搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

14.1 MeV中子诱发92Mo(n,p)92mNb反应截面的精确测量

周小媛 江历阳 李文琳 郭浩 武文若 阮锡超 黄小龙

引用本文:
Citation:

14.1 MeV中子诱发92Mo(n,p)92mNb反应截面的精确测量

周小媛, 江历阳, 李文琳, 郭浩, 武文若, 阮锡超, 黄小龙
cstr: 32037.14.aps.74.20250700

Accurate measurement of cross section of 92Mo(n,p)92mNb reaction induced by 14.1-MeV neutrons

ZHOU Xiaoyuan, JIANG Liyang, LI Wenlin, GUO Hao, WU Wenruo, RUAN Xichao, HUANG Xiaolong
cstr: 32037.14.aps.74.20250700
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 钼作为重要的结构材料, 在核能系统中得到广泛应用, 因此钼高精度的中子反应截面对核能系统研发具有重要意义. 本文采用活化法和相对测量法测量了92Mo(n,p)92mNb的反应截面, 利用中国原子能科学研究院纳秒脉冲中子发生器(CPNG)对样品进行辐照、利用高纯锗探测器对辐照后样品进行活化产物核的活度测量, 并计算反应截面和修正因子, 最终得到14.1 MeV能点的92Mo(n,p)92mNb的反应截面. 为降低实验测量的不确定度, 本工作提出了待测产物与监测产物为同一个产物核的策略, 有效消除了产物核半衰期与衰变分支比、伽马探测效率、辐照过程的束流波动等引进的不确定度, 有效提高了测量精度, 获得了到目前为止精度最高的实验数据. 测量结果与其他实验数据进行了比较与分析, 本工作为该反应道的核数据评价提供了高精度的实验数据支撑.
    Molybdenum, as an important structural material, has been widely used in nuclear energy systems. Therefore, the high-precision neutron reaction cross-section of molybdenum is of great significance for developing nuclear energy systems. This paper uses activation and relative measurement methods to measure the reaction cross section of 92Mo(n,p)92mNb. The sample is irradiated at a 90º angle using nanosecond pulse neutron generator (CPNG) from the China Institute of Atomic Energy. After a period of cooling time, the activities of the activated product nuclei of the irradiated sample are measured using a high-purity germanium detector, and the reaction cross section and correction factors are calculated. The traditional correction factors include neutron fluence fluctuation, cascade, self-absorption, geometry and scattered-neutron corrections. Finally, the reaction cross section of 92Mo(n,p)92mNb at 14.1-MeV energy point is obtained. In order to reduce the uncertainty of experimental measurements, this work proposes a strategy in which the test product and the monitoring product are the same nuclide, effectively eliminating the uncertainties caused by the half-life and decay branch ratio of the product nucleus, gamma detection efficiency, and beam fluctuations during irradiation. This method significantly enhances the measurement accuracy, achieving the highest precision experimental data to date. This experiment aims to minimize the overall measurement uncertainty, so the stringent requirements are imposed on both the sample mass-thickness and the operating environment. The mass and thickness of each sample are therefore determined through five independent measurements using a 0.1 mg-precision analytical balance and a vernier caliper, respectively, and the mean values are taken. After the experiment, the measured data are carefully compared and analyzed with other datasets, The value of cross-section is not significantly different from others in the database and is located within the error range, which further verifies the feasibility of this method, providing high-precision experimental support for evaluating the nuclear-data of this reaction channel.
      通信作者: 江历阳, jiangly@ciae.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2023YFA1606603)和稳定支持基础科研计划(批准号: BJ010261223282)资助的课题.
      Corresponding author: JIANG Liyang, jiangly@ciae.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFA1606603) and the Continuous-Support Basic Scientific Research Project, China (Grant No. BJ010261223282).
    [1]

    柏小丹, 曾毅, 孙院军 2021 中国钼业 45 12

    Bai X D, Zeng Y, Sun Y J 2021 Chin. Molybdenum Ind. 45 12

    [2]

    张勇, 王雄禹, 于静, 曹维成, 冯鹏发, 焦生杰 2017 材料导报 31 83Google Scholar

    Zhang Y, Wang X Y, Yu J, Cao W C, Feng P F, Jiao S J 2017 Mater. Rep. 31 83Google Scholar

    [3]

    胡建生, 左桂忠, 王亮, 丁锐, 余耀伟, 张洋, 徐伟 2020 中国科学技术大学学报 50 1193Google Scholar

    Hu J S, Zuo G Z, Wang L, Ding R, Yu Y W, Zhang Y, Xu W 2020 J. Univ. Sci. Technol. Chin. 50 1193Google Scholar

    [4]

    朱传新, 郑普 2009 中国核科技报告 43

    Zhu C X, Zheng P 2009 China Nuclear Science and Technology Report 43

    [5]

    邱奕嘉, 刘通, 占许文, 兰长林, 孔祥忠 2018 原子能科学技术 52 1729

    Qiu Y J, Liu T, Zhan X W, Lan C L, Kong X Z 2018 At. Energy Sci. Technol. 52 1729

    [6]

    仇九子 2002 物理实验 22 40

    Qiu J Z 2002 Phys. Exp. 22 40

    [7]

    江历阳, 李景文, 陈雄军, 韩晓刚, 仲启平, 于伟翔 2012 原子能科学技术 46 641Google Scholar

    Jiang L Y, Li J W, Chen X J, Han X G, Zhong Q P, Yu W X 2012 At. Energy Sci. Technol. 46 641Google Scholar

    [8]

    叶二雷, 沈春霞, 南宏杰 2023 核电子学与探测技术 43 409

    Ye E L, Shen C X, Nan H J 2023 Nucl. Electron. Detect. Technol. 43 409

    [9]

    秦超, 王德忠, 于文丹, 张适 2011 核技术 34 437

    Qin C, Wang D Z, Yu W D, Zhang S 2011 Nucl. Tech. 34 437

    [10]

    Guo H, Li Q, Zhang C L, Jiang L Y, Ruan X C 2023 Appl. Radiat. Isot. 200 110948Google Scholar

    [11]

    姚泽恩, 岳伟明, 罗鹏, 谭新健, 杜洪新, 聂阳波 2008 原子能科学技术 42 400Google Scholar

    Yao Z E, Yue W M, Luo P, Tan X J, Du H X, Nie Y B 2008 At. Energy Sci. Technol. 42 400Google Scholar

    [12]

    Li Q, Jiang L Y, Zhang C L, Ruan X C, Ge Z G 2022 Appl. radiat. Isot. 186 110260Google Scholar

    [13]

    杨立涛, 陈超峰, 金晓祥, 林冠, 黄彦君 2017 原子能科学技术 51 323

    Yang L T, Chen C F, Jin X X, Lin G, Huang Y J 2017 At. Energy Sci. Technol. 51 323

    [14]

    Kanda Y 1972 Nucl. Phys. A. 185 177Google Scholar

    [15]

    孔祥忠, 王永昌, 袁俊谦, 杨景康 1996 兰州大学学报 32 41

    Kong X Z, Wang Y C, Yuan J Q, Yang J K 1996 J. Lanzhou Univ. 32 41

    [16]

    Luo J H, Jiang L 2020 Chin. Phys. C 44 114002 (in Chinese)Google Scholar

    [17]

    Molla N I, Hossain S M, Basunia S, Miah R U, Rahman M, Sikder D H, Chowdhury M I 1997 J. Radioanal. Nucl. Chem. 216 213 (in Chinese)Google Scholar

    [18]

    Semkova V, Nolte R 2014 EPJ Web of Conferences. 66 03077 (in Chinese)Google Scholar

    [19]

    Filatenkov A A 2025 https://www-nds.iaea.org/exfor/servlet/ X4sGetSubent?reqx=12324&subID=41614070 [2025-5-25]

    [20]

    Zhao W R, Lu H L, Yu W X, Han X G, Huang X L 1998 Chin. Nucl. Sci. Technol. Rep. A 4 7

  • 图 1  样品组悬挂与中子源辐照示意图

    Fig. 1.  Schematic diagram of sample group suspension and neutron source irradiation.

    图 2  高纯锗及内部支架(源放在支架中心处)

    Fig. 2.  High purity germanium and internal bracket (source placed at the center of the bracket).

    图 3  测量得到的样品Mo和两个监测片Nb的伽马能谱

    Fig. 3.  Gamma spectra of the measured sample Mo and two monitoring samples Nb.

    图 4  模拟得到的散射中子能谱

    Fig. 4.  Simulated scattered neutron energy spectrum.

    图 5  本实验截面值和现有数据比较

    Fig. 5.  Comparison between the cross-sectional values of this experiment and existing data.

    表 1  样品和监测片的参数

    Table 1.  Parameters of samples and monitoring plates.

    材料直径/mm厚度/mm质量/g丰度/%
    92Mo201.033.249614.53
    93Nb-1200.792.0685100
    93Nb-2200.782.0675100
    下载: 导出CSV

    表 2  待测样品与监测片修正因子汇总表

    Table 2.  Summary of correction factors for test samples and monitoring plates.

    样品fsfgfc
    Mo0.97500.99120.9600
    Nb0.98360.99300.9900
    下载: 导出CSV

    表 3  不确定度评价表

    Table 3.  Uncertainty evaluation table.

    不确定度来源 相对不确定度/%
    92Mo(n,p)92mNb 93Nb-1(n,2n)92mNb 93Nb-2(n,2n)92mNb
    样品质量 ≤0.01 ≤0.01 ≤0.01
    半衰期 0.2 0.2 0.2
    计数统计 1.33 0.38 0.36
    中子能谱/散射中子修正 1 1 1
    丰度不确定度 0.7
    几何自吸收不确定度 0.36 0.7 0.7
    监测反应截面不确定度 0.55
    比截面不确定度(不包括监测反应截面不确定度) 1.85
    总不确定度 1.93
    下载: 导出CSV
  • [1]

    柏小丹, 曾毅, 孙院军 2021 中国钼业 45 12

    Bai X D, Zeng Y, Sun Y J 2021 Chin. Molybdenum Ind. 45 12

    [2]

    张勇, 王雄禹, 于静, 曹维成, 冯鹏发, 焦生杰 2017 材料导报 31 83Google Scholar

    Zhang Y, Wang X Y, Yu J, Cao W C, Feng P F, Jiao S J 2017 Mater. Rep. 31 83Google Scholar

    [3]

    胡建生, 左桂忠, 王亮, 丁锐, 余耀伟, 张洋, 徐伟 2020 中国科学技术大学学报 50 1193Google Scholar

    Hu J S, Zuo G Z, Wang L, Ding R, Yu Y W, Zhang Y, Xu W 2020 J. Univ. Sci. Technol. Chin. 50 1193Google Scholar

    [4]

    朱传新, 郑普 2009 中国核科技报告 43

    Zhu C X, Zheng P 2009 China Nuclear Science and Technology Report 43

    [5]

    邱奕嘉, 刘通, 占许文, 兰长林, 孔祥忠 2018 原子能科学技术 52 1729

    Qiu Y J, Liu T, Zhan X W, Lan C L, Kong X Z 2018 At. Energy Sci. Technol. 52 1729

    [6]

    仇九子 2002 物理实验 22 40

    Qiu J Z 2002 Phys. Exp. 22 40

    [7]

    江历阳, 李景文, 陈雄军, 韩晓刚, 仲启平, 于伟翔 2012 原子能科学技术 46 641Google Scholar

    Jiang L Y, Li J W, Chen X J, Han X G, Zhong Q P, Yu W X 2012 At. Energy Sci. Technol. 46 641Google Scholar

    [8]

    叶二雷, 沈春霞, 南宏杰 2023 核电子学与探测技术 43 409

    Ye E L, Shen C X, Nan H J 2023 Nucl. Electron. Detect. Technol. 43 409

    [9]

    秦超, 王德忠, 于文丹, 张适 2011 核技术 34 437

    Qin C, Wang D Z, Yu W D, Zhang S 2011 Nucl. Tech. 34 437

    [10]

    Guo H, Li Q, Zhang C L, Jiang L Y, Ruan X C 2023 Appl. Radiat. Isot. 200 110948Google Scholar

    [11]

    姚泽恩, 岳伟明, 罗鹏, 谭新健, 杜洪新, 聂阳波 2008 原子能科学技术 42 400Google Scholar

    Yao Z E, Yue W M, Luo P, Tan X J, Du H X, Nie Y B 2008 At. Energy Sci. Technol. 42 400Google Scholar

    [12]

    Li Q, Jiang L Y, Zhang C L, Ruan X C, Ge Z G 2022 Appl. radiat. Isot. 186 110260Google Scholar

    [13]

    杨立涛, 陈超峰, 金晓祥, 林冠, 黄彦君 2017 原子能科学技术 51 323

    Yang L T, Chen C F, Jin X X, Lin G, Huang Y J 2017 At. Energy Sci. Technol. 51 323

    [14]

    Kanda Y 1972 Nucl. Phys. A. 185 177Google Scholar

    [15]

    孔祥忠, 王永昌, 袁俊谦, 杨景康 1996 兰州大学学报 32 41

    Kong X Z, Wang Y C, Yuan J Q, Yang J K 1996 J. Lanzhou Univ. 32 41

    [16]

    Luo J H, Jiang L 2020 Chin. Phys. C 44 114002 (in Chinese)Google Scholar

    [17]

    Molla N I, Hossain S M, Basunia S, Miah R U, Rahman M, Sikder D H, Chowdhury M I 1997 J. Radioanal. Nucl. Chem. 216 213 (in Chinese)Google Scholar

    [18]

    Semkova V, Nolte R 2014 EPJ Web of Conferences. 66 03077 (in Chinese)Google Scholar

    [19]

    Filatenkov A A 2025 https://www-nds.iaea.org/exfor/servlet/ X4sGetSubent?reqx=12324&subID=41614070 [2025-5-25]

    [20]

    Zhao W R, Lu H L, Yu W X, Han X G, Huang X L 1998 Chin. Nucl. Sci. Technol. Rep. A 4 7

  • [1] 娄艳芝, 李玉武. K-M花样分析法测定薄晶体厚度和消光距离的不确定度评定. 物理学报, 2022, 71(14): 146803. doi: 10.7498/aps.71.20212271
    [2] 朱传新, 秦建国, 郑普, 蒋励, 朱通华, 鹿心鑫. 14 MeV附近191Ir(n,2n)190Ir反应截面实验研究. 物理学报, 2022, 71(19): 192501. doi: 10.7498/aps.71.20220776
    [3] 孔德欢, 郭峰, 李婷, 卢晓同, 王叶兵, 常宏. 可搬运锶光晶格钟系统不确定度的评估. 物理学报, 2021, 70(3): 030601. doi: 10.7498/aps.70.20201204
    [4] 王倩, 魏荣, 王育竹. 原子喷泉频标:原理与发展. 物理学报, 2018, 67(16): 163202. doi: 10.7498/aps.67.20180540
    [5] 王谦, 刘卫国, 巩蕾, 王利国, 李亚清. 双波长自由载流子吸收技术测量半导体载流子体寿命和表面复合速率. 物理学报, 2018, 67(21): 217201. doi: 10.7498/aps.67.20181509
    [6] 聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹. 66116618 cm-1之间氨气光谱线强的测量. 物理学报, 2017, 66(5): 054207. doi: 10.7498/aps.66.054207
    [7] 唐晓平, 周灿华, 和小虎, 于东麒, 杨阳. 碰撞能对H+CH+→C++H2反应立体动力学性质的影响. 物理学报, 2017, 66(2): 023401. doi: 10.7498/aps.66.023401
    [8] 寇添, 王海晏, 王芳, 吴学铭, 王领, 徐强. 机载多脉冲激光测距特性及其不确定度研究. 物理学报, 2015, 64(12): 120601. doi: 10.7498/aps.64.120601
    [9] 许雪松, 杨鲲, 孙佳石, 尹淑慧. O+DCl→OD+Cl反应的动力学性质研究. 物理学报, 2014, 63(10): 103401. doi: 10.7498/aps.63.103401
    [10] 尚万里, 朱托, 况龙钰, 张文海, 赵阳, 熊刚, 易荣清, 李三伟, 杨家敏. 透射光栅谱仪测谱不确定度分析. 物理学报, 2013, 62(17): 170602. doi: 10.7498/aps.62.170602
    [11] 徐国亮, 刘培, 刘彦磊, 张琳, 刘玉芳. 准经典轨线法研究交换反应H(D)+SH/SD的动力学性质. 物理学报, 2013, 62(22): 223402. doi: 10.7498/aps.62.223402
    [12] 刘子龙, 陈锐, 廖宁放, 李在清, 王煜. 大幅提高视觉密度国家基准测量水平的方法研究. 物理学报, 2012, 61(23): 230601. doi: 10.7498/aps.61.230601
    [13] 朱志艳, 朱正和, 张莉, 李培刚, 唐为华, 郑莹莹. T+OD体系的同位素交换反应动力学. 物理学报, 2011, 60(12): 123102. doi: 10.7498/aps.60.123102
    [14] 陈伯伦, 杨正华, 曹柱荣, 董建军, 侯立飞, 崔延莉, 江少恩, 易荣清, 李三伟, 刘慎业, 杨家敏. 同步辐射标定平面镜反射率不确定度分析方法研究. 物理学报, 2010, 59(10): 7078-7085. doi: 10.7498/aps.59.7078
    [15] 冯兴, 朱正和, 刘晓亚, 杨向东, 黄玮. SiH2体系的分子反应动力学. 物理学报, 2009, 58(12): 8217-8223. doi: 10.7498/aps.58.8217
    [16] 潘 宇, 王凯俊, 方祯云, 汪先友, 彭庆军. 精确计算n-n重正化链图传播下n+n→2π0反应截面. 物理学报, 2008, 57(8): 4817-4825. doi: 10.7498/aps.57.4817
    [17] 罗志勇, 杨丽峰, 陈允昌. 基于多光束干涉原理的相移算法研究. 物理学报, 2005, 54(7): 3051-3057. doi: 10.7498/aps.54.3051
    [18] 陆 晓, 孙小军, 杨永栩. 在独立α集团模型下对敲出反应16O(p,pα)12C和16 O(α,2α)12C的研究. 物理学报, 2003, 52(9): 2131-2134. doi: 10.7498/aps.52.2131
    [19] 孙桂华, 杨向东. H+H2反应截面的全量子力学研究. 物理学报, 2002, 51(3): 506-511. doi: 10.7498/aps.51.506
    [20] 宁振江, 李加兴, 郭忠言, 詹文龙, 王建松, 肖国青, 王全进, 王金川, 王猛, 王建峰, 陈志强. 质子滴线核12N在28Si靶上的核反应总截面测量. 物理学报, 2001, 50(4): 644-648. doi: 10.7498/aps.50.644
计量
  • 文章访问数:  357
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-29
  • 修回日期:  2025-06-26
  • 上网日期:  2025-07-17
  • 刊出日期:  2025-09-05

/

返回文章
返回