搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高准确度的钙离子光频标

管桦 黄垚 李承斌 高克林

引用本文:
Citation:

高准确度的钙离子光频标

管桦, 黄垚, 李承斌, 高克林

40Ca+ optical frequency standards with high accuracy

Guan Hua, Huang Yao, Li Cheng-Bin, Gao Ke-Lin
PDF
导出引用
  • 近年来,冷原子技术和激光技术促进了高精度光频标的发展,有望在建立时间基准、推动基础研究和满足国家需求等方面发挥重要的作用.本文介绍了中国科学院武汉物理与数学研究所近年来在高准确度钙离子(40Ca+)光频标研究方面的进展:采用新的ULE腔系统,实现了729 nm钟跃迁激光器1–100 s的频率稳定度均优于2×10-15,通过对外场和环境效应的控制及克服,特别是囚禁离子运动效应的抑制,获得单个钙离子光频标的不确定度优于5.5×10-17;通过两台光频标的比对,测得20000 s的稳定度也进入10-17量级;基于高精度钙离子光频标平台,进行了相关精密测量的工作,包括:基于全球定位系统的超高精度远程光频绝对值测量方案,第二次测量了钙离子的光频跃迁绝对值,该测量结果再次被国际时间频率咨询委员会采纳,更新了钙离子的频率推荐值;精确测量了钙离子的钟跃迁魔幻波长,由此提出新型的全光囚禁离子光频标的方法;精密测量了钙离子的亚稳态寿命等参数.以上工作推动了基于冷原子的精密测量工作.
    With the development of the technologies in the lasers and the manipulation of cold atoms, the high precision optical frequency standards have been extensively studied and built in recent years. These high precision frequency standards may play an important role in establishing the new time reference, promoting the researches in the fundamental fields, fulfilling the national strategic needs, etc. In this paper, the research progress of high accuracy 40Ca+ optical frequency standard in Wuhan Institute of Physics and Mathematics (WIPM) of Chinese Academy of Sciences is presented. A new ULE super cavity is adopted for stabilizing the frequency of 729 nm clock laser, and the stability of the laser is improved now to 2×10-15 in a duration of 1-100 s. By controlling the external fields and other environmental influences, especially suppressing the micromotion effects of the trapped ion, the uncertainty of the optical frequency standard based on a single 40Ca+ is reduced to 5.5×10-17. The stability of 5×10-17 in a duration of 20000 s is achieved via the comparison between two 40Ca+ optical frequency standards. Several precision measurement experiments are performed, based on the high precision 40Ca+ optical frequency standard. The absolute value of the clock transition frequency of the 40Ca+ optical frequency standard is measured second time, using an optical comb referenced to a hydrogen maser which is calibrated via GPS referenced to UTC (NIM)) using the precise point positioning data-processing technique. The frequency offset of UTC (NIM) relative to the SI second can be evaluated through BIPM circular-T reports, and the newly measured value of m 4s 2S1/2-3m d 2D5/2 transition is adopted by CCTF-20, thus updating the recommended value of 40Ca+ optical clock transition. Besides the absolute frequency measurement, the magic wavelengths of 40Ca+ optical clock transition are measured precisely, and this work is a milestone for establishing all-optical trapped-ion clocks. The lifetime of the m 3 d 2D3/2 and m 3 d 2D5/2 state in 40Ca+ are precisely measured, too. The work mentioned above contributes to the researches of the precision measurements based on cold atomic systems.
      通信作者: 高克林, klgao@wipm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:91336211,11474318,11622434,11774388)、国家重点基础研究发展计划(批准号:2012CB821301,2005CB724502)和中国科学院先导专项(批准号XDB21030100)资助的课题.
      Corresponding author: Gao Ke-Lin, klgao@wipm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91336211, 11474318, 11622434, 11774388), the National Basic Research Program of China (Grants Nos. 2005CB724502, 2012CB821301), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100).
    [1]

    Bergquist J C, Jefferts S R, Wineland D J 2001 Phys. Today 54 37

    [2]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808

    [3]

    Margolis H, Barwood G P, Huang G, Klein H A, Lea S N, Szymaniec K, Gill P 2004 Science 306 1355

    [4]

    Madej A A, Dubé P, Zhou Z, Bernard J E, Gertsvolf M 2012 Phys. Rev. Lett. 109 203002

    [5]

    Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E 2012 Phys. Rev. Lett. 108 090801

    [6]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802

    [7]

    Chwalla M, Benhelm J, Kim K, Kirchmair G, Monz T, Riebe M, Schindler P, Villar A S, Hansel W, Roos C F, Blatt R, Abgrall M, Santarelli G, Rovera G D, Laurent Ph. 2009 Phys. Rev. Lett. 102 023002

    [8]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001

    [9]

    Takamoto M, Hong F, Higashi R, Katori H 2005 Nature 435 321

    [10]

    Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, de Miranda M H G, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, le Coq Y, Barber Z W, Poli N, Lemke N D, Beck K M, Oates C W, Hinkley N 2008 Science 319 1805

    [11]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [12]

    McFerran J, Yi L, Mejri S, Manno S, Zhang W, Guéna J, le Coq Y, Bize S 2012 Phys. Rev. Lett. 108 183004

    [13]

    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, Ye J 2015 Nat. Commun. 6 6896

    [14]

    Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah Oppong N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90

    [15]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185

    [16]

    Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, Sherman J A, Phillips N B, Oates C W, Ludlow A D 2016 Nat. Photon. 11 48

    [17]

    Huang Y, Guan H, Liu P, Bian W, Ma L, Liang K, Li T, Gao K 2016 Phys. Rev. Lett. 116 013001

    [18]

    Lin Y, Wang Q, Li Y, Meng F, Lin B, Zang E, Sun Z, Fang F, Li T, Fang Z 2015 Chin. Phys. Lett. 32 090601

    [19]

    Zhang X, Zhou M, Chen N, Gao Q, Han C, Yao Y, Xu P, Li S, Xu Y, Jiang Y, Bi Z, Ma L, Xu X 2015 Laser Phys. Lett. 12 025501

    [20]

    Liu H, Zhang X, Jiang K, Wang J, Zhu Q, Xiong Z, He L, Lyu B 2017 Chin. Phys. Lett. 34 020601

    [21]

    Wang Y, Yin M, Ren J, Xu Q, Lu B, Han J, Guo Y, Chang H 2018 Chin. Phys. B 27 023701

    [22]

    Che H, Deng K, Xu Z, Yuan W, Zhang J, Lu Z 2017 Phys. Rev. A 96 013417

    [23]

    Shang J, Cui K, Cao J, Wang S, Chao S, Shu H, Huang X 2016 Chin. Phys. Lett. 33 103701

    [24]

    Zou H, Wu Y, Chen G, Shen Y, Liu Q 2015 Chin. Phys. Lett. 32 054207

    [25]

    Fu X, Fang S, Zhao R, Zhang Y, Huang J, Sun J, Xu Z, Wang Y 2018 Chin. Opt. Lett. (Accepted)

    [26]

    Shi T, Pan D, Chang P, Shang H, Chen J 2018 Rev. Sci. Instrum. 89 043102

    [27]

    Champenois C, Houssin M, Lisowski C, Knoop M, Hagel G, Vedel M, Vedel F 2004 Phys. Lett. A 331 298

    [28]

    Matsubara K, Hachisu H, Li Y, Nagano S, Locke C, Nogami A, Kajita M, Hayasaka K, Ido T, Hosokawa M 2012 Opt. Express 20 22034

    [29]

    Shu H, Guan H, Huang X, Li J, Gao K 2005 Chin. Phys. Lett. 22 1641

    [30]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [31]

    Guan H, Liu Q, Huang Y, Guo B, Qu W, Cao J, Huang G, Huang X, Gao K 2011 Opt. Commun. 284 217

    [32]

    Huang Y, Liu Q, Cao J, Ou B, Liu P, Guan H, Huang X, Gao K 2011 Phys. Rev. A 84 053841

    [33]

    Huang Y, Cao J, Liu P, Liang K, Ou B, Guan H, Huang X, Li T, Gao K 2012 Phys. Rev. A 85 030503

    [34]

    Bian W, Huang Y, Guan H, Liu P, Ma L, Gao K 2016 Rev. Sci. Instrum. 87 063121

    [35]

    Liu P, Huang Y, Bian W, Shao H, Guan H, Tang Y, Li C, Mitroy J, Gao K 2015 Phys. Rev. Lett. 114 223001

    [36]

    Shao H, Huang Y, Guan H, Qian Y, Gao K 2016 Phys. Rev. A 94 042507

    [37]

    Guan H, Shao H, Qian Y, Huang Y, Liu P, Bian W, Li C, Sahoo B K, Gao K 2015 Phys. Rev. A 91 022511

    [38]

    Shao H, Huang Y, Guan H, Li C, Shi T, Gao K 2017 Phys. Rev. A 95 053415

    [39]

    Barton P A, Donald C J S, Lucas D M, Stevens D A, Steane A M, Stacey D N 2000 Phys. Rev. A 62 032503

    [40]

    Kreuter A, Becher C, Lancaster G P T, Mundt A B, Russo C, Häffner H, Roos C, Hänsel W, Schmidt-Kaler F, Blatt R 2005 Phys. Rev. A 71 032504

    [41]

    Guan H, Guo B, Huang G, Shu H, Huang X, Gao K 2007 Opt. Commun. 274 182

    [42]

    Qu W C, Huang Y, Guan H, Huang X R, Gao K L 2011 Chin. J. Lasers 38 0803008 (in Chinese) [屈万成, 黄垚, 管桦, 黄学人, 高克林 2011 中国激光 38 0803008]

    [43]

    Bureau International des Poids et Mesures (BIPM), Consultative Committee for Time and Frequency (CCTF) Report of the 20th Meeting (September 17-18, 2015) to the International Committee for Weights and Measures https://www.bipm.org/utils/common/pdf/CC/CCTF/CCTF20.pdf

    [44]

    Tang Y, Qiao H, Shi T, Mitroy J 2013 Phys. Rev. A 87 042517

  • [1]

    Bergquist J C, Jefferts S R, Wineland D J 2001 Phys. Today 54 37

    [2]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808

    [3]

    Margolis H, Barwood G P, Huang G, Klein H A, Lea S N, Szymaniec K, Gill P 2004 Science 306 1355

    [4]

    Madej A A, Dubé P, Zhou Z, Bernard J E, Gertsvolf M 2012 Phys. Rev. Lett. 109 203002

    [5]

    Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E 2012 Phys. Rev. Lett. 108 090801

    [6]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802

    [7]

    Chwalla M, Benhelm J, Kim K, Kirchmair G, Monz T, Riebe M, Schindler P, Villar A S, Hansel W, Roos C F, Blatt R, Abgrall M, Santarelli G, Rovera G D, Laurent Ph. 2009 Phys. Rev. Lett. 102 023002

    [8]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001

    [9]

    Takamoto M, Hong F, Higashi R, Katori H 2005 Nature 435 321

    [10]

    Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, de Miranda M H G, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, le Coq Y, Barber Z W, Poli N, Lemke N D, Beck K M, Oates C W, Hinkley N 2008 Science 319 1805

    [11]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [12]

    McFerran J, Yi L, Mejri S, Manno S, Zhang W, Guéna J, le Coq Y, Bize S 2012 Phys. Rev. Lett. 108 183004

    [13]

    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, Ye J 2015 Nat. Commun. 6 6896

    [14]

    Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah Oppong N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90

    [15]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185

    [16]

    Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, Sherman J A, Phillips N B, Oates C W, Ludlow A D 2016 Nat. Photon. 11 48

    [17]

    Huang Y, Guan H, Liu P, Bian W, Ma L, Liang K, Li T, Gao K 2016 Phys. Rev. Lett. 116 013001

    [18]

    Lin Y, Wang Q, Li Y, Meng F, Lin B, Zang E, Sun Z, Fang F, Li T, Fang Z 2015 Chin. Phys. Lett. 32 090601

    [19]

    Zhang X, Zhou M, Chen N, Gao Q, Han C, Yao Y, Xu P, Li S, Xu Y, Jiang Y, Bi Z, Ma L, Xu X 2015 Laser Phys. Lett. 12 025501

    [20]

    Liu H, Zhang X, Jiang K, Wang J, Zhu Q, Xiong Z, He L, Lyu B 2017 Chin. Phys. Lett. 34 020601

    [21]

    Wang Y, Yin M, Ren J, Xu Q, Lu B, Han J, Guo Y, Chang H 2018 Chin. Phys. B 27 023701

    [22]

    Che H, Deng K, Xu Z, Yuan W, Zhang J, Lu Z 2017 Phys. Rev. A 96 013417

    [23]

    Shang J, Cui K, Cao J, Wang S, Chao S, Shu H, Huang X 2016 Chin. Phys. Lett. 33 103701

    [24]

    Zou H, Wu Y, Chen G, Shen Y, Liu Q 2015 Chin. Phys. Lett. 32 054207

    [25]

    Fu X, Fang S, Zhao R, Zhang Y, Huang J, Sun J, Xu Z, Wang Y 2018 Chin. Opt. Lett. (Accepted)

    [26]

    Shi T, Pan D, Chang P, Shang H, Chen J 2018 Rev. Sci. Instrum. 89 043102

    [27]

    Champenois C, Houssin M, Lisowski C, Knoop M, Hagel G, Vedel M, Vedel F 2004 Phys. Lett. A 331 298

    [28]

    Matsubara K, Hachisu H, Li Y, Nagano S, Locke C, Nogami A, Kajita M, Hayasaka K, Ido T, Hosokawa M 2012 Opt. Express 20 22034

    [29]

    Shu H, Guan H, Huang X, Li J, Gao K 2005 Chin. Phys. Lett. 22 1641

    [30]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [31]

    Guan H, Liu Q, Huang Y, Guo B, Qu W, Cao J, Huang G, Huang X, Gao K 2011 Opt. Commun. 284 217

    [32]

    Huang Y, Liu Q, Cao J, Ou B, Liu P, Guan H, Huang X, Gao K 2011 Phys. Rev. A 84 053841

    [33]

    Huang Y, Cao J, Liu P, Liang K, Ou B, Guan H, Huang X, Li T, Gao K 2012 Phys. Rev. A 85 030503

    [34]

    Bian W, Huang Y, Guan H, Liu P, Ma L, Gao K 2016 Rev. Sci. Instrum. 87 063121

    [35]

    Liu P, Huang Y, Bian W, Shao H, Guan H, Tang Y, Li C, Mitroy J, Gao K 2015 Phys. Rev. Lett. 114 223001

    [36]

    Shao H, Huang Y, Guan H, Qian Y, Gao K 2016 Phys. Rev. A 94 042507

    [37]

    Guan H, Shao H, Qian Y, Huang Y, Liu P, Bian W, Li C, Sahoo B K, Gao K 2015 Phys. Rev. A 91 022511

    [38]

    Shao H, Huang Y, Guan H, Li C, Shi T, Gao K 2017 Phys. Rev. A 95 053415

    [39]

    Barton P A, Donald C J S, Lucas D M, Stevens D A, Steane A M, Stacey D N 2000 Phys. Rev. A 62 032503

    [40]

    Kreuter A, Becher C, Lancaster G P T, Mundt A B, Russo C, Häffner H, Roos C, Hänsel W, Schmidt-Kaler F, Blatt R 2005 Phys. Rev. A 71 032504

    [41]

    Guan H, Guo B, Huang G, Shu H, Huang X, Gao K 2007 Opt. Commun. 274 182

    [42]

    Qu W C, Huang Y, Guan H, Huang X R, Gao K L 2011 Chin. J. Lasers 38 0803008 (in Chinese) [屈万成, 黄垚, 管桦, 黄学人, 高克林 2011 中国激光 38 0803008]

    [43]

    Bureau International des Poids et Mesures (BIPM), Consultative Committee for Time and Frequency (CCTF) Report of the 20th Meeting (September 17-18, 2015) to the International Committee for Weights and Measures https://www.bipm.org/utils/common/pdf/CC/CCTF/CCTF20.pdf

    [44]

    Tang Y, Qiao H, Shi T, Mitroy J 2013 Phys. Rev. A 87 042517

  • [1] 武列列, 任益充, 薛飞. 基于铁磁扭摆振子的磁场测量及其应用. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241538
    [2] 屠秉晟. 少电子离子束缚态电子g因子精密测量. 物理学报, 2024, 73(20): 203103. doi: 10.7498/aps.73.20240683
    [3] 郭忠凯, 李永刚, 于博丞, 周世超, 孟庆宇, 陆鑫鑫, 黄一帆, 刘贵鹏, 陆俊. 锁相放大器的研究进展. 物理学报, 2023, 72(22): 224206. doi: 10.7498/aps.72.20230579
    [4] 李岩, 任志红. 多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息. 物理学报, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [5] 张洪硕, 周勇壮, 沈咏, 邹宏新. 线型离子阱中钙离子库仑晶体结构和运动轨迹模拟. 物理学报, 2023, 72(1): 013701. doi: 10.7498/aps.72.20221674
    [6] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [7] 陈娇娇, 孙羽, 温金录, 胡水明. 稳定的高亮度低速亚稳态氦原子束流. 物理学报, 2021, 70(13): 133201. doi: 10.7498/aps.70.20201833
    [8] 赵天择, 杨苏辉, 李坤, 高彦泽, 王欣, 张金英, 李卓, 赵一鸣, 刘宇哲. 频域反射法光纤延时精密测量. 物理学报, 2021, 70(8): 084204. doi: 10.7498/aps.70.20201075
    [9] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211663
    [10] 耿俊娴, 李少强, 王诗琪, 黄春, 吕云杰, 胡睿, 屈军乐, 刘丽炜. 近红外光刺激神经细胞钙离子光激活. 物理学报, 2020, 69(15): 158701. doi: 10.7498/aps.69.20200489
    [11] 王谨, 詹明生. 基于原子干涉仪的微观粒子弱等效原理检验. 物理学报, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [12] 谭文海, 王建波, 邵成刚, 涂良成, 杨山清, 罗鹏顺, 罗俊. 近距离牛顿反平方定律实验检验进展. 物理学报, 2018, 67(16): 160401. doi: 10.7498/aps.67.20180636
    [13] 刘建平, 邬俊飞, 黎卿, 薛超, 毛德凯, 杨山清, 邵成刚, 涂良成, 胡忠坤, 罗俊. 万有引力常数G精确测量实验进展. 物理学报, 2018, 67(16): 160603. doi: 10.7498/aps.67.20181381
    [14] 王磊, 郭浩, 陈宇雷, 伍大锦, 赵锐, 刘文耀, 李春明, 夏美晶, 赵彬彬, 朱强, 唐军, 刘俊. 基于金刚石色心自旋磁共振效应的微位移测量方法. 物理学报, 2018, 67(4): 047601. doi: 10.7498/aps.67.20171914
    [15] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [16] 穆秀丽, 李传亮, 邓伦华, 汪海玲. 用于α和μ常数变化测量的碘离子光谱研究. 物理学报, 2017, 66(23): 233301. doi: 10.7498/aps.66.233301
    [17] 孙恒信, 刘奎, 张俊香, 郜江瑞. 基于压缩光的量子精密测量. 物理学报, 2015, 64(23): 234210. doi: 10.7498/aps.64.234210
    [18] 王金涛, 刘子勇. 基于静力悬浮原理的单晶硅球间微量密度差异精密测量方法研究. 物理学报, 2013, 62(3): 037702. doi: 10.7498/aps.62.037702
    [19] 高峰, 常宏, 王心亮, 田晓, 张首刚. 锶原子Doppler冷却中再抽运光对原子俘获影响的理论和实验研究. 物理学报, 2011, 60(5): 050601. doi: 10.7498/aps.60.050601
    [20] 杨治虎, 张小安, 赵永涛, 殷纬纬, 李宁溪. 氧离子激发光谱的精密测量. 物理学报, 2006, 55(9): 4520-4527. doi: 10.7498/aps.55.4520
计量
  • 文章访问数:  7620
  • PDF下载量:  282
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-03
  • 修回日期:  2018-06-05
  • 刊出日期:  2019-08-20

/

返回文章
返回