搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢分子离子超精细结构理论的综述

钟振祥

引用本文:
Citation:

氢分子离子超精细结构理论的综述

钟振祥

Review of the Hyperfine Structure Theory of Hydrogen Molecular Ions

Zhong Zhen-Xiang
PDF
导出引用
  • 通过氢分子离子振转光谱的高精度实验测量和理论计算,可以精确确定基本物理常数,如质子-电子质量比、氘核-电子质量比、里德堡常数、以及质子和氘核的电荷半径。氢分子离子光谱包含丰富的超精细结构,为了从光谱中提取物理信息,我们不仅需要研究振转光谱跃迁理论,还需要研究超精细结构理论。本文回顾了氢分子离子精密光谱的实验和理论研究历程,着重介绍了氢分子离子超精细结构的研究历史和现状。在上世纪的下半叶就有了关于氢分子离子超精细劈裂的领头项Breit-Pauli哈密顿量的理论。随着本世纪初非相对论量子电动力学(NRQED)的发展,氢分子离子超精细结构的高阶修正理论也得到了系统的发展,并于最近应用到H2+和HD+体系中,其中包括7ln (α)阶QED修正。对于H2+,超精细结构理论计算经过数十年的发展,可以与上世纪的相应实验测量符合。对于HD+,最近发现超精细劈裂实验测量和理论计算存在一定的偏差,且无法用7阶非对数项的理论误差来解释。理解这种偏差一方面需要更多的实验来相互检验,另一方面对理论也需要进行独立验证并发展7阶非对数项理论以进一步减小理论误差。
    The study of high-precision spectroscopy for hydrogen molecular ions enables the determination of fundamental constants, such as the proton-to-electron mass ratio, the deuteron-to-electron mass ratio, the Rydberg constant, and the charge radii of proton and deuteron. This can be accomplished through a combination of high precision experimental measurements and theoretical calculations. The spectroscopy of hydrogen molecular ions reveals abundant hyperfine splittings, necessitating not only an understanding of rovibrational transition frequencies but also a thorough grasp of hyperfine structure theory to extract meaningful physical information from the spectra. This article reviews the history of experiments and theories related to the spectroscopy of hydrogen molecular ions, with a particular focus on the theory of hyperfine structure. As far back as the second half of the last century, the hyperfine structure of hydrogen molecular ions was described by a comprehensive theory based on its leading-order term, known as the Breit-Pauli Hamiltonian. Thanks to the advancements in non-relativistic quantum electrodynamics (NRQED) at the beginning of this century, a systematic development of next-to-leading-order theory for hyperfine structure has been achieved and applied to H2+ and HD+ in recent years, including the establishment of the 7ln(α) order correction. For the hyperfine structure of H2+, theoretical calculations show good agreement with experimental measurements after decades of work. However, for HD+, discrepancies have been observed between measurements and theoretical predictions that cannot be accounted for by the theoretical uncertainty in the non-logarithmic term of the 7 order correction. To address this issue, additional experimental measurements are needed for mutual validation, as well as independent tests of the theory, particularly regarding the non-logarithmic term of the 7 order correction.
  • [1]

    Liu C P 2020 Quantum Chemistry (Beijing:Science Press) (in Chinese) [刘成卜2020量子化学(北京:科学出版社)]

    [2]

    Zeng J Y 2007 Quantum Mechanics (Beijing:Science Press) p.473(in Chinese) [曾谨言2007量子力学, vol. 1(北京:科学出版社)第473页]

    [3]

    Wing W H, Ruff G A, Lamb W E, Spezeski J J 1976 Phys. Rev. Lett. 361488

    [4]

    Schiller S, Korobov V 2005 Phys. Rev. A 71032505

    [5]

    Liu J, Salumbides E J, Hollenstein U, Koelemeij J C J, Eikema K S E, Ubachs W, Merkt F 2009 J. Chem. Phys. 130

    [6]

    Sprecher D, Liu J, Jungen C, Ubachs W, Merkt F 2010 J. Chem. Phys. 133

    [7]

    Cheng C F, Hussels J, Niu M, Bethlem H, Eikema K, Salumbides E, Ubachs W, Beyer M, Hölsch N, Agner J, Merkt F, Tao L G, Hu S M, Jungen C 2018 Phys. Rev. Lett. 121013001

    [8]

    Tao L G, Liu A W, Pachucki K, Komasa J, Sun Y, Wang J, Hu S M 2018 Phys. Rev. Lett. 120153001

    [9]

    Liu Q H, Tan Y, Cheng C F, Hu S M 2023 Phys. Chem. Chem. Phys. 2527914

    [10]

    Wang L M, Yan Z C 2018 Phys. Rev. A 97060501

    [11]

    Puchalski M, Komasa J, Pachucki K 2020 Phys. Rev. Lett. 125253001

    [12]

    Blythe P, Roth B, Fröhlich U, Wenz H, Schiller S 2005 Phys. Rev. Lett. 95183002

    [13]

    Koelemeij J C J, Noom D W E, de Jong D, Haddad M A, Ubachs W 2012 Appl. Phys. B: Lasers Opt. 1071075

    [14]

    Karr J P, Bielsa F, Valenzuela T, Douillet A, Hilico L, Korobov V I 2007 Can. J. Phys. 85497

    [15]

    Zhang Y, Zhang Q Y, Bai W L, Ao Z Y, Peng W C, He S G, Tong X 2023 Phys. Rev. A 107043101

    [16]

    Koelemeij J C J, Roth B, Wicht A, Ernsting I, Schiller S 2007 Phys. Rev. Lett. 98173002

    [17]

    Alighanbari S, Kortunov I V, Giri G S, Schiller S 2023 Nat. Phys. 191263

    [18]

    Biesheuvel J, Karr J P, Hilico L, Eikema K S E, Ubachs W, Koelemeij J C J 2016 Nat. Commun. 710385

    [19]

    Korobov V I, Hilico L, Karr J P 2014 Phys. Rev. Lett. 112103003

    [20]

    Korobov V I, Hilico L, Karr J P 2014 Phys. Rev. A 89032511

    [21]

    Mohr P J, Taylor B N, Newell D B 2012 Rev. Mod. Phys. 841527

    [22]

    Tiesinga E, Mohr P J, Newell D B, Taylor B N 2021 Rev. Mod. Phys. 93025010

    [23]

    Alighanbari S, Giri G S, Constantin F L, Korobov V I, Schiller S 2020 Nature 581152

    [24]

    Patra S, Germann M, Karr J P, Haidar M, Hilico L, Korobov V I, Cozijn F M J, Eikema K S E, Ubachs W, Koelemeij J C J 2020 Science 3691238

    [25]

    Köhler F, Sturm S, Kracke A, Werth G, Quint W, Blaum K 2015 J. Phys. B: At., Mol. Opt. Phys. 48144032

    [26]

    Rau S, Heiße F, Köhler-Langes F, Sasidharan S, Haas R, Renisch D, Düllmann C E, Quint W, Sturm S, Blaum K 2020 Nature 58543

    [27]

    Korobov V I 2000 Phys. Rev. A 61064503

    [28]

    Yan Z C, Zhang J Y, Li Y 2003 Phys. Rev. A 67062504

    [29]

    Li H, Wu J, Zhou B L, Zhu J M, Yan Z C 2007 Phys. Rev. A 75012504

    [30]

    Zhong Z X, Yan Z C, Shi T Y 2009 Phys. Rev. A 79064502

    [31]

    Zhong Z X, Zhang P P, Yan Z C, Shi T Y 2012 Phys. Rev. A 86064502

    [32]

    Zhang P P, Zhong Z X, Yan Z C, Shi T Y 2016 Phys. Rev. A 93032507

    [33]

    Aznabayev D T, Bekbaev A K, Korobov V I 2019 Phys. Rev. A 99012501

    [34]

    Korobov V I 2004 Phys. Rev. A 70012505

    [35]

    Korobov V I 2006 Phys. Rev. A 73024502

    [36]

    Korobov V I 2012 Phys. Rev. A 85042514

    [37]

    Korobov V I, Zhong Z X 2012 Phys. Rev. A 86044501

    [38]

    Zhong Z X, Yan Z C, Shi T Y 2013 Phys. Rev. A 88052520

    [39]

    Korobov V I, Tsogbayar T 2007 J. Phys. B: At., Mol. Opt. Phys. 402661

    [40]

    Korobov V I, Hilico L, Karr J P 2017 Phys. Rev. Lett. 118233001

    [41]

    Korobov V I, Karr J P 2021 Phys. Rev. A 104032806

    [42]

    Koelemeij J C J 2022 Mol. Phys. 120 e2058637

    [43]

    Dalgarno A, Patterson T N, B S W 1960 Proc. R. Soc. A 259100

    [44]

    Babb J F, Dalgarno A 1991 Phys. Rev. Lett. 66880

    [45]

    Babb J F, Dalgarno A 1992 Phys. Rev. A 46 R5317

    [46]

    Babb J F 1995 Phys. Rev. Lett. 754377

    [47]

    Bakalov D, Korobov V I, Schiller S 2006 Phys. Rev. Lett. 97243001

    [48]

    Korobov V I, Karr J P, Haidar M, Zhong Z X 2020 Phys. Rev. A 102022804

    [49]

    Karr J P, Haidar M, Hilico L, Zhong Z X, Korobov V I 2020 Phys. Rev. A 102052827

    [50]

    Haidar M, Korobov V I, Hilico L, Karr J P 2022 Phys. Rev. A 106042815

    [51]

    Korobov V I, Hilico L, Karr J P 2006 Phys. Rev. A 74040502

    [52]

    Jefferts K B 1969 Phys. Rev. Lett. 231476

    [53]

    Fu Z W, Hessels E A, Lundeen S R 1992 Phys. Rev. A 46 R5313

    [54]

    Osterwalder A, Wüest A, Merkt F, Jungen C 2004 J. Chem. Phys. 12111810

    [55]

    Luke S K 1969 Astrophys. J. 156761

    [56]

    McEachran R, Veenstra C, Cohen M 1978 Chem. Phys. Lett. 59275

    [57]

    Korobov V I, Hilico L, Karr J P 2009 Phys. Rev. A 79012501

    [58]

    Korobov V I, Koelemeij J C J, Hilico L, Karr J P 2016 Phys. Rev. Lett. 116053003

    [59]

    Haidar M, Korobov V I, Hilico L, Karr J P 2022 Phys. Rev. A 106022816

    [60]

    Babb J F 1998 In Cho Y M, Hong J B, Yang C N, editors, Current topics in physics, vol. 2(Singapore: World Scientiffc), pp 531–540

    [61]

    Zhang P P, Zhong Z X, Yan Z C 2013 Phys. Rev. A 88032519

    [62]

    Korobov V I 2006 Phys. Rev. A 74052506

    [63]

    Alighanbari S, Hansen M G, Korobov V I, Schiller S 2018 Nat. Phys. 14555

    [64]

    Kortunov I V, Alighanbari S, Hansen M G, Giri G S, Korobov V I, Schiller S 2021 Nat. Phys. 17569

    [65]

    Schenkel M R, Alighanbari S, Schiller S 2024 Nat. Phys. 20383

    [66]

    Mohr P J, Newell D B, Taylor B N 2016 Rev. Mod. Phys. 88035009

    [67]

    Germann M, Patra S, Karr J P, Hilico L, Korobov V I, Salumbides E J, Eikema K S E, Ubachs W, Koelemeij J C J 2021 Phys. Rev. Res. 3 L022028

    [68]

    Heiße F, Köhler-Langes F, Rau S, Hou J, Junck S, Kracke A, Mooser A, Quint W, Ulmer S, Werth G, Blaum K, Sturm S 2017 Phys. Rev. Lett. 119033001

    [69]

    Stone A P 1961 Proc. Phys. Soc., London 77786

    [70]

    Stone A P 1963 Proc. Phys. Soc., London 81868

    [71]

    Volkov S 2018 Phys. Rev. D 98076018

    [72]

    Zhong Z X, Zhou W P, Mei X S 2018 Phys. Rev. A 98032502

    [73]

    Haidar M, Zhong Z X, Korobov V I, Karr J P 2020 Phys. Rev. A 101022501

    [74]

    Bethe H A, Salpeter E E 1957 Quantum Mechanics of One- and Two-Electron Atoms (New York, NY: Springer Berlin Heidelberg)

    [75]

    Kinoshita T 1990 Quantum Electrodynamics (WORLD SCIENTIFIC)

    [76]

    Kinoshita T, Nio M 1996 Phys. Rev. D 534909

    [77]

    Eides M I, Grotch H, Shelyuto V A 2007 Theory of Light Hydrogenic Bound States (Springer Berlin Heidelberg)

    [78]

    Mondéjar J, Piclum J H, Czarnecki A 2010 Phys. Rev. A 81062511

    [79]

    Carlson C E, Nazaryan V, Grifffoen K 2008 Phys. Rev. A 78022517

    [80]

    Zemach A C 1956 Phys. Rev. 1041771

    [81]

    Karshenboim S G 1997 Phys. Lett. A 22597

    [82]

    Faustov R, Martynenko A 2002 Eur. Phys. J. C 24281

    [83]

    Friar J L, Payne G L 2005 Phys. Rev. C 72014002

    [84]

    Friar J, Sick I 2004 Phys. Lett. B 579285

    [85]

    Bodwin G T, Yennie D R 1988 Phys. Rev. D 37498

    [86]

    Karshenboim S G 2005 Phys. Rep. 4221

    [87]

    Yan Z C, Drake G W F 1994 Can. J. Phys. 72822

    [88]

    Yan Z C, Drake G 1996 Chem. Phys. Lett. 25996

    [89]

    Korobov V I 2002 J. Phys. B: At., Mol. Opt. Phys. 351959

    [90]

    Harris F E, Frolov A M, Smith V H 2004 J. Chem. Phys. 1216323

    [91]

    Dalgarno A, Lewis J T 1955 Proc. R. Soc. A 23370

    [92]

    Lewis M L, Seraffno P H 1978 Phys. Rev. A 18867

    [93]

    Karr J P, Bielsa F, Douillet A, Gutierrez J P, Korobov V I, Hilico L 2008 Phys. Rev. A 77063410

    [94]

    Menasian S C, Dehmelt H G 1973 Bull. Am. Phys. Soc. 18408

    [95]

    Varshalovich D A, Moskalev A N, Khersonskii V K 1988 Quantum Theory of Angular Momentum (WORLD SCIENTIFIC)

    [96]

    Lindgren I, Morrison J 1982 Atomic Many-Body Theory (Springer Berlin Heidelberg)

  • [1] 刘鑫, 汶伟强, 李冀光, 魏宝仁, 肖君. 高电荷态类硼离子2P3/2-2P1/2跃迁的实验和理论研究进展. 物理学报, doi: 10.7498/aps.73.20241190
    [2] 计晨. 原子兰姆位移与超精细结构中的核结构效应. 物理学报, doi: 10.7498/aps.73.20241063
    [3] 王欢, 贺夏瑶, 李帅, 刘博. 非线性相互作用的自旋-轨道耦合玻色-爱因斯坦凝聚体的淬火动力学. 物理学报, doi: 10.7498/aps.72.20222401
    [4] 陈润, 邵旭萍, 黄云霞, 杨晓华. BrF分子电磁偶极跃迁转动超精细微波谱模拟. 物理学报, doi: 10.7498/aps.72.20221957
    [5] 唐家栋, 刘乾昊, 程存峰, 胡水明. 磁场中HD分子振转跃迁的超精细结构. 物理学报, doi: 10.7498/aps.70.20210512
    [6] 张祥, 卢本全, 李冀光, 邹宏新. Hg+离子5d106s 2S1/2→5d96s2 2D5/2钟跃迁同位素位移和超精细结构的理论研究. 物理学报, doi: 10.7498/aps.68.20182136
    [7] 裴栋梁, 何军, 王杰英, 王家超, 王军民. 铯原子里德伯态精细结构测量. 物理学报, doi: 10.7498/aps.66.193701
    [8] 任雅娜, 杨保东, 王杰, 杨光, 王军民. 铯原子7S1/2态磁偶极超精细常数的测量. 物理学报, doi: 10.7498/aps.65.073103
    [9] 俞祖卿, 杨魏吉, 何峰. H2+在强激光脉冲作用下的电离率和原子核间距的关系. 物理学报, doi: 10.7498/aps.65.204202
    [10] 姚洪斌, 张季, 彭敏, 李文亮. H2+在强激光场中的解离及其量子调控的理论研究. 物理学报, doi: 10.7498/aps.63.198202
    [11] 崔尉, 王茺, 崔灿, 施张胜, 杨宇. 耦合锗量子点中空穴态对称特性研究. 物理学报, doi: 10.7498/aps.63.227301
    [12] 蒋洪良, 张荣军, 周宏明, 姚端正, 熊贵光. InAs量子点中自旋-轨道相互作用下电子自旋弛豫的参量特征. 物理学报, doi: 10.7498/aps.60.017204
    [13] 杨保东, 高静, 王杰, 张天才, 王军民. 铯6S1/2 -6P3/2 -8S1/2阶梯型系统中超精细能级的多重电磁感应透明. 物理学报, doi: 10.7498/aps.60.114207
    [14] 侯碧辉, 李 勇, 刘国庆, 张桂花, 刘凤艳, 陶世荃. 单晶LiNbO3:Mn2+的ESR谱研究. 物理学报, doi: 10.7498/aps.54.373
    [15] 陈岁元, 刘常升, 李慧莉, 崔 彤. 非晶Fe73.5Cu1Nb3Si13.5B9合金激光纳米化的超精细结构研究. 物理学报, doi: 10.7498/aps.54.4157
    [16] 王立军, 余慧莺. 窄带激光与能级具有超精细结构的二能级原子的相干激发. 物理学报, doi: 10.7498/aps.53.4151
    [17] 马洪良, 陆 江, 王春涛. 141Pr+波长56908 nm谱线超精细结构测量. 物理学报, doi: 10.7498/aps.52.566
    [18] 赵鹭明, 王立军. 超精细结构对激光与二能级原子相互作用的影响. 物理学报, doi: 10.7498/aps.51.1227
    [19] 黎光武, 马洪良, 李茂生, 陈志骏, 陈淼华, 陆福全, 彭先觉, 杨福家. LaⅡ5d2 1G4→4f5d 1F3超精 细结构光谱测量. 物理学报, doi: 10.7498/aps.49.1256
    [20] 姜 勇, 李 广, 曾祥勇, 杨应平, 袁松柳, 金嗣昭. 钙钛矿Mn基氧化物的电子顺磁共振行为的实验研究. 物理学报, doi: 10.7498/aps.49.1846
计量
  • 文章访问数:  18
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-26

/

返回文章
返回