搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锶原子三重态谱线的观测及在光钟中的应用

高峰 王叶兵 田晓 许朋 常宏

引用本文:
Citation:

锶原子三重态谱线的观测及在光钟中的应用

高峰, 王叶兵, 田晓, 许朋, 常宏

Observation of transitions in strontium triplet state and its application in optical clock

Gao Feng, Wang Ye-Bing, Tian Xiao, Xu Peng, Chang Hong
PDF
导出引用
  • 实验中通过互组跃迁689 nm激光抽运形成三重态最低能态原子布居,引入688 nm激光改变三重态最低能态间的原子布居,利用抽运光与探测光空间分离的方法观测碱土金属锶原子的三重态能态间跃迁(5s6s)3S1 → (5s5p)3Pj(j=0,1,2)的吸收谱线,对应三条跃迁线的激光波段为679 nm, 688 nm和707 nm.探测三重态原子跃迁谱线可以用于锶原子冷却中再抽运光707 nm和679 nm激光频率的直接锁定,相比于通常利用的腔传递技术,可以把再抽运光频率锁定在原子跃迁谱线上,有利于提高锶原子冷却中俘获原子数目的长期稳定性.
    In this paper we present a method of observing triplet state transitions of strontium. The intercombination transition is employed to pump the atom population from singlet-state (5s2)1S0 to triplet-state (5s5p)3P1 by a laser at 689 nm. Then 688 nm laser is also employed to divide atom population into the two other triplet-state states (5s5p)3P0 and (5s5p)3PP2. We can obtain the absorption signals of triplet-state transition (5s6s)3S1 → (5s5p)3P0 and (5s6p)3S1 → (5s5p)3P3P2. And these atomic absorption signals can be used for stabilizing the repumping light 679 nm and 707 nm directly to transition line of strontium. This method can be used in the Doppler cooling of strontium atoms.
    • 基金项目: 国家自然科学基金(批准号: 11074252);中国科学院"百人计划" (批准号: O916YC1101)和陕西省自然科学基金(批准号: Y112KF1101)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Gant No. 11074252), the ‘100 Talents Project' of Chinese Academy of Sciences (Gant No. O916YC1101), and the Natural Science Foundation of Shaanxi Province (Gant No. Y112KF1101).
    [1]

    Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, Miranda M H G, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, Le Coq, Barber Z W, Poli N, Lemke N D, Beck K M, Oates C W 2008 Science 319 1805

    [2]

    Takamoto M, Hong F L, Higashi R, Katori H 2005 Nature 435 321

    [3]

    Lemonde P 2009 Eur. Phys. J. Special Topics 172 81

    [4]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802

    [5]

    Liu Q, Huang Y, Cao J, Ou B Q, Guo B, Guan H, Huang X R, Gao K L 2011 Chin. Phys. Lett. 28 01320

    [6]

    Ma L S, Bi Z Y, Bartels A, Robertsson L, Zucco M, Windeler R S, Wilpers G, Oates C, Hollberg L, Diddams S A 2004 Science 303 1843

    [7]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808

    [8]

    Blatt S, Ludlow A D, Campbell G K, Thomsen J W, Zelevinsky T, Boyd M M, Ye J, Brusch A, Lemonde P, Takamoto M, Hong F L, Katori H, Flambaum V V 2008 Phys. Rev. Lett. 100 140801

    [9]

    Blatt S, Thomsen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M, Ye J 2009 Phys. Rev. A 80 052703

    [10]

    Wang S K, Wang Q, Lin Y G, Wang M M, Lin B K, Zang E J, Li T C, Fang Z J 2009 Chin. Phys. Lett. 26 093202

    [11]

    Gao F, Chang H, Wang X L, Tian X, Zhang S G 2011 Acta Phys. Sin. 60 050601 (in Chinese) [高峰, 常宏, 王心亮, 田晓, 张首刚 2011 物理学报 60 050601]

    [12]

    Ovsiannikov V D, Pal'chikov V G, Taichenachev A V, Yudin V I, Katori H, Takamoto M 2007 Phys. Rev. A 75 020501

    [13]

    White J A, Chow L Y, Drake C, Hughes V W 1959 Phys. Rev. Lett. 3 428

    [14]

    Zhao P Y, Xiong Z X, Long Y, He L X, Lü B L 2009 Chin. Phys. Lett. 26 08370

    [15]

    Xu X Y, Loftus T H, Hall J L, Gallagher A, Ye J 2003 J. Opt. Soc. Am. B 20 968

    [16]

    Jiang K J, Li K, Wang J, Zan M S 2006 Acta Phys. Sin. 55 125 (in Chinese) [江开军, 李可, 王瑾, 詹明生 2006 物理学报 55 125]

    [17]

    Tian X, Chang H, Wang X L, Zhang S G 2010 Acta Opt. Sin. 30 3 (in Chinese) [田晓, 常宏, 王心亮, 张首刚 2010 光学学报 30 3]

    [18]

    Gao K L 2010 Physics 39 604 (in Chinese) [高克林 2010 物理 39 604]

    [19]

    Wang Y B, Chen J, Tian X, Gao F, Chang H 2012 Acta Phys. Sin. 61 020601 (in Chinese) [王叶兵, 陈洁, 田晓, 高峰, 常宏 2012 物理学报 61 020601]

    [20]

    Bohlouli Z P, Afrousheh K, Martin J D D 2006 Rev. Sci. Instrum. 77 093105

  • [1]

    Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, Miranda M H G, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, Le Coq, Barber Z W, Poli N, Lemke N D, Beck K M, Oates C W 2008 Science 319 1805

    [2]

    Takamoto M, Hong F L, Higashi R, Katori H 2005 Nature 435 321

    [3]

    Lemonde P 2009 Eur. Phys. J. Special Topics 172 81

    [4]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802

    [5]

    Liu Q, Huang Y, Cao J, Ou B Q, Guo B, Guan H, Huang X R, Gao K L 2011 Chin. Phys. Lett. 28 01320

    [6]

    Ma L S, Bi Z Y, Bartels A, Robertsson L, Zucco M, Windeler R S, Wilpers G, Oates C, Hollberg L, Diddams S A 2004 Science 303 1843

    [7]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808

    [8]

    Blatt S, Ludlow A D, Campbell G K, Thomsen J W, Zelevinsky T, Boyd M M, Ye J, Brusch A, Lemonde P, Takamoto M, Hong F L, Katori H, Flambaum V V 2008 Phys. Rev. Lett. 100 140801

    [9]

    Blatt S, Thomsen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M, Ye J 2009 Phys. Rev. A 80 052703

    [10]

    Wang S K, Wang Q, Lin Y G, Wang M M, Lin B K, Zang E J, Li T C, Fang Z J 2009 Chin. Phys. Lett. 26 093202

    [11]

    Gao F, Chang H, Wang X L, Tian X, Zhang S G 2011 Acta Phys. Sin. 60 050601 (in Chinese) [高峰, 常宏, 王心亮, 田晓, 张首刚 2011 物理学报 60 050601]

    [12]

    Ovsiannikov V D, Pal'chikov V G, Taichenachev A V, Yudin V I, Katori H, Takamoto M 2007 Phys. Rev. A 75 020501

    [13]

    White J A, Chow L Y, Drake C, Hughes V W 1959 Phys. Rev. Lett. 3 428

    [14]

    Zhao P Y, Xiong Z X, Long Y, He L X, Lü B L 2009 Chin. Phys. Lett. 26 08370

    [15]

    Xu X Y, Loftus T H, Hall J L, Gallagher A, Ye J 2003 J. Opt. Soc. Am. B 20 968

    [16]

    Jiang K J, Li K, Wang J, Zan M S 2006 Acta Phys. Sin. 55 125 (in Chinese) [江开军, 李可, 王瑾, 詹明生 2006 物理学报 55 125]

    [17]

    Tian X, Chang H, Wang X L, Zhang S G 2010 Acta Opt. Sin. 30 3 (in Chinese) [田晓, 常宏, 王心亮, 张首刚 2010 光学学报 30 3]

    [18]

    Gao K L 2010 Physics 39 604 (in Chinese) [高克林 2010 物理 39 604]

    [19]

    Wang Y B, Chen J, Tian X, Gao F, Chang H 2012 Acta Phys. Sin. 61 020601 (in Chinese) [王叶兵, 陈洁, 田晓, 高峰, 常宏 2012 物理学报 61 020601]

    [20]

    Bohlouli Z P, Afrousheh K, Martin J D D 2006 Rev. Sci. Instrum. 77 093105

  • [1] 李婷, 卢晓同, 周驰华, 尹默娟, 王叶兵, 常宏. 利用钟跃迁谱线测量超稳光学参考腔的零温漂点. 物理学报, 2021, 70(7): 073701. doi: 10.7498/aps.70.20201721
    [2] 陈泽锐, 刘光存, 俞振华. 谐振子势阱中双费米原子光钟的碰撞频移. 物理学报, 2021, 70(18): 180602. doi: 10.7498/aps.70.20210243
    [3] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟碰撞频移的测量. 物理学报, 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [4] 张锦芳, 任雅娜, 王军民, 杨保东. 铯原子激发态双色偏振光谱. 物理学报, 2019, 68(11): 113201. doi: 10.7498/aps.68.20181872
    [5] 林弋戈, 方占军. 锶原子光晶格钟. 物理学报, 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [6] 刘军, 陈帛雄, 许冠军, 崔晓旭, 白波, 张林波, 陈龙, 焦东东, 王涛, 刘涛, 董瑞芳, 张首刚. 高精细度光学参考腔的自主化研制. 物理学报, 2017, 66(8): 080601. doi: 10.7498/aps.66.080601
    [7] 田晓, 王叶兵, 卢本全, 刘辉, 徐琴芳, 任洁, 尹默娟, 孔德欢, 常宏, 张首刚. 锶玻色子的“魔术”波长光晶格装载实验研究. 物理学报, 2015, 64(13): 130601. doi: 10.7498/aps.64.130601
    [8] 高峰, 刘辉, 许朋, 王叶兵, 田晓, 常宏. 用于互组跃迁谱测量的窄线宽激光系统. 物理学报, 2014, 63(14): 140704. doi: 10.7498/aps.63.140704
    [9] 邵文莉, 林永锋, 林枫灿, 彭开美, 张蕾, 王惠, 刘海洋, 计亮年. 中心金属Ga原子对Corrole三重态动力学及单线态氧产生的影响. 物理学报, 2012, 61(20): 207801. doi: 10.7498/aps.61.207801
    [10] 王叶兵, 陈洁, 田晓, 高峰, 常宏. 锶原子互组跃迁谱的实验研究. 物理学报, 2012, 61(2): 020601. doi: 10.7498/aps.61.020601
    [11] 冯胜奇, 方海, 邱庆春. 在群论框架下电子三重态与声子耦合的理论研究. 物理学报, 2011, 60(1): 017105. doi: 10.7498/aps.60.017105
    [12] 王心亮, 陈洁, 王叶兵, 高峰, 张首刚, 刘海峰, 常宏. 利用塞曼扫频法实现对减速锶原子束速度分布的直接测量. 物理学报, 2011, 60(10): 103201. doi: 10.7498/aps.60.103201
    [13] 孙震, 安忠, 李元, 刘文, 刘德胜, 解士杰. 高聚物中极化子和三重态激子的碰撞过程研究. 物理学报, 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [14] 杜润昌, 陈杰华, 刘朝阳, 顾思洪. CPT原子频标实验研究. 物理学报, 2009, 58(9): 6117-6121. doi: 10.7498/aps.58.6117
    [15] 张宝武, 张文涛, 马 艳, 李同保. 大预准直狭缝的铬原子束一维多普勒激光准直. 物理学报, 2008, 57(9): 5485-5490. doi: 10.7498/aps.57.5485
    [16] 方占军, 王 强, 王民明, 孟 飞, 林百科, 李天初. 飞秒光梳和碘稳频532nm Nd:YAG激光频率的测量. 物理学报, 2007, 56(10): 5684-5690. doi: 10.7498/aps.56.5684
    [17] 李晓薇, 刘淑静. 正常金属/自旋三重态p波超导体结隧道谱的奇异性. 物理学报, 2006, 55(2): 834-838. doi: 10.7498/aps.55.834
    [18] 厉彦民, 章立源. 对角无序对三重态双极化子系统的超导电性的影响. 物理学报, 1987, 36(6): 796-800. doi: 10.7498/aps.36.796
    [19] 厉彦民, 章立源. 三重态双极化子系统的超导与铁磁共存. 物理学报, 1987, 36(2): 157-164. doi: 10.7498/aps.36.157
    [20] 厉彦民, 章立源. 三重态双极化子的超导A相与B相. 物理学报, 1986, 35(12): 1616-1623. doi: 10.7498/aps.35.1616
计量
  • 文章访问数:  3985
  • PDF下载量:  489
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-15
  • 修回日期:  2012-02-24
  • 刊出日期:  2012-09-05

锶原子三重态谱线的观测及在光钟中的应用

  • 1. 中国科学院国家授时中心时间频率基准重点实验室, 量子频标研究室, 西安 710600;
  • 2. 中国科学院研究生院, 北京 100049
    基金项目: 国家自然科学基金(批准号: 11074252);中国科学院"百人计划" (批准号: O916YC1101)和陕西省自然科学基金(批准号: Y112KF1101)资助的课题.

摘要: 实验中通过互组跃迁689 nm激光抽运形成三重态最低能态原子布居,引入688 nm激光改变三重态最低能态间的原子布居,利用抽运光与探测光空间分离的方法观测碱土金属锶原子的三重态能态间跃迁(5s6s)3S1 → (5s5p)3Pj(j=0,1,2)的吸收谱线,对应三条跃迁线的激光波段为679 nm, 688 nm和707 nm.探测三重态原子跃迁谱线可以用于锶原子冷却中再抽运光707 nm和679 nm激光频率的直接锁定,相比于通常利用的腔传递技术,可以把再抽运光频率锁定在原子跃迁谱线上,有利于提高锶原子冷却中俘获原子数目的长期稳定性.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回