chinese)[马俊, 杨万民, 李佳伟, 王妙, 陈森林 2012 物理学报 61 137401]
[25] Wang R K, Zuo H F, L M 2011 Aero. Compu. Tech. 41 19 (in Chinese)[王瑞凯, 左洪福, 吕萌 2011 航空计算技术 41 19]
-
[1] Dufrene Y F, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C Muller D J 2017 Nat. Nanotechnol. 12 295
[2] Maroufi M, Bazaei A, Moheimani S O R 2015 IEEE T. Contr. Sys. T. 23 504
[3] Swart I, Liljeroth P, Vanmaekelbergh D 2016 Chem. Rev. 116 11181
[4] Jiang C S, Repins I L, Beal C, Moutinho H R, Ramanathan K, Al-Jassim M M 2015 Sol. Energ. Mat. Sol. C 132 342
[5] Braunsmann C, Proksch R, Revenko I, Schaffer T E 2014 Polymer 55 219
[6] Voss A, Stark R W, Dietz C 2014 Macromolecules 47 5236
[7] An P, Guo H, Chen M, Zhao M M, Yang J T, Liu J, Xue C Y, Tang J 2014 Acta Phys. Sin. 63 237306 (in Chinese)[安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军 2014 物理学报 63 237306]
[8] Parali L, Pechousek J, Sabikoglu L, Novak P, Navarik J, Vujtek M 2016 Optik 127 84
[9] Liu Y T, Li B J 2016 Precis. Eng. 46 118
[10] Peng Y X, Ito S, Shimizu Y, Azuma T, Gao W, Niwa E 2014 Sensor Actuat. A:Phys. 211 89
[11] Kronenberg N M, Liehm P, Steude A, Knipper J A, Borger J G, Scarcelli G, Franze K, Powis S J, Gather M C 2017 Nat. Cell Biol. 19 864
[12] Maletinsky P, Hong S, Grinolds M S, Hausmann B, Lukin M D, Walsworth R L, Loncar M, Yacoby A 2012 Nat. Nanotechnol. 7 320
[13] Mamin H J, Kim M, Sherwood M H, Rettner C T, Ohno K, Awschalom D D, Rugar D 2013 Science 339 557
[14] Cai J, Jelezko F, Plenio M B 2014 Nat. Commun. 5 4065
[15] Le S D, Pham L M, Bar G N, Belthangady C, Lukin M D, Yacoby A, Walsworth R L 2012 Phys. Rev. B 85 121202
[16] Clevenson H, Trusheim M E, Teale C, Schroder T, Braje D, Englund D 2015 Nat. Phys. 11 393
[17] Maertz B J, Wijnheijmer A P, Fuchs G D, Nowakowski M E, Awschalom D D 2010 Appl. Phys. Lett. 96 125
[18] Guo H, Chen Y L, Wu D J, Zhao R, Tang J, Ma Z M, Xue C Y, Zhang W D, Liu J 2017 Opt. Lett. 43 403
[19] Jensen K, Leefer N, Jarmola A, Dumeige Y, Acosta V M, Kehayias P, Patton B, Budker D 2014 Phys. Rev. Lett. 112 160802
[20] Liu D Q, Chang Y C, Liu G Q, Pan X Y 2013 Acta Phys. Sin. 62 164208 (in Chinese)[刘东奇, 常艳春, 刘刚钦, 潘新宇 2013 物理学报 62 164208]
[21] Lai N D, Zheng D W, Jelezko F, Treussart F, Roch J F 2009 Appl. Phys. Lett. 95 191
[22] Balasubramanian G, Chan I Y, Kolesov R, Al-Homud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J 2008 Nature 455 648
[23] Matsuzaki Y, Shimooka T, Tanaka H, Tokura Y, Semba K, Mizuoch N 2016 Phys. Rev. A 94 052330
[24] Ma J, Yang W M, Li J W, Wang M, Chen S L 2012 Acta Phys. Sin. 61 137401 (in Chinese)[马俊, 杨万民, 李佳伟, 王妙, 陈森林 2012 物理学报 61 137401]
[25] Wang R K, Zuo H F, L M 2011 Aero. Compu. Tech. 41 19 (in Chinese)[王瑞凯, 左洪福, 吕萌 2011 航空计算技术 41 19]
计量
- 文章访问数: 6857
- PDF下载量: 312
- 被引次数: 0