搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高精细度光学参考腔的自主化研制

刘军 陈帛雄 许冠军 崔晓旭 白波 张林波 陈龙 焦东东 王涛 刘涛 董瑞芳 张首刚

引用本文:
Citation:

高精细度光学参考腔的自主化研制

刘军, 陈帛雄, 许冠军, 崔晓旭, 白波, 张林波, 陈龙, 焦东东, 王涛, 刘涛, 董瑞芳, 张首刚

Self-reliance and independently developed high-finesse spherical ultrastable optical reference cavity

Liu Jun, Chen Bo-Xiong, Xu Guan-Jun, Cui Xiao-Xu, Bai Bo, Zhang Lin-Bo, Chen Long, Jiao Dong-Dong, Wang Tao, Liu Tao, Dong Rui-Fang, Zhang Shou-Gang
PDF
导出引用
  • 高精细度超稳光学参考腔是获得超窄线宽激光的核心部件. 本文报道了面向空间应用的高精细度球形超稳光学参考腔自主化研制及其初步测试结果. 设计球形腔体直径为80 mm,腔长78 mm,采用平-凹腔镜结构,凹镜曲率半径为0.5 m. 使用有限元方法计算了该参考腔的震动敏感度,最佳支撑位置的震动敏感度小于110-10/g. 采用超光滑表面三级抛光技术实现光学表面粗糙度小于0.4 nm(rms)的超精密加工,采用双离子束溅射法实现工作波长反射率大于99.999%、损耗小于4 ppm 腔镜镀膜,干式光胶方法键合腔体和腔镜. 利用扫腔线宽法和腔衰荡法对参考腔的线宽和精细度进行了测量,结果表明该参考腔的精细度约为195000,线宽为9.8 kHz. 将698 nm半导体激光器锁定到该参考腔上测得其损耗5 ppm. 与实验室进口同类型参考腔相比较,主要性能指标与其相当.
    Ultra-stable reference cavity with high finesse is a crucial component in a narrow-linewidth laser system which is widely used in time and frequency metrology, the test of Lorentz invariance, and measure of gravitational wave. In this paper, we report the recent progress of the self-made spherical reference cavity, aiming at the future space application. The main function of cavity is the reference of ultra-stable laser, which is the local reference oscillation source of space optical clock. The diameter of the designed spherical cavity spacer made of ultra-low expansion glass is 80 mm, and the cavity length is 78 mm, flat-concave mirrors configuration, and the radius of the concave mirror is 0.5 m. The support structure is designed to have two 3.9 mm-radius spherical groves located at the poles of the sphere along the diameter direction (defined as support axis), and a 53 angle between the support axis and the optical axis. The mechanic vibration sensitivities of the cavity along and perpendicular to the optical axis are both calculated by finite element analysis method to be below 110-10/g. Five-axis linkage CNC machining sphere forming technology is applied to S80 mm spherical surface processing with spherical contour degree up to 0.02. After a three-stage surface polishing processes, the fused silicamirror substratessurface roughness is measured to be less than 0.2 nm (rms). Implementing double ion beam sputtering technique for mirror coating, the reflection of the coating achieves a reflectivity of 99.999% and a loss of 4 ppm for 698 nm laser. The coating surface roughness is measured to be 0.3 nm (rms). The cavity spacer and the mirror are bonded by dried optical contact. In order to improve the thermal noise characteristics of the cavity, an ultra low expansion ring is contacted optically to the outer surface of the mirror. The cavity is characterized by ring-down spectroscopy, and the finesse is around 195000. With the help of a home-made 698 nm ultra narrow line-width laser, the cavity line-width is measured to be 9.8 kHz by sweeping cavity method. A 698 nm semiconductor laser is locked to this spherical cavity by PDH technology, and the cavity loss is measured to be5 ppm.
      通信作者: 刘涛, taoliu@ntsc.ac.cn
    • 基金项目: 国家重大科研仪器设备研制专项(批准号:61127901)、国家自然科学基金(批准号:11273024,61025023)和国家自然科学基金青年科学基金(批准号:11403031)资助的课题.
      Corresponding author: Liu Tao, taoliu@ntsc.ac.cn
    • Funds: Project supported by the Special Fund for Research on National Major Research Instruments and Facilities of the National Natural Science Fundation of China (Grant No. 61127901), the National Natural Science Foundation of China (Grant Nos. 11273024, 61025023), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11403031).
    [1]

    Leibrandt D R, Thorpe M J, Notcutt M, Drullinger R E, Rosenband T, Bergquist J C 2011 Opt. Express 19 3471

    [2]

    Kessler T, Hagemann C, Grebing C, Legero T, Steer U, Riehle F, Martin M J, Chen L, Ye J 2012 Nat. Photonics 6 687

    [3]

    Swallows M D, Martin M J, Bishof M, Benko C, Lin Y, Blatt S, Rey A M, Ye J 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 416

    [4]

    Cole G D, Zhang W, Martin M J, Ye J, AspelmeyerM 2013 Nat. Photon. 7 644

    [5]

    Hagemann C, Grebing C, Lisdat C, Falke S, Legero T, Sterr U, Riehle F, Martin M J, Ye J 2014 Opt. Lett. 39 5102

    [6]

    Wu L, Jiang Y, Ma C, Qi W, Yu H, Bi Z, Ma L 2016 Sci. Rep. 6 24969

    [7]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [8]

    Chou C W, Hume D B, Koelemeij J C, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802

    [9]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [10]

    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, Ye J 2015 Nat. Commun. 6 6896

    [11]

    Heinecke D C, Bartels A, Diddams S A 2011 Opt. Express 19 18440

    [12]

    Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenband, Lemke T N, Ludlow A, Jiang Y, Oates C W, Diddams S A 2011 Nat. Photonics 5 425

    [13]

    Hough J, Rowan S 2005 J. Opt. A: Pure Appl. Opt. 7 544

    [14]

    Willke B, Danzmann K, Frede M, King P, Kracht D, Kwee P, Puncken O, Savage R L, Schulz B, Seifert F, Veltkamp C, Wagner S, Weels P, Winkelmann L 2008 Classical Quantum Gravity 25 114040

    [15]

    Williams P A, Swann W C, Newbury N R 2008 J. Opt. Soc. Am. B 25 1284

    [16]

    Kessler T, Hagemann C, Grebing G, Legero T, Sterr U, Riehle F, Martin M J, Chen L, Ye J 2012 Nat. Photonics 6 687

    [17]

    Wu L, Jang Y, Ma C, Qi W, Yu H, Bi Z, Ma L 2016 Sci. Rep. 6 24969

    [18]

    Levin Y 1998 Phys. Rev. D 57 659

    [19]

    Numata K, Kemery A, Camp J 2004 Phys. Rev. Lett. 93 250602

    [20]

    Nietzsche S, Nawrodt R, Zimmer A, Schnabel R, Vodel W, Seidel P 2006 Supercond. Sci. Technol. 19 293

    [21]

    Notcutt M, Ma L S, Ye J, Hall J L 2005 Opt. Lett. 30 1815

    [22]

    Ludlow A D, Huang X, Notcutt M, Zanon T, Foreman S M, Boyd M M, Blatt S, Ye J 2007 Opt. Lett. 32 641

    [23]

    Nazarova T, Riehle F, Sterr U 2006 Appl. Phy. B 83 531

    [24]

    Webster S A, Oxborrow M, Gill P 2007 Phy. Rev. A 75 10064

    [25]

    Chen L S, Hall J L, Ye J, Yang T, Zang E, Li T C 2006 Phy. Rev. A 30 150

    [26]

    Lyngnes O, Ode A, Ness D C 2009 Proceedings of SPIE-The International Society 7504

    [27]

    Traggis N G, Claussen N R 2010 tetitSPIE LASE 7578

    [28]

    Darrow M C2014 Macalester Jourmal of Physics Astronomy 2 3

    [29]

    Zalicki P, Zare R N 1995 J. Chem. Phys. 102 2708

    [30]

    Webster S, Gill P 2011 Opt. Lett. 36 3572

    [31]

    Schiller S, Gorlitz A, Nevsky A, Alighanbari S 2012 Physics 48 412

    [32]

    Kessler T, Legero T, Sterr U 2012 J. Opt. Soc. Am. B 29 178

    [33]

    Legero T, Kessler T, Sterr U 2010 J. Opt. Soc. Am. B 27 776

    [34]

    Ong J L, Lucas L C, Lacefield W R, Rigney E D 1992 Biomaterials 13 249

    [35]

    Wu J J, Wu C T, Liao Y C, Lu T R, Chen L C, Chen K H, Hwa L G, Kuo C T, Ling K J 1999 Thin Solid Films s355 417

    [36]

    Cormie P, Mcbride J M, Mccaulley G O 2009 J. Strength Cond. Res. 23 177

    [37]

    Berg S, Katardjiev L 1999 J. Vac. Sci. Technol. A 17 1916

    [38]

    Flaminio R, Franc J, Michel C, Morgado N, Pinard L, Sassolas B 2010 Classical Quantum Gravity 27 84030

    [39]

    Buzea C, Robbie K 2005 Rep. Prog. Phys. 68 385

    [40]

    Mitin V F, Lazarow V K, Lari L, Lytvyn P M, Kholevchuk V V, Matveeva L A, Mitin V V, Venger E F 2014 Thin Solid Films 550 715

    [41]

    Alexandrovski A 2009 Proceedings of SPIE-The International Society 7193 71930D-13

    [42]

    Lawrence M J, Willke B, Husman M E, Gustafson E K, Byer R L 1999 J. Opt. Soc. Am. B 16 523

    [43]

    Foltynowicz A 2009 Ph. D. Dissertation (Ume: Ume University)

    [44]

    Hofstetter D, Thornton R L 1998 IEEE J. Quantum Electron. 34 1914

    [45]

    Hood C J, Kimble H J, Ye J 2001 Phy. Rev. A 64 33804

  • [1]

    Leibrandt D R, Thorpe M J, Notcutt M, Drullinger R E, Rosenband T, Bergquist J C 2011 Opt. Express 19 3471

    [2]

    Kessler T, Hagemann C, Grebing C, Legero T, Steer U, Riehle F, Martin M J, Chen L, Ye J 2012 Nat. Photonics 6 687

    [3]

    Swallows M D, Martin M J, Bishof M, Benko C, Lin Y, Blatt S, Rey A M, Ye J 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 416

    [4]

    Cole G D, Zhang W, Martin M J, Ye J, AspelmeyerM 2013 Nat. Photon. 7 644

    [5]

    Hagemann C, Grebing C, Lisdat C, Falke S, Legero T, Sterr U, Riehle F, Martin M J, Ye J 2014 Opt. Lett. 39 5102

    [6]

    Wu L, Jiang Y, Ma C, Qi W, Yu H, Bi Z, Ma L 2016 Sci. Rep. 6 24969

    [7]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [8]

    Chou C W, Hume D B, Koelemeij J C, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802

    [9]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [10]

    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, Ye J 2015 Nat. Commun. 6 6896

    [11]

    Heinecke D C, Bartels A, Diddams S A 2011 Opt. Express 19 18440

    [12]

    Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenband, Lemke T N, Ludlow A, Jiang Y, Oates C W, Diddams S A 2011 Nat. Photonics 5 425

    [13]

    Hough J, Rowan S 2005 J. Opt. A: Pure Appl. Opt. 7 544

    [14]

    Willke B, Danzmann K, Frede M, King P, Kracht D, Kwee P, Puncken O, Savage R L, Schulz B, Seifert F, Veltkamp C, Wagner S, Weels P, Winkelmann L 2008 Classical Quantum Gravity 25 114040

    [15]

    Williams P A, Swann W C, Newbury N R 2008 J. Opt. Soc. Am. B 25 1284

    [16]

    Kessler T, Hagemann C, Grebing G, Legero T, Sterr U, Riehle F, Martin M J, Chen L, Ye J 2012 Nat. Photonics 6 687

    [17]

    Wu L, Jang Y, Ma C, Qi W, Yu H, Bi Z, Ma L 2016 Sci. Rep. 6 24969

    [18]

    Levin Y 1998 Phys. Rev. D 57 659

    [19]

    Numata K, Kemery A, Camp J 2004 Phys. Rev. Lett. 93 250602

    [20]

    Nietzsche S, Nawrodt R, Zimmer A, Schnabel R, Vodel W, Seidel P 2006 Supercond. Sci. Technol. 19 293

    [21]

    Notcutt M, Ma L S, Ye J, Hall J L 2005 Opt. Lett. 30 1815

    [22]

    Ludlow A D, Huang X, Notcutt M, Zanon T, Foreman S M, Boyd M M, Blatt S, Ye J 2007 Opt. Lett. 32 641

    [23]

    Nazarova T, Riehle F, Sterr U 2006 Appl. Phy. B 83 531

    [24]

    Webster S A, Oxborrow M, Gill P 2007 Phy. Rev. A 75 10064

    [25]

    Chen L S, Hall J L, Ye J, Yang T, Zang E, Li T C 2006 Phy. Rev. A 30 150

    [26]

    Lyngnes O, Ode A, Ness D C 2009 Proceedings of SPIE-The International Society 7504

    [27]

    Traggis N G, Claussen N R 2010 tetitSPIE LASE 7578

    [28]

    Darrow M C2014 Macalester Jourmal of Physics Astronomy 2 3

    [29]

    Zalicki P, Zare R N 1995 J. Chem. Phys. 102 2708

    [30]

    Webster S, Gill P 2011 Opt. Lett. 36 3572

    [31]

    Schiller S, Gorlitz A, Nevsky A, Alighanbari S 2012 Physics 48 412

    [32]

    Kessler T, Legero T, Sterr U 2012 J. Opt. Soc. Am. B 29 178

    [33]

    Legero T, Kessler T, Sterr U 2010 J. Opt. Soc. Am. B 27 776

    [34]

    Ong J L, Lucas L C, Lacefield W R, Rigney E D 1992 Biomaterials 13 249

    [35]

    Wu J J, Wu C T, Liao Y C, Lu T R, Chen L C, Chen K H, Hwa L G, Kuo C T, Ling K J 1999 Thin Solid Films s355 417

    [36]

    Cormie P, Mcbride J M, Mccaulley G O 2009 J. Strength Cond. Res. 23 177

    [37]

    Berg S, Katardjiev L 1999 J. Vac. Sci. Technol. A 17 1916

    [38]

    Flaminio R, Franc J, Michel C, Morgado N, Pinard L, Sassolas B 2010 Classical Quantum Gravity 27 84030

    [39]

    Buzea C, Robbie K 2005 Rep. Prog. Phys. 68 385

    [40]

    Mitin V F, Lazarow V K, Lari L, Lytvyn P M, Kholevchuk V V, Matveeva L A, Mitin V V, Venger E F 2014 Thin Solid Films 550 715

    [41]

    Alexandrovski A 2009 Proceedings of SPIE-The International Society 7193 71930D-13

    [42]

    Lawrence M J, Willke B, Husman M E, Gustafson E K, Byer R L 1999 J. Opt. Soc. Am. B 16 523

    [43]

    Foltynowicz A 2009 Ph. D. Dissertation (Ume: Ume University)

    [44]

    Hofstetter D, Thornton R L 1998 IEEE J. Quantum Electron. 34 1914

    [45]

    Hood C J, Kimble H J, Ye J 2001 Phy. Rev. A 64 33804

  • [1] 孔德欢, 郭峰, 李婷, 卢晓同, 王叶兵, 常宏. 可搬运锶光晶格钟系统不确定度的评估. 物理学报, 2021, 70(3): 030601. doi: 10.7498/aps.70.20201204
    [2] 李婷, 卢晓同, 周驰华, 尹默娟, 王叶兵, 常宏. 利用钟跃迁谱线测量超稳光学参考腔的零温漂点. 物理学报, 2021, 70(7): 073701. doi: 10.7498/aps.70.20201721
    [3] 李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟黑体辐射频移评估. 物理学报, 2019, 68(9): 093701. doi: 10.7498/aps.68.20182294
    [4] 姜海峰. 超稳光生微波源研究进展. 物理学报, 2018, 67(16): 160602. doi: 10.7498/aps.67.20180751
    [5] 康鹏, 孙羽, 王进, 刘安雯, 胡水明. 基于高精细度光腔锁频激光的分子吸收光谱测量. 物理学报, 2018, 67(10): 104206. doi: 10.7498/aps.67.20172532
    [6] 林弋戈, 方占军. 锶原子光晶格钟. 物理学报, 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [7] 张曦, 刘慧, 姜坤良, 王进起, 熊转贤, 贺凌翔, 吕宝龙. 利用传输腔技术实现镱原子光钟光晶格场的频率稳定. 物理学报, 2017, 66(16): 164205. doi: 10.7498/aps.66.164205
    [8] 田晓, 王叶兵, 卢本全, 刘辉, 徐琴芳, 任洁, 尹默娟, 孔德欢, 常宏, 张首刚. 锶玻色子的“魔术”波长光晶格装载实验研究. 物理学报, 2015, 64(13): 130601. doi: 10.7498/aps.64.130601
    [9] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究. 物理学报, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [10] 杜金锦, 李文芳, 文瑞娟, 李刚, 张天才. 超高精细度微光学腔共振频率及有效腔长的精密测量. 物理学报, 2013, 62(19): 194203. doi: 10.7498/aps.62.194203
    [11] 王叶兵, 陈洁, 田晓, 高峰, 常宏. 锶原子互组跃迁谱的实验研究. 物理学报, 2012, 61(2): 020601. doi: 10.7498/aps.61.020601
    [12] 高峰, 王叶兵, 田晓, 许朋, 常宏. 锶原子三重态谱线的观测及在光钟中的应用. 物理学报, 2012, 61(17): 173201. doi: 10.7498/aps.61.173201
    [13] 韩海年, 张金伟, 张青, 张龙, 魏志义. 飞秒激光共振增强腔的理论与实验研究. 物理学报, 2012, 61(16): 164206. doi: 10.7498/aps.61.164206
    [14] 王心亮, 陈洁, 王叶兵, 高峰, 张首刚, 刘海峰, 常宏. 利用塞曼扫频法实现对减速锶原子束速度分布的直接测量. 物理学报, 2011, 60(10): 103201. doi: 10.7498/aps.60.103201
    [15] 刘涛, 张天才, 王军民, 彭堃墀. 高精细度光学微腔中原子的偶极俘获. 物理学报, 2004, 53(5): 1346-1351. doi: 10.7498/aps.53.1346
    [16] 李利平, 刘涛, 李刚, 张天才, 王军民. 超高精细度光学腔中低损耗的测量. 物理学报, 2004, 53(5): 1401-1405. doi: 10.7498/aps.53.1401
    [17] 严祖同, 孙振华. Anderson-Grüneisen参数、热膨胀系数与压强的普遍关系. 物理学报, 1989, 38(10): 1634-1641. doi: 10.7498/aps.38.1634
    [18] 阮耀钟, 李立平, 胡学龙, 彭定坤, 胡俊宝, 张裕恒. 正交和四方YBa2Cu3O7-x的热膨胀系数. 物理学报, 1988, 37(12): 2034-2037. doi: 10.7498/aps.37.2034
    [19] 阮耀钟, 李立平, 吴志强, 何平笙. PTS单晶的低温热膨胀系数. 物理学报, 1987, 36(9): 1219-1223. doi: 10.7498/aps.36.1219
    [20] 高占鹏. 膨胀系数、体模量、Grüneisen系数与温度关系. 物理学报, 1981, 30(5): 679-685. doi: 10.7498/aps.30.679
计量
  • 文章访问数:  4759
  • PDF下载量:  353
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-29
  • 修回日期:  2017-01-18
  • 刊出日期:  2017-04-05

高精细度光学参考腔的自主化研制

  • 1. 中国科学院大学, 北京 100049;
  • 2. 中国科学院国家授时中心, 时间频率基准实验室, 西安 710600;
  • 3. 中航工业西安飞行自动控制研究所, 西安 710065
  • 通信作者: 刘涛, taoliu@ntsc.ac.cn
    基金项目: 国家重大科研仪器设备研制专项(批准号:61127901)、国家自然科学基金(批准号:11273024,61025023)和国家自然科学基金青年科学基金(批准号:11403031)资助的课题.

摘要: 高精细度超稳光学参考腔是获得超窄线宽激光的核心部件. 本文报道了面向空间应用的高精细度球形超稳光学参考腔自主化研制及其初步测试结果. 设计球形腔体直径为80 mm,腔长78 mm,采用平-凹腔镜结构,凹镜曲率半径为0.5 m. 使用有限元方法计算了该参考腔的震动敏感度,最佳支撑位置的震动敏感度小于110-10/g. 采用超光滑表面三级抛光技术实现光学表面粗糙度小于0.4 nm(rms)的超精密加工,采用双离子束溅射法实现工作波长反射率大于99.999%、损耗小于4 ppm 腔镜镀膜,干式光胶方法键合腔体和腔镜. 利用扫腔线宽法和腔衰荡法对参考腔的线宽和精细度进行了测量,结果表明该参考腔的精细度约为195000,线宽为9.8 kHz. 将698 nm半导体激光器锁定到该参考腔上测得其损耗5 ppm. 与实验室进口同类型参考腔相比较,主要性能指标与其相当.

English Abstract

参考文献 (45)

目录

    /

    返回文章
    返回