搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

少电子离子束缚态电子g因子精密测量

屠秉晟

引用本文:
Citation:

少电子离子束缚态电子g因子精密测量

屠秉晟

Precision g-factor measurements of a bound-state electron in few-electron ions

Bingsheng Ti
PDF
导出引用
  • 少电子离子束缚态电子g因子的精密测量是借助原子分子体系研究束缚态QED理论的有效途径。特别是在高电荷态重核体系中,原子核与内壳层电子之间极强的电磁相互作用为研究极端电磁场环境下的QED效应提供了独一无二的条件。通过精确测量束缚态电子g因子,还可以分析核效应、测定核结构参数、确定基本物理常数等。少电子离子束缚态电子g因子的研究已经成为精密谱学方向的前沿课题。潘宁离子阱(借助稳态电磁场囚禁离子的系统)是进行g因子测量的有效实验装置之一。本综述将对基于潘宁离子阱开展少电子离子束缚态电子g因子的实验研究进行全面回顾,介绍基本实验原理与测量方法,重点论述该领域在近几年中的重要实验成果,并对未来发展做简要展望。
    The electron g factor is a crucial fundamental structural parameter in atomic physics, as it reveals various mechanisms of electron interactions with external fields. Precise measurements of g factors of electrons bound in simple atomic and molecular systems offer an effective avenue for investigating bound-state Quantum Electrodynamics (QED) theories. Especially in highly-charged heavy ions (HCIs), the strong electromagnetic interactions between the nucleus and inner-shell electrons provide unique opportunities to test QED under extremely strong fields. Accurate measurements of the g factors of the bound-state electron are also crucial for determining nuclear effects, nuclear parameters and fundamental constants, making it a frontier topic fundamental physics. A Penning trap, which uses steady-state electromagnetic fields to confine charged particles, is utilized to perform precision g-factor measurements. This paper presents a comprehensive review of g-factor experiments for few-electron simple systems in Penning traps, covering a summary of the experimental principles, experimental setups, measurement methods, and significant research findings.
    The introduction outlines the physical concept of the electron g factor and its historical research background. The electron g factor is considered as an effective probe to study higher-order QED effects. Through high-precision measurements of the free electron g-factor, discrepancies between the fine-structure constant and other experimental results in atomic physics have been identified. Notably, the g factor of the 1s electron in HCIs deviates significantly from the value for free electrons as the atomic number increases. Experimental principles, including the principle of the Penning trap and the measurement principle of the bound-state electron g factors are discussed. A double-trap experiment setup and related precision measurement techniques are also introduced.
    This paper reviews several milestone experimental results including: (1) the stringent test of bound-state QED with a precision measurement of bound-state electron g factor of 118Sn49+ ion, (2) the g-factor measurements of lithium-like and boron-like ions and their applications, (3) the g-factor isotope shift measurement with an advanced two-ion balance technique in the Penning trap, providing insight into the QED effects in nuclear recoil. Finally, this paper summarizes the current challenges faced in the g-factor measurements of a bound-state electron in few-electron ion systems and offers an outlook on future developments in the field.
  • [1]

    Landé A 1921 Z. Für Phys. 5 231

    [2]

    Kusch P, Foley H M 1947 Phys. Rev. 72 1256

    [3]

    Kinoshita T 1990 Adv. Ser. Dir. High Energy Phys., 1990-07 pp218–321

    [4]

    Schwinger J 1948 Phys. Rev. 73 416

    [5]

    Laporta S, Remiddi E 1996 Phys. Lett. B 379 283

    [6]

    Aoyama T, Hayakawa M, Kinoshita T, Nio M 2012 Phys. Rev. Lett. 109 111807

    [7]

    Fan X, Myers T G, Sukra B A D, Gabrielse G 2023 Phys. Rev. Lett. 130 071801

    [8]

    Shabaev V M, Glazov D A, Plunien G, Volotka A V 2015 J. Phys. Chem. Ref. Data 44 031205

    [9]

    Breit G 1928 Nature 122 649

    [10]

    Werth G, Sturm S, Blaum K 2018 Adv. At. Mol. Opt. Phys., 2018 pp257–296

    [11]

    Sturm S, Arapoglou I, Egl A, Höcker M, Kraemer S, Sailer T, Tu B, Weigel A, Wolf R, López-Urrutia J C, Blaum K 2019 Eur. Phys. J. Spec. Top. 227 1425

    [12]

    Heiße F, Door M, Sailer T, Filianin P, Herkenhoff J, König C M, Kromer K, Lange D, Morgner J, Rischka A, Schweiger Ch, Tu B, Novikov Y N, Eliseev S, Sturm S, Blaum K 2023 Phys. Rev. Lett. 131 253002

    [13]

    Morgner J, Tu B, König C M, Sailer T, Heiße F, Bekker H, Sikora B, Lyu C, Yerokhin V A, Harman Z, Crespo López-Urrutia J R, Keitel C H, Sturm S, Blaum K 2023 Nature 622 53

    [14]

    Brown L S, Gabrielse G 1986 Rev. Mod. Phys. 58 233

    [15]

    Tu B, Si R, Shen Y, Wang J, Wei B, Chen C, Yao K, Zou Y 2023 Phys. Rev. Res. 5 043014

    [16]

    Hermanspahn N, Häffner H, Kluge H J, Quint W, Stahl S, Verdú J, Werth G 2000 Phys. Rev. Lett. 84 427

    [17]

    Sturm S, Wagner A, Schabinger B, Blaum K 2011 Phys. Rev. Lett. 107 143003

    [18]

    Häffner H, Beier T, Hermanspahn N, Kluge H J, Quint W, Stahl S, Verdú J, Werth G 2000 Phys. Rev. Lett. 85 5308

    [19]

    Verdú J, Djekić S, Stahl S, Valenzuela T, Vogel M, Werth G, Beier T, Kluge H J, Quint W 2004 Phys. Rev. Lett. 92 093002

    [20]

    Sturm S, Wagner A, Schabinger B, Zatorski J, Harman Z, Quint W, Werth G, Keitel C H, Blaum K 2011 Phys. Rev. Lett. 107 023002

    [21]

    Martínez A J G, López-Urrutia J R C, Fischer D, Orts R S, Ullrich J 2007 J. Phys. Conf. Ser. 72 012001

    [22]

    Zinenko D V, Glazov D A, Kosheleva V P, Volotka A V, Fritzsche S 2023 Phys. Rev. A 107 032815

    [23]

    Kosheleva V P, Volotka A V, Glazov D A, Zinenko D V, Fritzsche S 2022 Phys. Rev. Lett. 128 103001

    [24]

    Arapoglou I, Egl A, Höcker M, Sailer T, Tu B, Weigel A, Wolf R, Cakir H, Yerokhin V A, Oreshkina N S, Agababaev V A, Volotka A V, Zinenko D V, Glazov D A, Harman Z, Keitel C H, Sturm S, Blaum K 2019 Phys. Rev. Lett. 122 253001

    [25]

    Shabaev V M, Glazov D A, Oreshkina N S, Volotka A V, Plunien G, Kluge H J, Quint W 2006 Phys. Rev. Lett. 96 253002

    [26]

    Yerokhin V A, Berseneva E, Harman Z, Tupitsyn I I, Keitel C H 2016 Phys. Rev. Lett. 116 100801

    [27]

    Köhler F, Blaum K, Block M, Chenmarev S, Eliseev S, Glazov D A, Goncharov M, Hou J, Kracke A, Nesterenko D A, Novikov Y N, Quint W, Minaya Ramirez E, Shabaev V M, Sturm S, Volotka A V, Werth G 2016 Nat. Commun. 7 10246

    [28]

    Sailer T, Debierre V, Harman Z, Heiße F, König C, Morgner J, Tu B, Volotka A V, Keitel C H, Blaum K, Sturm S 2022 Nature 606 479

    [29]

    Debierre V, Keitel C H, Harman Z 2020 Phys. Lett. B 807 135527

    [30]

    Schneider A, Sikora B, Dickopf S, Müller M, Oreshkina N S, Rischka A, Valuev I A, Ulmer S, Walz J, Harman Z, Keitel C H, Mooser A, Blaum K 2022 Nature 606 878

    [31]

    Kaiser A, Dickopf S, Door M, Behr R, Beutel U, Eliseev S, Kaushik A, Kromer K, Mu M 2024 Appl. Phys. Lett.

    [32]

    Devlin J A, Wursten E, Harrington J A, Higuchi T, Blessing P E, Borchert M J, Erlewein S, Hansen J J, Morgner J, Bohman M A, Mooser A H, Smorra C, Wiesinger M, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Yamazaki Y, Ulmer S 2019

    [33]

    Ketter J 2014 Int. J. Mass Spectrom.

    [34]

    Tu B, Hahne F, Arapoglou I, Egl A, Heiße F, Höcker M, König C, Morgner J, Sailer T, Weigel A, Wolf R, Sturm S 2021

    [35]

    Bohman M, Grunhofer V, Smorra C, Wiesinger M, Will C, Borchert M J, Devlin J A, Erlewein S, Fleck M, Gavranovic S, Harrington J, Latacz B, Mooser A, Popper D, Wursten E, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Ulmer S, BASE Collaboration 2021 Nature 596 514

    [36]

    Will C, Wiesinger M, Micke P, Yildiz H, Driscoll T, Kommu S, Abbass F, Arndt B P, Bauer B B, Erlewein S, Fleck M, Jäger J I, Latacz B M, Mooser A, Schweitzer D, Umbrazunas G, Wursten E, Blaum K, Devlin J A, Ospelkaus C, Quint W, Soter A, Walz J, Smorra C, Ulmer S 2024 Phys. Rev. Lett.

  • [1] 郭忠凯, 李永刚, 于博丞, 周世超, 孟庆宇, 陆鑫鑫, 黄一帆, 刘贵鹏, 陆俊. 锁相放大器的研究进展. 物理学报, doi: 10.7498/aps.72.20230579
    [2] 李岩, 任志红. 多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息. 物理学报, doi: 10.7498/aps.72.20231179
    [3] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, doi: 10.7498/aps.71.20211663
    [4] 陈娇娇, 孙羽, 温金录, 胡水明. 稳定的高亮度低速亚稳态氦原子束流. 物理学报, doi: 10.7498/aps.70.20201833
    [5] 赵天择, 杨苏辉, 李坤, 高彦泽, 王欣, 张金英, 李卓, 赵一鸣, 刘宇哲. 频域反射法光纤延时精密测量. 物理学报, doi: 10.7498/aps.70.20201075
    [6] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, doi: 10.7498/aps.70.20211663
    [7] 王谨, 詹明生. 基于原子干涉仪的微观粒子弱等效原理检验. 物理学报, doi: 10.7498/aps.67.20180621
    [8] 谭文海, 王建波, 邵成刚, 涂良成, 杨山清, 罗鹏顺, 罗俊. 近距离牛顿反平方定律实验检验进展. 物理学报, doi: 10.7498/aps.67.20180636
    [9] 王磊, 郭浩, 陈宇雷, 伍大锦, 赵锐, 刘文耀, 李春明, 夏美晶, 赵彬彬, 朱强, 唐军, 刘俊. 基于金刚石色心自旋磁共振效应的微位移测量方法. 物理学报, doi: 10.7498/aps.67.20171914
    [10] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, doi: 10.7498/aps.67.20181084
    [11] 管桦, 黄垚, 李承斌, 高克林. 高准确度的钙离子光频标. 物理学报, doi: 10.7498/aps.67.20180876
    [12] 李明, 姚宁, 冯志波, 韩红培, 赵正印. 外加电场和Al组分对纤锌矿AlGaN/GaN量子阱中的电子g因子的影响. 物理学报, doi: 10.7498/aps.67.20172213
    [13] 刘建平, 邬俊飞, 黎卿, 薛超, 毛德凯, 杨山清, 邵成刚, 涂良成, 胡忠坤, 罗俊. 万有引力常数G精确测量实验进展. 物理学报, doi: 10.7498/aps.67.20181381
    [14] 穆秀丽, 李传亮, 邓伦华, 汪海玲. 用于α和μ常数变化测量的碘离子光谱研究. 物理学报, doi: 10.7498/aps.66.233301
    [15] 王金涛, 刘子勇. 基于静力悬浮原理的单晶硅球间微量密度差异精密测量方法研究. 物理学报, doi: 10.7498/aps.62.037702
    [16] 魏来明, 周远明, 俞国林, 高矿红, 刘新智, 林铁, 郭少令, 戴宁, 褚君浩, Austing David Guy. 高迁移率InGaAs/InP量子阱中的有效g因子. 物理学报, doi: 10.7498/aps.61.127102
    [17] 杨治虎, 张小安, 赵永涛, 殷纬纬, 李宁溪. 氧离子激发光谱的精密测量. 物理学报, doi: 10.7498/aps.55.4520
    [18] 杨 柳, 殷春浩, 焦 扬, 张 雷, 宋 宁, 茹瑞鹏. 掺入Ni元素的LiCoO2晶体光谱结构及电子顺磁共振g因子. 物理学报, doi: 10.7498/aps.55.1991
    [19] 徐海红, 焦中兴, 刘晓东, 雷 亮, 文锦辉, 王 惠, 林位株, 赖天树. GaAs中电子g因子的温度和能量依赖性的飞秒激光吸收量子拍研究. 物理学报, doi: 10.7498/aps.55.2618
    [20] 张红梅, 马东平, 刘德. LiNbO_3:Ni~(2+)的常压能谱和g因子. 物理学报, doi: 10.7498/aps.51.1554
计量
  • 文章访问数:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-18

/

返回文章
返回