搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光钟的精密测量研究进展

卢晓同 曹进 常宏

引用本文:
Citation:

基于光钟的精密测量研究进展

卢晓同, 曹进, 常宏

Research Progress on Precision Measurement Based on Optical Clocks

LU Xiaotong, CAO Jin, CHANG Hong
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 光钟作为新一代时间频率标准,通过将本地振荡器频率精准参考至光频原子跃迁频率,具备更高的频率准确度和稳定度. 自二十一世纪初第一台全光学199Hg+光钟成功问世以来,光学原子钟在近20余年里实现了跨越式发展. 当前顶尖光钟已实现10-19量级的系统不确定度和频率稳定度,这一指标较传统微波原子钟提升了两个数量级以上,为基础物理研究和精密测量领域开辟了全新研究维度. 本文系统综述了光钟的研究进展,包括中性原子光钟与离子光钟的性能突破、新型光晶格囚禁技术的应用以及系统误差抑制方法的创新;同时重点探讨了光钟在驾驭国际原子时、降低基本物理常数可能的变化速率上限、检验爱因斯坦等效性原理等精密测量领域的前沿应用,为后续光钟技术的发展与应用拓展提供参考.
    Optical clocks, as the next-generation time and frequency standards, achieve ultra-low systematic uncertainty and frequency instability by precisely referencing the local oscillator frequency to the optical atomic transition frequency. Since the successful development of the first all-optical 199Hg+ optical clock in the early 21st century, optical atomic clocks have made remarkable progress over the past two decades. Currently, state-of-the-art optical clocks have achieved systematic uncertainties and frequency stabilities at the 10-19 level, surpassing traditional microwave atomic clocks by more than two orders of magnitude. This breakthrough has opened up new research dimensions in fundamental physics and precision measurement.
    This paper begins by reviewing landmark developments in ion optical clocks and optical lattice clocks. Corresponding tables are provided to summarize the best performance metrics achieved by all known research groups, along with the specific optical clock types developed by each.
    The main focus of the paper is a review of precision measurement applications based on optical clocks, covering four key areas.
    First, the method and typical setup for steering International Atomic Time (TAI) using optical clocks are introduced. The principles underlying optical frequency measurement data submission are summarized, followed by an overview of progress in TAI steering with optical clocks.
    Second, the principles for constraining variations in fundamental physical constants through optical clock comparisons are briefly outlined. Recent results on the fine-structure constant and the proton-to-electron mass ratio are presented to illustrate the capability of optical clocks in probing such variations.
    Third, tests of Einstein’s equivalence principle are discussed, including principles and recent advances in examining local position invariance and local Lorentz invariance with optical clocks. Local position invariance is tested by measuring gravitational frequency shifts between clocks at different geopotential heights or within distinct regions of a vertical optical lattice. Local Lorentz invariance is probed by comparing optical clocks with different quantization axes; recent advances have pushed the upper limit on Lorentz-violation coefficients for electron-photon systems to the order of 10-21.
    Finally, chronometric leveling based on optical clock comparisons is presented. A comparison with traditional geodetic methods is provided, highlighting the advantages of the chronometric approach. The paper also details recent experimental progress in chronometric leveling.
    In the outlook section, the paper analyzes potential research directions for further enhancing the performance of optical clocks. It also explores the possible advancements in precision measurement applications, such as constraining the variation rates of fundamental physical constants, as the performance of optical clocks continues to improve.
  • [1]

    Heavner T P, Donley E A, Levi F, Costanzo G, Parker T E, Shirley J H, Ashby N, Barlow S, Jefferts S R 2014 Metrologia 51 174

    [2]

    Gerginov V, Hoth G W, Heavner T P, Parker T E, Gibble K, Sherman J A 2025 Metrologia 62 035002

    [3]

    Wang X L, Ruan J, Liu D D, Guan Y, Shi J R, Yang F, Bai Y, Zhang H, Fan S C, Wu W J, Zhao S H, Zhang S G 2023 Metrologia 60 065012

    [4]

    Zheng F S, Chen W L, Liu K, Dai S Y, Liu N F, Wang Y Z, Fang F 2025 Metrologia 62 035005

    [5]

    Essen L, Parry J V L 1955 Nature 176 280

    [6]

    Mungall A G, Bailey R, Daams H 1966 Metrologia 2 98

    [7]

    Riehle F, Gill P, Arias F, Robertsson L 2018 Metrologia 55 188

    [8]

    Marceau C, Beattie S, Kato K, Jian B, Gertsvolf Marina, Dubé P 2025 Metrologia 62 045001

    [9]

    Dehmelt H G 1973 Bull. Am. Phys. Soc. 18 1521

    [10]

    Chu S, Hollberg L, Bjorkholm J E, Cable A, Ashkin A 1985 Phys. Rev. Lett. 55 48

    [11]

    Salomon C, Hils D, Hall J L J. 1988 Opt. Soc. Am. B 5 1576

    [12]

    Udem T, Reichert J, Holzwarth R, Haensch T, 1999 Phys. Rev. Lett. 82 3568

    [13]

    Aeppli A, Kim K, Warfield W, Safronova M S, Ye J 2024 Phys. Rev. Lett. 133 023401

    [14]

    Marshall M C, Castillo D A R, Arthur-Dworschack W J, Aeppli A, Kim K, Lee D, Warfield W, Hinrichs J, V. Nardelli N, M. Fortier T, Ye Jun, R. Leibrandt D, B. Hume D 2025 Phys. Rev. Lett. 135 033201

    [15]

    Lindvall T, Fordell T, Hanhijärvi K J, Doležal M, Rahm J, Weyers S, Wallin A E 2025 Phys. Rev. Appl. 24 044082

    [16]

    Dimarcq N, Gertsvolf M, Mileti G, Bize S, Oates C W, Peik E, Calonico D, Ido T, Tavella P, Meynadier F, Petit G, Panfilo G, Bartholomew J, Defraigne P, Donley E A, Hedekvist P O, Sesia I, Wouters M, Dubé P, Fang F, Levi F, Lodewyck J, Margolis H S, Newell D, Slyusarev S, Weyers S, Uzan J P, Yasuda M, Yu D H, Rieck C, Schnatz H, Hanado Y, Fujieda M, Pottie P E Hanssen J, Malimon A, Ashby N 2024 Metrologia 61 012001

    [17]

    Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, Ye J 2019 Nat. Photon. 13 714

    [18]

    Kim K, Aeppli A, Warfield W, Chu A J, Rey A M, Ye J 2025 Phys. Rev. Lett. 135 103601

    [19]

    Derevianko A, Dzuba V A, Flambaum V V 2012 Phys. Rev. Lett. 109 180801

    [20]

    Diddams S A, Udem Th, Bergquist J C, Curtis E A, Drullinger R E, Hollberg L, Itano W M, Lee W D, Oates C W, Vogel K R, Wineland D J 2001 Science 293 825

    [21]

    Tanaka U, Bize S, Tanner C E, Drullinger R E, Diddams S A, Hollberg L, Itano W M, Wineland D J, Bergquist J C 2003 J. Phys. B: At. Mol. Opt. Phys. 36 545

    [22]

    Oskay W H, Diddams S A, Donley E A, Fortier T M, Heavner T P, Hollberg L, Itano W M, Jefferts S R, Delaney M J, Kim K, Levi F, Parker T E, Bergquist J C 2006 Phys. Rev. Lett. 97 020801

    [23]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808

    [24]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802

    [25]

    Tofful A, Baynham C F A, Curtis E A, Parsons A O, Robertson B I, Schioppo M, Tunesi J, Margolis H S, Hendricks R J, Whale J, Thompson R C, Godun R M 2024 Metrologia 61 045001

    [26]

    Filzinger M, Dörscher S, Lange R, Klose J, Steinel M, Benkler E, Peik E, Lisdat C, Huntemann N 2023 Phys. Rev. Lett. 130 253001

    [27]

    Steinel M, Shao H, Filzinger M, Lipphardt B, Brinkmann M, Didier A, Mehlstäubler T E, Lindvall T, Peik E, Huntemann N 2023 Phys. Rev. Lett. 131 083002

    [28]

    Barwood G P, Huang G, Klein H A, Johnson L A M, King S A, Margolis H S, Szymaniec K, Gill P 2014 Phys. Rev. A 89 050501(R)

    [29]

    Huang Y, Zhang B L, Zeng M Y, Hao Y M, Ma Z X, Zhang H Q, Guan H, Chen Z, Wang M, Gao K L 2022 Phys. Rev. Appl. 17 034041

    [30]

    Liu D X, Cao J, Yuan J B, Cui K F, Yuan Y, Zhang P, Chao S J, Shu H L, Huang X R 2023 Chin. Phys. B 32 010601

    [31]

    Matsubara K, Hachisu H, Li Y, Nagano S, Locke C, Nogami A, Kajita M, Hayasaka K, Ido T, Hosokawa M 2012 Opt. Express 20 22034

    [32]

    Ohtsubo N, Li Y, Nemitz N, Hachisu H, Matsubara K, Ido T, Hayasaka K 2020 Opt. Lett. 45 5950

    [33]

    Hausser H N, Keller J, Nordmann T, Bhatt N M, Kiethe J, Liu H, Richter I M, Boehn M, Rahm J, Weyers S, Benkler E, Lipphardt B, Dörscher S, Stahl K, Klose J, Lisdat C, Filzinger M, Huntemann N, Peik E, Mehlstäubler T E 2025 Phys. Rev. Lett. 134 023201

    [34]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001

    [35]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201

    [36]

    Cui K F, Chao S J, Sun C L, Wang S M, Zhang P, Wei Y F, Yuan J B, Cao J, Shu H L, Huang X R 2022 Eur. Phys. J. D 6 140

    [37]

    Ma Z Y, Deng K, Wang Z Y, Wei W Z, Hao P, Zhang H X, Pang L R, Wang B, Wu F F, Liu H L, Yuan W H, Chang J L, Zhang J X, Wu Q Y, Zhang J, Lu Z H 2024 Phys. Rev. Appl. 21 044017

    [38]

    Zhang Z, Zhao Q, Qin Q C, Jayjong N, Lee M D K, Arnold K J, Barrett M D 2025 Metrologia 62 035008

    [39]

    Holliman C A, Fan M, Contractor A, Brewer S M, Jayich A M 2022 Phys. Rev. Lett. 128 033202

    [40]

    Zhang B L, Ma Z X, Huang Y, Han H L, Hu R M, Wang Y, Zhang H Q, Tang L Y, Shi T Y, Guan H, Gao K L 2025 https://doi.org/10.48550/arXiv.2506.17423

    [41]

    Wang X J, Cao J, Shu H L, Yuan Y, Li Z H, Fang P C, Chen Q F, Huang X R 2025 Appl. Phys. B 131 225

    [42]

    Ma Z Y, Pang L R, Wang B, Gong R, Wei S Q, Liu Y H,Gao Y M, Wang Y Z, Wang Z Y, Liu H L, Yuan W H, Deng K, Zhang J, Lu Z H 2025 Metrologia 62 045002

    [43]

    Katori H, Ido T, Kuwata-Gonokami M 1999 J. Phys. Soc. Jpn. 68 2479

    [44]

    Katori H, Takamoto M 2003 Phys. Rev. Lett. 91 173005

    [45]

    Takamoto M, Hong F L, Higashi R, Higashi R, Katori H 2005 Nature 435 321

    [46]

    Ludlow A D, Boyd M M, Zelevinsky T, Zelevinsky T, Foreman S M, Blatt S, Notcutt M, Ido T, Ye Jun 2006 Phys. Rev. Lett. 96 033003

    [47]

    Le Targat R, Baillard X, Fouché M, Brusch A, Tcherbakoff O, D. Rovera G, Lemonde P 2006 Phys. Rev. Lett. 97 130801

    [48]

    Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, de Miranda M H G, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, Coq Y L, Barber Z W, Poli N, Lemke N D, Beck K M, Oates C W 2008 Science 319 1805

    [49]

    Falke St, Schnatz H, Vellore Winfred JSR, Middelmann Th, Vogt St, Weyers S, Lipphardt B, Grosche G, Riehle F, Sterr U, Lisdat Ch 2011 Metrologia 4 399

    [50]

    Nicholson T L, Martin M J, Williams J R, Bloom B J, Bishof M, Swallows M D, Campbell S L, Ye J 2012 Phys. Rev. Lett. 109 230801

    [51]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 314 1215

    [52]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71

    [53]

    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, Ye J 2015 Nat. Commun. 6 6896

    [54]

    Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, Sherman J A, Phillips N B, Oates C W, Ludlow A D 2017 Nat. Photon. 11 48

    [55]

    McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 87

    [56]

    Lemonde P, Wolf P 2005 Phys. Rev. A 72 033409

    [57]

    Bothwell T, J. Kennedy C, Aeppli A, Kedar D, M. Robinson J, Oelker E, Staron A, Ye J 2022 Nature 602 420

    [58]

    Aeppli A, Chu A J, Bothwell T, J. Kennedy C, Kedar D, He P, Rey A M, Ye J 2022 Sci. Adv. 8 eadc9242

    [59]

    Kim K, Aeppli A, Bothwell T, Ye J 2023 Phys. Rev. Lett. 130 113203

    [60]

    Origlia S, Pramod M S, Schiller S, Singh Y, Bongs K, Schwarz R, Al-Masoudi A, Dörscher S, Herbers S, Häfner S, Sterr, U, Lisdat Ch 2018 Phys. Rev. A 98 053443

    [61]

    Nosske I, Vishwakarma C, Lücke T, Rahm J, Poudel N, Weyers S, Benkler E, Dörscher S, Lisdat C 2025 Quantum Sci. Technol. 10 045076

    [62]

    Schwarz R, Dörscher S, Al-Masoudi A, Benkler E, Legero T, Sterr U, Weyers S, Rahm J, Lipphardt B, Lisdat C 2020 Phys. Rev. Res. 2 033242

    [63]

    Ohmae N, Bregolin F, Nemitz N, Katori H 2020 Opt Express. 28 15112

    [64]

    Nemitz N, Ohkubo T, Takamoto M, Ushijima I, Das M, Ohmae N, Katori H 2016 Nat. Photon. 10 258

    [65]

    Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H, Katori H 2020 Nat. Photon. 14 411

    [66]

    Tyumenev R, Favier M, Bilicki S, Bookjans E, Targat R Le, Lodewyck J, Nicolodi D, Coq Y Le, Abgrall M, Guéna J, Sarlo L De, Bize S 2016 New J. Phys. 18 113002

    [67]

    Lodewyck J, Bilicki S, Bookjans E, Robyr J, Shi C, Vallet G, Targat R L, Nicolodi D, Coq Y L, Guéna J, Abgrall M, Rosenbusch P, Bize S 2016 Metrologia 53 1123

    [68]

    Hobson R, Bowden W, ianello A, Silva A, Baynham C F A, Margolis Helen S, Baird P E G, Gill P, Hill Ian R 2020 Metrologia 57 065026

    [69]

    Nemitz N, Gotoh T, Nakagawa F, Ito H, Hanado Y, Ido T, Hachisu H 2021 Metrologia 58 025006

    [70]

    Hisai Y, Akamatsu D, Kobayashi T, Hosaka K, Inaba H, Hong F L, Yasuda M 2021 Metrologia 58 015008

    [71]

    Kobayashi T, Nishiyama A, Hosaka K, Akamatsu D, Kawasaki A, Wada M, Inaba H, Tanabe T, Yasuda M 2025 Metrologia 62 025006

    [72]

    Goti I, Condio S, Clivati C, Risaro M, Gozzelino M, Costanzo G A, Levi F, Calonico D, Pizzocaro M 2023 Metrologia 60 035002

    [73]

    Kim H D, Heo M, Park C Y, Yu D H,Lee W K 2021 Metrologia 58 055007

    [74]

    Morzyński P, Bilicki S, Bober M, Kovačić D, Ciuryło R, Zawada M, Nawrocki J, Dunst P, Kobayashi T, Hosaka K, Akamatsu D 2024 Metrologia 61 045009

    [75]

    Liao T Y, Liu H, Meng F, Wang Q, Yang T, Tian H C, Lu B K, Zhu L, Li Y, Lin B K, Fang Z J, Lin Y G 2025 Chin. Phys. Lett. 42 034201

    [76]

    Lu B K, Sun Z, Yang T, Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Li T C, Fang Z J 2022 Chin. Phys. Lett. 39 080601

    [77]

    Luo L M, Qiao H, Ai D, Zhou M, Zhang S, Zhang S, Sun C Y, Qi Q C, Peng C Q, Jin T Y, Fang W, Yang Z Q, Li T C, Liang K, Xu X Y 2020 Metrologia 57 065017

    [78]

    Wang C Y, Yao Y, Shi H S, Yu H F, Ma L S, Jiang Y Y 2024 Chin. Phys. B 33 030601

    [79]

    Zhang A, Xiong Z X, Chen X T, Jiang Y Y, Wang J Q, Tian C C, Zhu Q, Wang B, Xiong D Z, He L X, Ma L S, Lyu B L 2022 Metrologia 59 065009

    [80]

    Li J, Cui X Y, Jia Z P, Kong D Q, Yu H W, Zhu X Q, Liu XY, Wang D Z, Zhang X, Huang X Y, Zhu M Y, Yang Y M, Hu Y, Liu X P, Zhai X M, Liu P, Jiang X, Xu P, Dai H N, Chen Y A, Pan J W 2024 Metrologia 61 015006

    [81]

    Lu X T, Guo F, Liu Y Y, Cao J, Li J A, Xia J J, Xu Q F, Lu B Q, Wang Y B, Chang H 2025 Metrologia 62 035007

    [82]

    Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C, Fang Z J 2015 Chin. Phys. Lett. 32 090601

    [83]

    Gao Q, Zhou M, Han C, Li S, Zhang S, Yao Y, Li B, Qiao H, Ai D, Lou G, Zhang M, Jiang Y, Bi Z, Ma L S, Xu X Y 2018 Sci. Rep. 8 8022

    [84]

    Lin Y G, Wang Q, Meng F, Cao S Y, Wang Y Z, Li Y, Sun Z, Lu B K, Yang T, Lin B K, Zhang A M, Fang F, Fang Z J 2021 Metrologia 58 035010

    [85]

    Jia Z P, Li J, Kong D Q, Zhang X, Yu H W, Liu X Y, Zhang Y C, Wang Y B, Zhu X Q, Zhang J H, Zhu M Y, Feng P J, Cui X Y, Xu P, Jiang X, Liu X P, Liu P, Dai H N, Chen Y A, Pan J W 2025 https://doi.org/10.48550/arXiv.2509.13991

    [86]

    https://www.bipm.org/documents/20126/66710981/Guidelines-PSFS-reports_2024. pdf/60dcadd3-5990-59ce-a998-f87fdd31d396

    [87]

    Schwarz J H 1982 Phys. Rep. 89 223

    [88]

    Bailint D, Love A 1987 Rep. Prog. Phys. 50 1087

    [89]

    Martins C J A P 2017 Rep. Prog. Phys. 80 126902

    [90]

    Flambaum V V, Dzuba V A 2009 Can. J. Phys. 87 25

    [91]

    Tamm C, Huntemann N, Lipphardt B, Gerginov V, Nemitz N, Kazda M, Weyers S and Peik E 2014 Phys. Rev. A 89 023820

    [92]

    Lange R, Huntemann N, Rahm J M, Sanner C, Shao H, Lipphardt B, Tamm Chr, Weyers S, Peik E 2021 Phys. Rev. Lett. 126 011102

    [93]

    Fortier T, Ashby N, Bergquist J C, Delaney M J, Diddams S A, Heavner T P, Hollberg L, Itano W M, Jefferts S R, Kim K, Levi F, Lorini L, Oskay W H, Parker T E, Shirley J, Stalnaker J E 2007 Phys. Rev. Lett. 98 070801

    [94]

    Beeks K, Kazakov G, Schaden F, Morawetz I, Col L d, Riebner T, Bartokos M, Sikorsky T, Schumm T, Zhang C, Ooi T, Higgins J, Doyle J, Ye, J, Safronova M 2025 Nat. Commun. 16 9147

    [95]

    DeMille D, Sainis S, Sage J, Bergeman T, Kotochigova S, Tiesinga E 2008 Phys. Rev. Lett. 100 043202

    [96]

    Khoury J, Weltman A 2004 Phys. Rev. Lett. 93 171104

    [97]

    Khoury J, Weltman A 2004 Phys. Rev. D 69 044026

    [98]

    Carroll S M, Mantry S, Ramsey-Musolf M J, Stubbs Ch W 2009 Phys. Rev. Lett. 103 011301

    [99]

    Taylor T R, Veneziano G 1988 Phys. Lett. B 213 450

    [100]

    Damour T, Polyakov A M 1994 Nucl. Phys. B 423 532

    [101]

    Antoniadis I, Dimopoulos S, Dvali G 1998 Nucl. Phys. B 516 70

    [102]

    Maartens R, Koyama K 2010 Living Rev. Relativ. 13 5

    [103]

    Colladay D, Kostelecký V A 1998 Phys. Rev. D 58 116002

    [104]

    Pruttivarasin T, Ramm M, Porsev S G, Tupitsyn I I, Safronova M S, Hohensee M A, Häffner H 2015 Nature 517 529

    [105]

    Hohensee M A, Leefer N, Budker D, Harabati C, Dzuba V A, Flambaum V V 2013 Phys. Rev. Lett. 111 050401

    [106]

    Sanner C, Huntemann N, Lange R, Tamm C, Peik E, S. Safronova M, G. Porsev S 2019 Nature 567 204

    [107]

    Denker H, Timmen L, Voigt C, Weyers S, Peik E, Margolis H S, Delva P, Wolf P Gérard P 2018 J. Geod. 5 487

    [108]

    Takamoto M, Tanaka Y, Katori H 2022 Appl. Phys. Lett. 120 140502

    [109]

    Tanaka Y, Katori H 2021 J. Geod. 95 93

    [110]

    Bjerhammar A 1985 Bulletin Géodésique 59 207

    [111]

    Lisdat C, Grosche G, Quintin N, Shi C, Raupach S M F, Grebing C, Nicolodi D, Stefani F, Al-Masoudi A, Dörscher S, Häfner S, Robyr J L, Chiodo N, Bilicki S, Bookjans E, Koczwara A, Koke S, Kuhl A, Wiotte F, Meynadier F, Camisard E, Abgrall M, Lours M, Legero T, Schnatz H, Sterr U, Denker H, Chardonnet C, Coq Y L, Santarelli G, Amy-Klein A, Targat R L, Lodewyck J, Lopez O, Pottie P E 2016 Nat. Commun. 7 12443

    [112]

    Grotti J, Koller S, Vogt S, Häfner S, Sterr U, Lisdat C, Denker H, Voigt C, Timmen L, Rolland A, Baynes F N, Margolis H S, Zampaolo M, Thoumany P, Pizzocaro M, Rauf B, Bregolin F, Tampellini A, Barbieri P, Zucco M, Costanzo G A, Clivati C, Levi F, Calonico D 2018 Nat. Phys. 14 437

    [113]

    Grotti J, Nosske I, Koller S B, Herbers S, Denker H, Timmen L, Vishnyakova G, Grosche G, Waterholter T, Kuhl A, Koke S, Benkler E, Giunta M, Maisenbacher L, Matveev A, Dörscher S, Schwarz R, Al-Masoudi A, Hänsch T W, Udem Th, Holzwarth R, Lisdat C 2024 Phys. Rev. Appl. 21 L061001

    [114]

    Häfner S, Falke S, Grebing C, Vogt S, Legero T, Merimaa M, Lisdat C, Sterr U 2015 Opt. Lett. 40 2112

    [115]

    Lee W K, Park C Y, Heo M S, Kim H, Yu D H, Truong G W, Cole G D 2019 Joint Conf. IEEE Int. Frequency Control Symp. European Frequency and Time Forum (EFTF/IFC) https://doi.org/10.1109/FCS.2019.8856128

    [116]

    Lee D, Hu Z Z, Lewis B, Aeppli A, Kim K, Yao Z B, Legero T, Nicolodi D, Riehle F, Sterr U, Ye J 2025 https://doi.org/10.48550/arXiv.2509.13503

    [117]

    Ma C Y, Yu J L, Legero T, Herbers S, Nicolodi D, Kempkes M, Riehle F, Kedar D, Robinson J M, Ye J, Sterr U 2024 J. Phys. Conf. Ser. 2889 012055

    [118]

    Kedar D, Yu J L, Oelker E, Staron A, Milner W R, Robinson J M, Legero T, Riehle F, Sterr U, Ye J 2023 Optica 10 464

    [119]

    Pedrozo-Peñafiel E, Colombo S, Shu C, Adiyatullin A F, Li Z Y, Mendez E, Braverman B, Kawasaki A, Akamatsu D, Xiao Y H, Vuletić V 2020 Nature 588 414

    [120]

    Yang Y A, Miklos M, Tso Y M, Kraus S, Hur J, Ye J 2025 Phys. Rev. Lett. 135 193202

    [121]

    Beloy K 2021 Phys. Rev. Lett. 127 013201

    [122]

    Campbell C J, Radnaev A G, Kuzmich A, Dzuba V A, Flambaum V V, Derevianko A 2012 Phys. Rev. Lett. 108 120802

    [123]

    King S A, Spieß L J, Micke P, Wilzewski A, Leopold T, Benkler E, Lange R, Huntemann N, Surzhykov A, Yerokhin V A, José R. López-Urrutia C, Schmidt P O 2022 Nature 611 43

    [124]

    Chen S L, Zhou Z Q, Li J G, Zhang T X, Li C B, Shi T Y, Huang Y, Gao K L, Guan H 2024 Phys. Rev. Res. 6: 013030

    [125]

    Zhang C K, Ooi T, Higgins J S, Doyle J F, Wense L, Beeks K, Leitner A, Kazakov G A, Li P, Thirolf P G, Schumm T, Ye J 2024 Nature 633 63

    [126]

    Rellergert W G, DeMille D, Greco R R, Hehlen M P, Torgerson J R, Hudson E R 2010 Phys. Rev. Lett. 104 200802

    [127]

    Kozlov M G, Safronova M S, CrespoLópez-Urrutia J R, Schmidt P O 2018 Rev. Mod. Phys. 90: 045005

    [128]

    Hassan Y, Beloy K, Siegel J L, Kobayashi T, Swiler E, Grogan T, Brown R C, Rojo T, Bothwell T, Hunt B D, Halaoui A, Ludlow A D 2025 Phys. Rev. Lett. 135 063402

    [129]

    Takamoto M, Katori H, Marmo S I, Ovsiannikov V D, Pal’chikov V G 2009 Phys. Rev. Lett. 102 063002

    [130]

    Kestler G, Sedlik R J, Trapp E C, Safronova M S, Barreiro J T 2025 https://doi.org/10.48550/arXiv.2506.18958

    [131]

    Zhao G D, Xia J, Liu Y, Zhou Y Z, Zhou C H, Guo F, Wang W H, He D J, Feng M, Liang T, Ren J, Xu Q F, Meng J W, Gao F, Shen Y, Lu X T, Lu B Q, Wang Y B, Hu X H, Tan W, Zou H X, Chang H 2025 Chin. Phys. Lett. 42 063701

    [132]

    Caldwell E D, Deschenes J D, Ellis J, Swann W C, Stuhl B K, Bergeron H, Newbury N R, Sinclair L C 2023 Nature 618 721

    [133]

    Liu B, Guo X X, Chen J, Zhou Y L, Liu T, Dong R F, Zhang S G 2025 Chin. Phys. Lett. 42 014202

  • [1] 武列列, 任益充, 薛飞. 基于铁磁扭摆振子的磁场测量及其应用. 物理学报, doi: 10.7498/aps.74.20241538
    [2] 屠秉晟. 少电子离子束缚态电子g因子精密测量. 物理学报, doi: 10.7498/aps.73.20240683
    [3] 李岩, 任志红. 多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息. 物理学报, doi: 10.7498/aps.72.20231179
    [4] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, doi: 10.7498/aps.71.20211663
    [5] 陈娇娇, 孙羽, 温金录, 胡水明. 稳定的高亮度低速亚稳态氦原子束流. 物理学报, doi: 10.7498/aps.70.20201833
    [6] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, doi: 10.7498/aps.70.20211663
    [7] 赵天择, 杨苏辉, 李坤, 高彦泽, 王欣, 张金英, 李卓, 赵一鸣, 刘宇哲. 频域反射法光纤延时精密测量. 物理学报, doi: 10.7498/aps.70.20201075
    [8] 王谨, 詹明生. 基于原子干涉仪的微观粒子弱等效原理检验. 物理学报, doi: 10.7498/aps.67.20180621
    [9] 管桦, 黄垚, 李承斌, 高克林. 高准确度的钙离子光频标. 物理学报, doi: 10.7498/aps.67.20180876
    [10] 刘建平, 邬俊飞, 黎卿, 薛超, 毛德凯, 杨山清, 邵成刚, 涂良成, 胡忠坤, 罗俊. 万有引力常数G精确测量实验进展. 物理学报, doi: 10.7498/aps.67.20181381
    [11] 王磊, 郭浩, 陈宇雷, 伍大锦, 赵锐, 刘文耀, 李春明, 夏美晶, 赵彬彬, 朱强, 唐军, 刘俊. 基于金刚石色心自旋磁共振效应的微位移测量方法. 物理学报, doi: 10.7498/aps.67.20171914
    [12] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, doi: 10.7498/aps.67.20181084
    [13] 林弋戈, 方占军. 锶原子光晶格钟. 物理学报, doi: 10.7498/aps.67.20181097
    [14] 刘军, 陈帛雄, 许冠军, 崔晓旭, 白波, 张林波, 陈龙, 焦东东, 王涛, 刘涛, 董瑞芳, 张首刚. 高精细度光学参考腔的自主化研制. 物理学报, doi: 10.7498/aps.66.080601
    [15] 穆秀丽, 李传亮, 邓伦华, 汪海玲. 用于α和μ常数变化测量的碘离子光谱研究. 物理学报, doi: 10.7498/aps.66.233301
    [16] 田晓, 王叶兵, 卢本全, 刘辉, 徐琴芳, 任洁, 尹默娟, 孔德欢, 常宏, 张首刚. 锶玻色子的“魔术”波长光晶格装载实验研究. 物理学报, doi: 10.7498/aps.64.130601
    [17] 王金涛, 刘子勇. 基于静力悬浮原理的单晶硅球间微量密度差异精密测量方法研究. 物理学报, doi: 10.7498/aps.62.037702
    [18] 王叶兵, 陈洁, 田晓, 高峰, 常宏. 锶原子互组跃迁谱的实验研究. 物理学报, doi: 10.7498/aps.61.020601
    [19] 高峰, 王叶兵, 田晓, 许朋, 常宏. 锶原子三重态谱线的观测及在光钟中的应用. 物理学报, doi: 10.7498/aps.61.173201
    [20] 王心亮, 陈洁, 王叶兵, 高峰, 张首刚, 刘海峰, 常宏. 利用塞曼扫频法实现对减速锶原子束速度分布的直接测量. 物理学报, doi: 10.7498/aps.60.103201
计量
  • 文章访问数:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-23

/

返回文章
返回