搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可搬运锶光晶格钟系统不确定度的评估

孔德欢 郭峰 李婷 卢晓同 王叶兵 常宏

引用本文:
Citation:

可搬运锶光晶格钟系统不确定度的评估

孔德欢, 郭峰, 李婷, 卢晓同, 王叶兵, 常宏

Evaluation of systematic uncertainty for transportable 87Sr optical lattice clock

Kong De-Huan, Guo Feng, Li Ting, Lu Xiao-Tong, Wang Ye-Bing, Chang Hong
PDF
HTML
导出引用
  • 可搬运光学原子钟在科学研究和工程应用中具有重要意义. 本文测量了可搬运87Sr光晶格钟系统的主要频移, 包括黑体辐射频移、碰撞频移、晶格光交流斯塔克频移、二阶塞曼频移等. 首先实验上测量了磁光阱腔体表面的温度分布, 分析了不同热源对原子团的影响, 得到黑体辐射总的相对频移修正量为50.4 × 10–16, 相对不确定度为5.1 × 10–17. 然后利用分时自比对方法, 评估了碰撞频移、晶格光交流斯塔克频移和二阶塞曼频移. 结果表明, 由黑体辐射引起的频移量最大, 晶格光交流斯塔克频移的不确定度最大, 系统总的相对频移修正量为58.8 × 10–16, 总不确定度为2.3 × 10–16. 该工作为可搬运87Sr光晶格钟之后的性能提升和应用提供了条件.
    Transportable optical clocks have broad applications in scientific research and engineering. Accurate evaluation of systematic uncertainty for the transportable 87Sr optical lattice clock is a prerequisite for the practical realization of the optical clock. Four main frequency shifts of the 87Sr optical lattice clock are measured, i.e. blackbody-radiation (BBR) shift, collision shift, lattice alternating current (AC) Stark shift, and second-order Zeeman shift. Firstly, by measuring the temperature distribution on the surface of the magneto-optical trap cavity and analyzing the influence of different heat sources on atomic cloud, the BBR shift correction is measured to be 50.4 × 10–16 Hz with an uncertainty of 5.1 × 10–17. Secondly, the time-interleaved self-comparison method is used under high and low atom density condition to evaluate the collision shift of the system. The correction of collision shift is 4.7 × 10–16 with an uncertainty of 5.6 × 10–17. Thirdly, the lattice AC Stark shift is evaluated by the time-interleaved self-comparison method. By measuring the dependence of the lattice AC Stark shift on the wavelength of the lattice light, the magic wavelength is measured to be 368554393(78) MHz. As a result, the lattice AC Stark shift correction is 3.0 × 10–16 with an uncertainty of 2.2 × 10–16. Finally, using the time-interleaved self-comparison technology, the second-order Zeeman frequency shift is evaluated by measuring the fluctuation of the difference in center frequency between the ${m_{\text{F}}} = + {9 / 2} \to {m_{\text{F}}} = + {9 / 2}$ polarization spectrum and ${m_{\text{F}}} = - {9 / 2} \to {m_{\text{F}}} = - {9 / 2}$ polarization spectrum. The correction of second-order Zeeman shift is calculated to be 0.7 × 10–16, and corresponding uncertainty is 0.2 × 10–17. Experimental results indicate that the frequency shift correction due to the blackbody radiation is the largest, while the uncertainty caused by the lattice AC Stark effect is the largest in the evaluated shifts. The systematic shift is 58.8 × 10–16, the total uncertainty is 2.3 × 10–16. In the next work, the magneto-optical trap cavity will be placed in a blackbody-radiation cavity to reduce the blackbody-radiation shift. The uncertainty of the collision shift will be reduced by increasing the beam waist of the lattice and reducing the potential well depth of the lattice, which will reduce the density of atoms. What is more, the light source for the optical lattice after spectral filtering will be measured by an optical frequency comb locked to the hydrogen clock signal to reduce the uncertainty of the lattice AC Stark frequency shift. The systematic uncertainty is expected to be on the order of 10–17. The evaluation of the systematic uncertainty for the transportable 87Sr optical lattice clock lays the foundation for the practical application.
      通信作者: 王叶兵, wangyebing@ntsc.ac.cn ; 常宏, changhong@ntsc.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61775220, 11803042)、中国科学院前沿科学重点研究项目(批准号: QYZBD-SSW-JSC004)和中国科学院青年创新促进会 (批准号: 2019400)资助的课题
      Corresponding author: Wang Ye-Bing, wangyebing@ntsc.ac.cn ; Chang Hong, changhong@ntsc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775220, 11803042), the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZBD-SSW-JSC004), and the Youth Innovation Promotion Association CAS (Grant No. 2019400)
    [1]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schimidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar

    [2]

    Rosenband T, Hume D B, Schmidt P O, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808Google Scholar

    [3]

    Diddams S A 2001 Science 293 825Google Scholar

    [4]

    Dube P, Madej A A, Zhou Z C, Bernard J E 2013 Phys. Rev. A 87 023806Google Scholar

    [5]

    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B G, MacNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, Ye J 2015 Nat. Commun. 6 6896Google Scholar

    [6]

    Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah O N, MacNally R L, Souderhouse L, Robinson J M, Zhang W, Bloom B G, Ye J 2017 Science 358 90Google Scholar

    [7]

    Poli N, Schioppo M, Vogt S, Falke S, Sterr U, Lisdat C, Tino G M 2014 Appl. Phys. B 117 1107Google Scholar

    [8]

    Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C, Fang Z J 2015 Chin. Phys. Lett. 32 090601Google Scholar

    [9]

    Ohmae N, Sakama S, Katori H 2019 Electr. Commun. JPN 102 43Google Scholar

    [10]

    Liu H, Zhang X, Jiang K L, Wang J Q, Zhou Q, Xiong Z X, He L X, Lü B L 2017 Chin. Phys. Lett. 34 020601Google Scholar

    [11]

    周敏, 徐信业 2016 物理 45 431Google Scholar

    Zhou M, Xu X Y 2016 Physics 45 431Google Scholar

    [12]

    管桦, 黄垚, 李承斌, 高克林 2018 物理学报 67 164202Google Scholar

    Guan H, Huang Y, Li C B, Gao K L 2018 Acta Phys. Sin. 67 164202Google Scholar

    [13]

    Huang Y, Guan H, Zeng M, Tang L, Gao K 2019 Phys. Rev. A 99 011401Google Scholar

    [14]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [15]

    Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, Ye J 2019 Nat. Photon. 13 714Google Scholar

    [16]

    Paul S, Swanson T B, Hanssen J, Taylor J 2017 Metrologia 54 247Google Scholar

    [17]

    Derevianko A, Pospelov M 2014 Nat. Phys. 10 933Google Scholar

    [18]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [19]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630Google Scholar

    [20]

    Lopez O, Haboucha A, Chanteau B, Chardonnet Ch, Amy-Klein A, Santarelli G 2012 Opt. Express 20 23518Google Scholar

    [21]

    Bercy A, Lopez O, Pottie P E, Amy-Klein A 2016 Appl. Phys. B 122 189Google Scholar

    [22]

    Mcgrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 87Google Scholar

    [23]

    Grotti J, Koller S, Vogt S, Häfner S, Sterr U, Lisdat C, Denker H, Voigt C, Timmen L, Rolland A, Fred N B, Margolis H S, Zampaolo M, Thoumany P, Pizzocaro M, Rauf B, Bregolin F, Tampellini A, Barbieri P, Zucco M, Costanzo G A, Clivati C, Levi F, Calonico D 2018 Nat. Phys. 14 437Google Scholar

    [24]

    Shang H S, Zhang X G, Zhang S N, Pan D, Chen H J, Chen J B 2017 Opt. Express 25 30459Google Scholar

    [25]

    Zhang S, Zhang X, Cui J, Jiang Z J, Shang H S, Zhu C W, Chang P Y, Zhang L, Tu J H, Chen J B 2017 Rev. Sci. Instrum. 88 103106Google Scholar

    [26]

    Koller S B, Grotti J, Al-Masoudi A, Dörscher S, Häfner S, Sterr U, Lisdat C 2017 Phys. Rev. Lett. 118 073601Google Scholar

    [27]

    Cao J, Zhang P, Shang J, Cui K, Yuan J, Chao S, Wang S, Shu H, Huang X 2017 Appl. Phys. B 123 112Google Scholar

    [28]

    Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H, Katori H 2020 Nat. Photon. 14 411Google Scholar

    [29]

    Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y, Chang H 2018 Chin. Phys. B 27 023701Google Scholar

    [30]

    Kong D H, Wang Z H, Guo F, Zhang Q, Lu X T, Wang Y B, Chang H 2020 Chin. Phys. B 29 070602Google Scholar

    [31]

    Middlemann T, Falkes S, Listat C, Sterr U 2012 Phys. Rev. Lett. 109 263004Google Scholar

    [32]

    李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏 2019 物理学报 68 093701Google Scholar

    Li T, Lu X T, Zhang Q, Kong D H, Wang Y B, Chang H 2019 Acta Phys. Sin. 68 093701Google Scholar

    [33]

    Origlia S, Pramod M S, Schiller S, Singh Y, Bongs K, Schwarz R, Al-Masoudi A, Dörscher S, Häfner S, Sterr U, Lisdat C 2018 Phys. Rev. A 98 053443Google Scholar

    [34]

    Bureau International des Poids et Mesures (BIPM) Consultative Committee for Time and Frequency (CCTF) Report of the 21st Meeting (June 8-9, 2017) to the International Committee for Weights and Measures https://www.bipm.org/utils/common/pdf/CC/CCTF/CCTF21.pdf

    [35]

    Lemke N D, von Stecher J, Sherman J A, Rey A M, Oates C W, Ludlow A D 2011 Phys. Rev. Lett. 107 103902Google Scholar

    [36]

    卢晓同, 李婷, 孔德欢, 王叶兵, 常宏 2019 物理学报 68 233401Google Scholar

    Lu X T, Li T, Kong D H, Wang Y B, Chang H 2019 Acta Phys. Sin. 68 233401Google Scholar

    [37]

    Katori H, Takamoto M, Pal’chikov V G, Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005Google Scholar

    [38]

    林弋戈, 方占军 2018 物理学报 67 160604Google Scholar

    Lin Y G, Fang Z J 2018 Acta Phys. Sin. 67 160604Google Scholar

    [39]

    Westergaard P G, Lodewyck J, Lorini L, Lecallier A, Burt E A, Zawada M, Millo J, Lemonde P 2011 Phys. Rev. Lett. 106 210801Google Scholar

    [40]

    Bloom B J, Nicholson T L, William J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L 2014 Nature 506 71Google Scholar

    [41]

    Bailard X, Fouché M, Targat R L, Westergaard P G, Lecallier A, Coq Y L, Rovera G D, Bize S, Lemonde P 2007 Opt. Lett. 32 1812Google Scholar

    [42]

    Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, L Tew W L, Ye J, Kennedy C J 2019 Metrologia 56 065004Google Scholar

  • 图 1  可搬运87Sr光晶格钟的物理系统(PMT, 光电倍增管; EMCCD, 电子倍增电荷耦合相机)

    Fig. 1.  Physical system of the transportable strontium optical lattice clock (PMT, photo-multiplier tube; EMCCD, electron-multiplying charge coupled device)

    图 2  磁光阱腔体上测量点的分布示意图

    Fig. 2.  Distribution of the temperature points on the magneto-optical trap cavity.

    图 3  磁光阱腔体各测温点的温度波动

    Fig. 3.  Temperature fluctuations at the temperature points on the magneto-optical trap cavity

    图 4  碰撞频移的测试结果

    Fig. 4.  Measurement for the collision shift

    图 5  单次高低原子密度自比对的阿伦偏差

    Fig. 5.  The Allan deviation obtained by the time-interleaved self-comparison method between high and low atomic density

    图 6  晶格光频移系数随晶格光频率的变化

    Fig. 6.  Clock sensitivity to lattice wavelength.

    图 7  钟跃迁极化峰间距的测量结果

    Fig. 7.  Frequency gap between two different spin-polarized peaks.

    表 1  可搬运87Sr光晶格钟的系统不确定度评估

    Table 1.  Uncertainty budget for the transportable strontium optical lattice clock.

    频移项相对频移修正/10–16相对不确定度/10–17
    黑体辐射50.45.1
    碰撞4.75.6
    晶格光交流斯塔克3.022.1
    二阶塞曼0.70.2
    钟激光交流斯塔克01.0
    线牵引01.0
    总和58.823.4
    下载: 导出CSV
  • [1]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schimidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar

    [2]

    Rosenband T, Hume D B, Schmidt P O, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808Google Scholar

    [3]

    Diddams S A 2001 Science 293 825Google Scholar

    [4]

    Dube P, Madej A A, Zhou Z C, Bernard J E 2013 Phys. Rev. A 87 023806Google Scholar

    [5]

    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B G, MacNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, Ye J 2015 Nat. Commun. 6 6896Google Scholar

    [6]

    Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah O N, MacNally R L, Souderhouse L, Robinson J M, Zhang W, Bloom B G, Ye J 2017 Science 358 90Google Scholar

    [7]

    Poli N, Schioppo M, Vogt S, Falke S, Sterr U, Lisdat C, Tino G M 2014 Appl. Phys. B 117 1107Google Scholar

    [8]

    Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C, Fang Z J 2015 Chin. Phys. Lett. 32 090601Google Scholar

    [9]

    Ohmae N, Sakama S, Katori H 2019 Electr. Commun. JPN 102 43Google Scholar

    [10]

    Liu H, Zhang X, Jiang K L, Wang J Q, Zhou Q, Xiong Z X, He L X, Lü B L 2017 Chin. Phys. Lett. 34 020601Google Scholar

    [11]

    周敏, 徐信业 2016 物理 45 431Google Scholar

    Zhou M, Xu X Y 2016 Physics 45 431Google Scholar

    [12]

    管桦, 黄垚, 李承斌, 高克林 2018 物理学报 67 164202Google Scholar

    Guan H, Huang Y, Li C B, Gao K L 2018 Acta Phys. Sin. 67 164202Google Scholar

    [13]

    Huang Y, Guan H, Zeng M, Tang L, Gao K 2019 Phys. Rev. A 99 011401Google Scholar

    [14]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [15]

    Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, Ye J 2019 Nat. Photon. 13 714Google Scholar

    [16]

    Paul S, Swanson T B, Hanssen J, Taylor J 2017 Metrologia 54 247Google Scholar

    [17]

    Derevianko A, Pospelov M 2014 Nat. Phys. 10 933Google Scholar

    [18]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [19]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630Google Scholar

    [20]

    Lopez O, Haboucha A, Chanteau B, Chardonnet Ch, Amy-Klein A, Santarelli G 2012 Opt. Express 20 23518Google Scholar

    [21]

    Bercy A, Lopez O, Pottie P E, Amy-Klein A 2016 Appl. Phys. B 122 189Google Scholar

    [22]

    Mcgrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 87Google Scholar

    [23]

    Grotti J, Koller S, Vogt S, Häfner S, Sterr U, Lisdat C, Denker H, Voigt C, Timmen L, Rolland A, Fred N B, Margolis H S, Zampaolo M, Thoumany P, Pizzocaro M, Rauf B, Bregolin F, Tampellini A, Barbieri P, Zucco M, Costanzo G A, Clivati C, Levi F, Calonico D 2018 Nat. Phys. 14 437Google Scholar

    [24]

    Shang H S, Zhang X G, Zhang S N, Pan D, Chen H J, Chen J B 2017 Opt. Express 25 30459Google Scholar

    [25]

    Zhang S, Zhang X, Cui J, Jiang Z J, Shang H S, Zhu C W, Chang P Y, Zhang L, Tu J H, Chen J B 2017 Rev. Sci. Instrum. 88 103106Google Scholar

    [26]

    Koller S B, Grotti J, Al-Masoudi A, Dörscher S, Häfner S, Sterr U, Lisdat C 2017 Phys. Rev. Lett. 118 073601Google Scholar

    [27]

    Cao J, Zhang P, Shang J, Cui K, Yuan J, Chao S, Wang S, Shu H, Huang X 2017 Appl. Phys. B 123 112Google Scholar

    [28]

    Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H, Katori H 2020 Nat. Photon. 14 411Google Scholar

    [29]

    Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y, Chang H 2018 Chin. Phys. B 27 023701Google Scholar

    [30]

    Kong D H, Wang Z H, Guo F, Zhang Q, Lu X T, Wang Y B, Chang H 2020 Chin. Phys. B 29 070602Google Scholar

    [31]

    Middlemann T, Falkes S, Listat C, Sterr U 2012 Phys. Rev. Lett. 109 263004Google Scholar

    [32]

    李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏 2019 物理学报 68 093701Google Scholar

    Li T, Lu X T, Zhang Q, Kong D H, Wang Y B, Chang H 2019 Acta Phys. Sin. 68 093701Google Scholar

    [33]

    Origlia S, Pramod M S, Schiller S, Singh Y, Bongs K, Schwarz R, Al-Masoudi A, Dörscher S, Häfner S, Sterr U, Lisdat C 2018 Phys. Rev. A 98 053443Google Scholar

    [34]

    Bureau International des Poids et Mesures (BIPM) Consultative Committee for Time and Frequency (CCTF) Report of the 21st Meeting (June 8-9, 2017) to the International Committee for Weights and Measures https://www.bipm.org/utils/common/pdf/CC/CCTF/CCTF21.pdf

    [35]

    Lemke N D, von Stecher J, Sherman J A, Rey A M, Oates C W, Ludlow A D 2011 Phys. Rev. Lett. 107 103902Google Scholar

    [36]

    卢晓同, 李婷, 孔德欢, 王叶兵, 常宏 2019 物理学报 68 233401Google Scholar

    Lu X T, Li T, Kong D H, Wang Y B, Chang H 2019 Acta Phys. Sin. 68 233401Google Scholar

    [37]

    Katori H, Takamoto M, Pal’chikov V G, Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005Google Scholar

    [38]

    林弋戈, 方占军 2018 物理学报 67 160604Google Scholar

    Lin Y G, Fang Z J 2018 Acta Phys. Sin. 67 160604Google Scholar

    [39]

    Westergaard P G, Lodewyck J, Lorini L, Lecallier A, Burt E A, Zawada M, Millo J, Lemonde P 2011 Phys. Rev. Lett. 106 210801Google Scholar

    [40]

    Bloom B J, Nicholson T L, William J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L 2014 Nature 506 71Google Scholar

    [41]

    Bailard X, Fouché M, Targat R L, Westergaard P G, Lecallier A, Coq Y L, Rovera G D, Bize S, Lemonde P 2007 Opt. Lett. 32 1812Google Scholar

    [42]

    Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, L Tew W L, Ye J, Kennedy C J 2019 Metrologia 56 065004Google Scholar

  • [1] 娄艳芝, 李玉武. K-M花样分析法测定薄晶体厚度和消光距离的不确定度评定. 物理学报, 2022, 71(14): 146803. doi: 10.7498/aps.71.20212271
    [2] 陈泽锐, 刘光存, 俞振华. 谐振子势阱中双费米原子光钟的碰撞频移. 物理学报, 2021, 70(18): 180602. doi: 10.7498/aps.70.20210243
    [3] 管勇, 刘丹丹, 王心亮, 张辉, 施俊如, 白杨, 阮军, 张首刚. 绝热跃迁方法测量铯喷泉钟冷原子碰撞频移. 物理学报, 2020, 69(14): 140601. doi: 10.7498/aps.69.20191800
    [4] 孙晨, 冯玉涛, 傅頔, 张亚飞, 李娟, 刘学斌. 多普勒差分干涉仪干涉图信噪比对相位不确定度研究. 物理学报, 2020, 69(1): 014202. doi: 10.7498/aps.69.20191179
    [5] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟碰撞频移的测量. 物理学报, 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [6] 王谦, 刘卫国, 巩蕾, 王利国, 李亚清. 双波长自由载流子吸收技术测量半导体载流子体寿命和表面复合速率. 物理学报, 2018, 67(21): 217201. doi: 10.7498/aps.67.20181509
    [7] 王倩, 魏荣, 王育竹. 原子喷泉频标:原理与发展. 物理学报, 2018, 67(16): 163202. doi: 10.7498/aps.67.20180540
    [8] 聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹. 66116618 cm-1之间氨气光谱线强的测量. 物理学报, 2017, 66(5): 054207. doi: 10.7498/aps.66.054207
    [9] 寇添, 王海晏, 王芳, 吴学铭, 王领, 徐强. 机载多脉冲激光测距特性及其不确定度研究. 物理学报, 2015, 64(12): 120601. doi: 10.7498/aps.64.120601
    [10] 邵克勇, 马永晶, 王婷婷, 刘远红, 杨莉, 高宏宇. 不确定混沌系统的异结构同步. 物理学报, 2013, 62(2): 020514. doi: 10.7498/aps.62.020514
    [11] 尚万里, 朱托, 况龙钰, 张文海, 赵阳, 熊刚, 易荣清, 李三伟, 杨家敏. 透射光栅谱仪测谱不确定度分析. 物理学报, 2013, 62(17): 170602. doi: 10.7498/aps.62.170602
    [12] 刘李辉, 邹宏新, 刘曲, 李玺. 199Hg+光频标的黑体辐射频移. 物理学报, 2012, 61(10): 103101. doi: 10.7498/aps.61.103101
    [13] 张蔚泓, 牛中明, 王枫, 龚孝波, 孙保华. 宇宙核时钟不确定度的研究. 物理学报, 2012, 61(11): 112601. doi: 10.7498/aps.61.112601
    [14] 刘子龙, 陈锐, 廖宁放, 李在清, 王煜. 大幅提高视觉密度国家基准测量水平的方法研究. 物理学报, 2012, 61(23): 230601. doi: 10.7498/aps.61.230601
    [15] 罗永健, 于茜, 张卫东. 参数不确定时延超混沌系统的脉冲同步方法研究. 物理学报, 2011, 60(11): 110504. doi: 10.7498/aps.60.110504
    [16] 陈伯伦, 杨正华, 曹柱荣, 董建军, 侯立飞, 崔延莉, 江少恩, 易荣清, 李三伟, 刘慎业, 杨家敏. 同步辐射标定平面镜反射率不确定度分析方法研究. 物理学报, 2010, 59(10): 7078-7085. doi: 10.7498/aps.59.7078
    [17] 吕翎, 李岩. 不确定自催化反应扩散时空混沌系统的延时同步. 物理学报, 2009, 58(1): 131-138. doi: 10.7498/aps.58.131
    [18] 胡昆明. 确定等价电子杨盘基的等概率比对方法. 物理学报, 2008, 57(10): 6074-6080. doi: 10.7498/aps.57.6074
    [19] 罗志勇, 杨丽峰, 陈允昌. 基于多光束干涉原理的相移算法研究. 物理学报, 2005, 54(7): 3051-3057. doi: 10.7498/aps.54.3051
    [20] 董太乾. 用脉冲取样光检测方法减小Rb87频标的光频移. 物理学报, 1981, 30(1): 1-11. doi: 10.7498/aps.30.1
计量
  • 文章访问数:  6971
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-27
  • 修回日期:  2020-09-07
  • 上网日期:  2021-01-22
  • 刊出日期:  2021-02-05

/

返回文章
返回