搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

14.1MeV中子诱发92Mo (n,p)92mNb反应截面的精确测量

周小媛 江历阳 李文琳 郭浩 武文若 阮锡超 黄小龙

引用本文:
Citation:

14.1MeV中子诱发92Mo (n,p)92mNb反应截面的精确测量

周小媛, 江历阳, 李文琳, 郭浩, 武文若, 阮锡超, 黄小龙

Accurate Measurement of the Cross Section of 92Mo (n,p)92mNb Reaction Induced by 14.1MeV Neutrons

ZHOU Xiaoyuan, JIANG Liyang, LI Wenlin, GUO Hao, WU Wenruo, RUAN Xichao, HUANG Xiaolong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 钼作为重要的结构材料,在核能系统中得到广泛应用,因此钼高精度的中子反应截面对核能系统研发具有重要意义[1]。本论文采用活化法和相对测量法测量了92Mo (n,p)92mNb的反应截面,利用中国原子能科学研究院纳秒脉冲中子发生器(CPNG)对样品进行辐照、利用高纯锗探测器对辐照后样品进行活化产物核的活度测量,并计算反应截面和修正因子,最终得到14.1 MeV能点的92Mo (n,p)92mNb的反应截面。为降低实验测量的不确定度,本工作提出了待测产物与监测产物为同一个产物核的策略,有效消除了产物核半衰期与衰变分支比、伽马探测效率、辐照过程的束流波动等引进的不确定度,有效提高了测量精度,获得了到目前为止精度最高的实验数据。测量结果与其他实验数据进行了比较与分析,本工作为该反应道的核数据评价提供了高精度的实验数据支撑。
    Molybdenum, as an important structural material, has been widely used in nuclear energy systems. Therefore, the high-precision neutron reaction cross-section of molybdenum is of great significance for the development of nuclear energy systems. This paper used activation and relative measurement methods to measure the reaction cross section of 92Mo (n,p)92mNb. The sample was irradiated at a 90 degree angle using nanosecond pulse neutron generator (CPNG) from the China Institute of Atomic Energy. After a period of cooling time, the activity of the activated product nuclei of the irradiated sample was measured using a high-purity germanium detector, and the reaction cross section and correction factor were calculated,conventional correction factors include neutron fluence fluctuation、cascade、self-absorption、geometry and scattered-neutron corrections. Finally, the reaction cross section of 92Mo (n,p)92mNb at 14.1 MeV energy point was obtained. To reduce the uncertainty of experimental measurements.This work proposes a strategy in which the product to be measured and the monitoring product are the same nuclide, effectively eliminated uncertainties introduced by the half-life and decay branch ratio of the product nucleus, gamma detection efficiency, and beam fluctuations during irradiation, and effectively improved measurement accuracy, obtained the highest precision experimental data so far. As this experiment aims to minimize the overall measurement uncertainty, stringent requirements were imposed on both the sample mass-thickness and the operating environment. The mass and thickness of each sample were therefore determined by five independent measurements with a 0.1 mg-precision analytical balance and a vernier caliper, respectively, and the mean values were adopted. After the experiment, the measured data were carefully compared and analyzed with other datasets, The value of cross-section is not significantly different from others in the database and is located within the error range, which further verifies the feasibility of this method, providing high-precision experimental support for the nuclear-data evaluation of this reaction channel. The paper is organized as follows:At first, the experimental method is introduced; then, the experiment of the 92Mo (n,p)92mNb cross-section is described in detail; finally, the results are presented and analyzed, and compared with values available in nuclear databases. All previous studies cited employed the activation technique, reporting relative uncertainties in the range 3.5%- 10.9%. By contrast, the present experiment achieves an uncertainty below 2%, thereby delivering high-accuracy data for nuclear databases.
  • [1]

    Bai Xiaodan, Zeng Yi, Sun Yuanjun 2021 China. Molybdenum. Industry. 45 12( in Chinese) [柏小丹,曾毅,孙院军 2021 中国钼业 45 12]

    [2]

    Zhang Yong; Wang Xiongyu; Yu Jing; Cao Weicheng; Feng Pengfa; Jiao Shengjie 2017 Materials. Reports. 31 83( in Chinese) [张勇;王雄禹; 于静;曹维成;冯鹏发;焦生杰 2017 材料导报 31 83]

    [3]

    Hu Jiansheng; Zuo Guizhong; Wang Liang; Ding Rui; Yu Yaowei; ZhangYang; Xu Wei 2020 Journal of University of Science and Technology of China. 50 1193( in Chinese) [胡建生, 左桂忠, 王亮, 丁锐;余耀伟, 张洋, 徐伟 2020 中国科学技术大学学报 50 1193]

    [4]

    Zhu Chuanxin, Zheng Pu 2009 China Nuclear Science and Technology Report.43( in Chinese) [朱传新,郑普 2009 中国核科技报告 43]

    [5]

    Qiu Yijia; Liu Tong; Zhan Xuwen; Lan Changlin; Kong Xiangzhong 2018 Atomic Energy Science and Technology.52 1729( in Chinese) [邱奕嘉, 刘 通, 占许文, 兰长林, 孔祥忠 2018 原子能科学技术 52 1729]

    [6]

    Qiu Jiuzi. 2022 Physical Experiment. 40( in Chinese) [仇九子 2022 物理实验 40]

    [7]

    Jiang Liyang, Li Jingwen, Chen Xiongjun, Han Xiaogang, Zhong Qiping,Yu Weixiang 2012 Atomic Energy Science and Technology. 46 641( in Chinese) [江历阳,李景文,陈雄军,韩晓刚,仲启平,于伟翔 2012 原子能科学技术 46 641]

    [8]

    Ye Erlei, Shen Chunxia, Nan Hongjie 2023 Nuclear Electronics and Detection Technology. 43 409( in Chinese) [ 叶二雷,沈春霞,南宏杰 2023 核电子学与探测技术 43 409]

    [9]

    Qin Chao, Wang Dezhong, Yu Wendan, Zhang Shi 2011 Nuclear Techniques. 34 437( in Chinese) [ 秦超,王德忠,于文丹,张适 2011 核技术 34 437]

    [10]

    Hao Guo, Qian Li, Chunlei Zhang, Liyang Jiang, Xichao Ruan 2023 Applied Radiation and Isotopes 200 111029

    [11]

    Yao Zeen Yue Weiming Luo Peng Tan Xinjian Du Hongxin Nie Yangbo 2008 Atomic Energy Science and Technology. 400( in Chinese) [姚泽恩,岳伟明,罗鹏,谭新健,杜洪新,聂阳波 2008 原子能科学技术,400]

    [12]

    Li Qian,Jiang Liyang,Zhang Chunlei,Ruan Xichao,Ge Zhigang 2022 Applied radiation and isotopes 186 110260.

    [13]

    Yang Litao,Chen Chaofeng,Jin Xiaoxiang, Forest canopy, Huang Yanjun 2017 Atomic Energy Science and Technology. 51 323(in Chinese) [杨立涛, 陈超峰,金晓祥,林冠 2017 原子能科学技术 51 323]

    [14]

    Y. Kanda,1972 Nuclear Physics A.185 177.

    [15]

    Kong Xiangzhong, Wang Yongchang, Yuan Junqian, Yang Jingkang 1996 Journal of Lanzhou University. 41[ 孔祥忠, 王永昌, 袁俊谦, 杨景康 1996 兰州大学学报 41]

    [16]

    Luo Junhua, Jiang Li 2020 Chinese Physics C. 44 114002.

    [17]

    Molla, N. I.,Miah, R. U., Basunia, S., Hossain, S. M., Rahman, M.1997 Conf.on Nucl.Data for Sci.and Techn 1 517

    [18]

    Semkova Valentina, Nolte Ralf 2014 EPJ Web of Conferences.66 03077

    [19]

    A.A.Filatenkov https://www-nds.iaea.org/exfor/servlet/X4sGetSubent?reqx=12324&subID=41614070[2025-5-25]

    [20]

    Zhao Wenrong, Lu Hanlin, Yu Weixiang, Han Xiaogang, Huang Xiaolong 1998 China Nuclear Science and Technology Report. A4 7.

  • [1] 娄艳芝, 李玉武. K-M花样分析法测定薄晶体厚度和消光距离的不确定度评定. 物理学报, doi: 10.7498/aps.71.20212271
    [2] 朱传新, 秦建国, 郑普, 蒋励, 朱通华, 鹿心鑫. 14 MeV附近191Ir(n,2n)190Ir反应截面实验研究. 物理学报, doi: 10.7498/aps.71.20220776
    [3] 孔德欢, 郭峰, 李婷, 卢晓同, 王叶兵, 常宏. 可搬运锶光晶格钟系统不确定度的评估. 物理学报, doi: 10.7498/aps.70.20201204
    [4] 王倩, 魏荣, 王育竹. 原子喷泉频标:原理与发展. 物理学报, doi: 10.7498/aps.67.20180540
    [5] 王谦, 刘卫国, 巩蕾, 王利国, 李亚清. 双波长自由载流子吸收技术测量半导体载流子体寿命和表面复合速率. 物理学报, doi: 10.7498/aps.67.20181509
    [6] 聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹. 66116618 cm-1之间氨气光谱线强的测量. 物理学报, doi: 10.7498/aps.66.054207
    [7] 唐晓平, 周灿华, 和小虎, 于东麒, 杨阳. 碰撞能对H+CH+→C++H2反应立体动力学性质的影响. 物理学报, doi: 10.7498/aps.66.023401
    [8] 寇添, 王海晏, 王芳, 吴学铭, 王领, 徐强. 机载多脉冲激光测距特性及其不确定度研究. 物理学报, doi: 10.7498/aps.64.120601
    [9] 许雪松, 杨鲲, 孙佳石, 尹淑慧. O+DCl→OD+Cl反应的动力学性质研究. 物理学报, doi: 10.7498/aps.63.103401
    [10] 尚万里, 朱托, 况龙钰, 张文海, 赵阳, 熊刚, 易荣清, 李三伟, 杨家敏. 透射光栅谱仪测谱不确定度分析. 物理学报, doi: 10.7498/aps.62.170602
    [11] 徐国亮, 刘培, 刘彦磊, 张琳, 刘玉芳. 准经典轨线法研究交换反应H(D)+SH/SD的动力学性质. 物理学报, doi: 10.7498/aps.62.223402
    [12] 刘子龙, 陈锐, 廖宁放, 李在清, 王煜. 大幅提高视觉密度国家基准测量水平的方法研究. 物理学报, doi: 10.7498/aps.61.230601
    [13] 朱志艳, 朱正和, 张莉, 李培刚, 唐为华, 郑莹莹. T+OD体系的同位素交换反应动力学. 物理学报, doi: 10.7498/aps.60.123102
    [14] 陈伯伦, 杨正华, 曹柱荣, 董建军, 侯立飞, 崔延莉, 江少恩, 易荣清, 李三伟, 刘慎业, 杨家敏. 同步辐射标定平面镜反射率不确定度分析方法研究. 物理学报, doi: 10.7498/aps.59.7078
    [15] 冯兴, 朱正和, 刘晓亚, 杨向东, 黄玮. SiH2体系的分子反应动力学. 物理学报, doi: 10.7498/aps.58.8217
    [16] 潘 宇, 王凯俊, 方祯云, 汪先友, 彭庆军. 精确计算n-n重正化链图传播下n+n→2π0反应截面. 物理学报, doi: 10.7498/aps.57.4817
    [17] 罗志勇, 杨丽峰, 陈允昌. 基于多光束干涉原理的相移算法研究. 物理学报, doi: 10.7498/aps.54.3051
    [18] 陆 晓, 孙小军, 杨永栩. 在独立α集团模型下对敲出反应16O(p,pα)12C和16 O(α,2α)12C的研究. 物理学报, doi: 10.7498/aps.52.2131
    [19] 孙桂华, 杨向东. H+H2反应截面的全量子力学研究. 物理学报, doi: 10.7498/aps.51.506
    [20] 宁振江, 李加兴, 郭忠言, 詹文龙, 王建松, 肖国青, 王全进, 王金川, 王猛, 王建峰, 陈志强. 质子滴线核12N在28Si靶上的核反应总截面测量. 物理学报, doi: 10.7498/aps.50.644
计量
  • 文章访问数:  24
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-17

/

返回文章
返回