-
钼作为重要的结构材料, 在核能系统中得到广泛应用, 因此钼高精度的中子反应截面对核能系统研发具有重要意义. 本文采用活化法和相对测量法测量了92Mo(n,p)92mNb的反应截面, 利用中国原子能科学研究院纳秒脉冲中子发生器(CPNG)对样品进行辐照、利用高纯锗探测器对辐照后样品进行活化产物核的活度测量, 并计算反应截面和修正因子, 最终得到14.1 MeV能点的92Mo(n,p)92mNb的反应截面. 为降低实验测量的不确定度, 本工作提出了待测产物与监测产物为同一个产物核的策略, 有效消除了产物核半衰期与衰变分支比、伽马探测效率、辐照过程的束流波动等引进的不确定度, 有效提高了测量精度, 获得了到目前为止精度最高的实验数据. 测量结果与其他实验数据进行了比较与分析, 本工作为该反应道的核数据评价提供了高精度的实验数据支撑.Molybdenum, as an important structural material, has been widely used in nuclear energy systems. Therefore, the high-precision neutron reaction cross-section of molybdenum is of great significance for developing nuclear energy systems. This paper uses activation and relative measurement methods to measure the reaction cross section of 92Mo(n,p)92mNb. The sample is irradiated at a 90º angle using nanosecond pulse neutron generator (CPNG) from the China Institute of Atomic Energy. After a period of cooling time, the activities of the activated product nuclei of the irradiated sample are measured using a high-purity germanium detector, and the reaction cross section and correction factors are calculated. The traditional correction factors include neutron fluence fluctuation, cascade, self-absorption, geometry and scattered-neutron corrections. Finally, the reaction cross section of 92Mo(n,p)92mNb at 14.1-MeV energy point is obtained. In order to reduce the uncertainty of experimental measurements, this work proposes a strategy in which the test product and the monitoring product are the same nuclide, effectively eliminating the uncertainties caused by the half-life and decay branch ratio of the product nucleus, gamma detection efficiency, and beam fluctuations during irradiation. This method significantly enhances the measurement accuracy, achieving the highest precision experimental data to date. This experiment aims to minimize the overall measurement uncertainty, so the stringent requirements are imposed on both the sample mass-thickness and the operating environment. The mass and thickness of each sample are therefore determined through five independent measurements using a 0.1 mg-precision analytical balance and a vernier caliper, respectively, and the mean values are taken. After the experiment, the measured data are carefully compared and analyzed with other datasets, The value of cross-section is not significantly different from others in the database and is located within the error range, which further verifies the feasibility of this method, providing high-precision experimental support for evaluating the nuclear-data of this reaction channel.
-
Keywords:
- (n,p) reaction /
- activation method /
- uncertainty /
- reaction cross-section
[1] 柏小丹, 曾毅, 孙院军 2021 中国钼业 45 12
Bai X D, Zeng Y, Sun Y J 2021 Chin. Molybdenum Ind. 45 12
[2] 张勇, 王雄禹, 于静, 曹维成, 冯鹏发, 焦生杰 2017 材料导报 31 83
Google Scholar
Zhang Y, Wang X Y, Yu J, Cao W C, Feng P F, Jiao S J 2017 Mater. Rep. 31 83
Google Scholar
[3] 胡建生, 左桂忠, 王亮, 丁锐, 余耀伟, 张洋, 徐伟 2020 中国科学技术大学学报 50 1193
Google Scholar
Hu J S, Zuo G Z, Wang L, Ding R, Yu Y W, Zhang Y, Xu W 2020 J. Univ. Sci. Technol. Chin. 50 1193
Google Scholar
[4] 朱传新, 郑普 2009 中国核科技报告 43
Zhu C X, Zheng P 2009 China Nuclear Science and Technology Report 43
[5] 邱奕嘉, 刘通, 占许文, 兰长林, 孔祥忠 2018 原子能科学技术 52 1729
Qiu Y J, Liu T, Zhan X W, Lan C L, Kong X Z 2018 At. Energy Sci. Technol. 52 1729
[6] 仇九子 2002 物理实验 22 40
Qiu J Z 2002 Phys. Exp. 22 40
[7] 江历阳, 李景文, 陈雄军, 韩晓刚, 仲启平, 于伟翔 2012 原子能科学技术 46 641
Google Scholar
Jiang L Y, Li J W, Chen X J, Han X G, Zhong Q P, Yu W X 2012 At. Energy Sci. Technol. 46 641
Google Scholar
[8] 叶二雷, 沈春霞, 南宏杰 2023 核电子学与探测技术 43 409
Ye E L, Shen C X, Nan H J 2023 Nucl. Electron. Detect. Technol. 43 409
[9] 秦超, 王德忠, 于文丹, 张适 2011 核技术 34 437
Qin C, Wang D Z, Yu W D, Zhang S 2011 Nucl. Tech. 34 437
[10] Guo H, Li Q, Zhang C L, Jiang L Y, Ruan X C 2023 Appl. Radiat. Isot. 200 110948
Google Scholar
[11] 姚泽恩, 岳伟明, 罗鹏, 谭新健, 杜洪新, 聂阳波 2008 原子能科学技术 42 400
Google Scholar
Yao Z E, Yue W M, Luo P, Tan X J, Du H X, Nie Y B 2008 At. Energy Sci. Technol. 42 400
Google Scholar
[12] Li Q, Jiang L Y, Zhang C L, Ruan X C, Ge Z G 2022 Appl. radiat. Isot. 186 110260
Google Scholar
[13] 杨立涛, 陈超峰, 金晓祥, 林冠, 黄彦君 2017 原子能科学技术 51 323
Yang L T, Chen C F, Jin X X, Lin G, Huang Y J 2017 At. Energy Sci. Technol. 51 323
[14] Kanda Y 1972 Nucl. Phys. A. 185 177
Google Scholar
[15] 孔祥忠, 王永昌, 袁俊谦, 杨景康 1996 兰州大学学报 32 41
Kong X Z, Wang Y C, Yuan J Q, Yang J K 1996 J. Lanzhou Univ. 32 41
[16] Luo J H, Jiang L 2020 Chin. Phys. C 44 114002 (in Chinese)
Google Scholar
[17] Molla N I, Hossain S M, Basunia S, Miah R U, Rahman M, Sikder D H, Chowdhury M I 1997 J. Radioanal. Nucl. Chem. 216 213 (in Chinese)
Google Scholar
[18] Semkova V, Nolte R 2014 EPJ Web of Conferences. 66 03077 (in Chinese)
Google Scholar
[19] Filatenkov A A 2025 https://www-nds.iaea.org/exfor/servlet/ X4sGetSubent?reqx=12324&subID=41614070 [2025-5-25]
[20] Zhao W R, Lu H L, Yu W X, Han X G, Huang X L 1998 Chin. Nucl. Sci. Technol. Rep. A 4 7
-
表 1 样品和监测片的参数
Table 1. Parameters of samples and monitoring plates.
材料 直径/mm 厚度/mm 质量/g 丰度/% 92Mo 20 1.03 3.2496 14.53 93Nb-1 20 0.79 2.0685 100 93Nb-2 20 0.78 2.0675 100 表 2 待测样品与监测片修正因子汇总表
Table 2. Summary of correction factors for test samples and monitoring plates.
样品 fs fg fc Mo 0.9750 0.9912 0.9600 Nb 0.9836 0.9930 0.9900 表 3 不确定度评价表
Table 3. Uncertainty evaluation table.
不确定度来源 相对不确定度/% 92Mo(n,p)92mNb 93Nb-1(n,2n)92mNb 93Nb-2(n,2n)92mNb 样品质量 ≤0.01 ≤0.01 ≤0.01 半衰期 0.2 0.2 0.2 计数统计 1.33 0.38 0.36 中子能谱/散射中子修正 1 1 1 丰度不确定度 0.7 — — 几何自吸收不确定度 0.36 0.7 0.7 监测反应截面不确定度 0.55 — — 比截面不确定度(不包括监测反应截面不确定度) 1.85 — — 总不确定度 1.93 — — -
[1] 柏小丹, 曾毅, 孙院军 2021 中国钼业 45 12
Bai X D, Zeng Y, Sun Y J 2021 Chin. Molybdenum Ind. 45 12
[2] 张勇, 王雄禹, 于静, 曹维成, 冯鹏发, 焦生杰 2017 材料导报 31 83
Google Scholar
Zhang Y, Wang X Y, Yu J, Cao W C, Feng P F, Jiao S J 2017 Mater. Rep. 31 83
Google Scholar
[3] 胡建生, 左桂忠, 王亮, 丁锐, 余耀伟, 张洋, 徐伟 2020 中国科学技术大学学报 50 1193
Google Scholar
Hu J S, Zuo G Z, Wang L, Ding R, Yu Y W, Zhang Y, Xu W 2020 J. Univ. Sci. Technol. Chin. 50 1193
Google Scholar
[4] 朱传新, 郑普 2009 中国核科技报告 43
Zhu C X, Zheng P 2009 China Nuclear Science and Technology Report 43
[5] 邱奕嘉, 刘通, 占许文, 兰长林, 孔祥忠 2018 原子能科学技术 52 1729
Qiu Y J, Liu T, Zhan X W, Lan C L, Kong X Z 2018 At. Energy Sci. Technol. 52 1729
[6] 仇九子 2002 物理实验 22 40
Qiu J Z 2002 Phys. Exp. 22 40
[7] 江历阳, 李景文, 陈雄军, 韩晓刚, 仲启平, 于伟翔 2012 原子能科学技术 46 641
Google Scholar
Jiang L Y, Li J W, Chen X J, Han X G, Zhong Q P, Yu W X 2012 At. Energy Sci. Technol. 46 641
Google Scholar
[8] 叶二雷, 沈春霞, 南宏杰 2023 核电子学与探测技术 43 409
Ye E L, Shen C X, Nan H J 2023 Nucl. Electron. Detect. Technol. 43 409
[9] 秦超, 王德忠, 于文丹, 张适 2011 核技术 34 437
Qin C, Wang D Z, Yu W D, Zhang S 2011 Nucl. Tech. 34 437
[10] Guo H, Li Q, Zhang C L, Jiang L Y, Ruan X C 2023 Appl. Radiat. Isot. 200 110948
Google Scholar
[11] 姚泽恩, 岳伟明, 罗鹏, 谭新健, 杜洪新, 聂阳波 2008 原子能科学技术 42 400
Google Scholar
Yao Z E, Yue W M, Luo P, Tan X J, Du H X, Nie Y B 2008 At. Energy Sci. Technol. 42 400
Google Scholar
[12] Li Q, Jiang L Y, Zhang C L, Ruan X C, Ge Z G 2022 Appl. radiat. Isot. 186 110260
Google Scholar
[13] 杨立涛, 陈超峰, 金晓祥, 林冠, 黄彦君 2017 原子能科学技术 51 323
Yang L T, Chen C F, Jin X X, Lin G, Huang Y J 2017 At. Energy Sci. Technol. 51 323
[14] Kanda Y 1972 Nucl. Phys. A. 185 177
Google Scholar
[15] 孔祥忠, 王永昌, 袁俊谦, 杨景康 1996 兰州大学学报 32 41
Kong X Z, Wang Y C, Yuan J Q, Yang J K 1996 J. Lanzhou Univ. 32 41
[16] Luo J H, Jiang L 2020 Chin. Phys. C 44 114002 (in Chinese)
Google Scholar
[17] Molla N I, Hossain S M, Basunia S, Miah R U, Rahman M, Sikder D H, Chowdhury M I 1997 J. Radioanal. Nucl. Chem. 216 213 (in Chinese)
Google Scholar
[18] Semkova V, Nolte R 2014 EPJ Web of Conferences. 66 03077 (in Chinese)
Google Scholar
[19] Filatenkov A A 2025 https://www-nds.iaea.org/exfor/servlet/ X4sGetSubent?reqx=12324&subID=41614070 [2025-5-25]
[20] Zhao W R, Lu H L, Yu W X, Han X G, Huang X L 1998 Chin. Nucl. Sci. Technol. Rep. A 4 7
计量
- 文章访问数: 357
- PDF下载量: 5
- 被引次数: 0