搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BrF分子电磁偶极跃迁转动超精细微波谱模拟

陈润 邵旭萍 黄云霞 杨晓华

引用本文:
Citation:

BrF分子电磁偶极跃迁转动超精细微波谱模拟

陈润, 邵旭萍, 黄云霞, 杨晓华

Simulation of hyperfine-rotational spectrum of electromagnetic dipole transition rotation of BrF molecules

Chen Run, Shao Xu-Ping, Huang Yun-Xia, Yang Xiao-Hua
PDF
HTML
导出引用
  • 本文推导了BrF振动基态(X1Σ, v = 0)下J = 1←0的转动超精细光谱的跃迁偶极矩, 总结了跃迁选择定则为: ΔJ = ±1; ΔF1 = 0, ±1和ΔF = 0, ±1; 而且, 当ΔF1 = ΔF时谱线强度很强, 反之很弱. 当能级之间存在微扰相互作用时, 某些谱线由电偶极和核磁偶极跃迁共同产生, 然而磁偶极仅仅贡献大约十亿分之一的光谱强度. 计算所得光谱线宽和相对强度与实验结果一致. 同时, 在|JI1F1I2F$\rangle $基矢下对Hamilton量矩阵对角化确定了转动超精细光谱的位置, 与实验误差小于1/50谱线宽度(<10–8). 最后模拟了微波转动超精细光谱, 所得结果有助于超精细分子光谱实验和其他相关应用研究.
    The transition dipole of the hyperfine-rotation spectrum of J = 1←0 within the vibronic ground (X1Σ, v = 0) state of BrF molecule is derived, and thus, the transition selection rules are summarized as follows: ΔJ = ±1; ΔF1 = 0, ±1 and ΔF = 0, ±1, and those of ΔF1 = ΔF are intense while those of ΔF1 ≠ ΔF are weak. Some spectral lines result from both the electric dipole transition and nuclear magnetic dipole transition due to perturbations, however, the magnetic dipole transition only contributes about one-billionth in the spectral intensity. The spectral linewidth is determined to be about 18 kHz by calculating the spectral transition probability. The obtained spectral linewidth and relative intensities are consistent with the experimental results. Additionally, the hyperfine-rotation spectral positions are determined by diagonalizing the Hamiltonian matrix in the basis of |JI1F1I2F$\rangle $, which is also in good agreement with the experiments within 10–8 (one-fiftieth of the spectral line width). Hence, the microwave hyperfine-rotation spectrum is simulated. In addition, we find that the nuclear spin-spin interaction not only slightly shifts the hyperfine-rotation spectral positions but also changes the sequence of the spectra. As to those unavailable constants of molecules, the fairly precise molecular constants can be achieved by quantum chemical calculation, say, by employing MOLPRO program, and then the simulated spectra can guide the spectral assignment. Besides the guidance of spectral assignment, our results are also helpful for other relevant applications such as in absolute single quantum state preparation.
      通信作者: 邵旭萍, xuping1115@ntu.edu.cn ; 杨晓华, xhyang@ntu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12004199)资助的课题.
      Corresponding author: Shao Xu-Ping, xuping1115@ntu.edu.cn ; Yang Xiao-Hua, xhyang@ntu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12004199).
    [1]

    Bernath P F 2020 ????? (Oxford: Oxford University Press)

    [2]

    Kennedy C J, Oelker E, Robinson J M, Bothwell T, D. Kedar, Milner W R, Marti G E, Derevianko A, Ye J 2020 Phys. Rev. Lett. 125 201302Google Scholar

    [3]

    Changala P B, Weichman M L, Lee K F, Fermann M E, Ye J 2019 Science 363 49Google Scholar

    [4]

    Denis M, Pi A, Timmermans R, Eliav E, Borschevsky A 2019 Phys. Rev. A 99 042512Google Scholar

    [5]

    Hudson J J, Sauer B E, Tarbutt M R, Hinds E A 2002 Phys. Rev. Lett. 89 023003Google Scholar

    [6]

    Cairncross W B, Gresh D N, Grau M, Cossel K C, Roussy T S, Ni Y, Zhou Y, Ye J, Cornell E A 2017 Phys. Rev. Lett. 119 153001Google Scholar

    [7]

    Bouchendira R, Cladé P, Biraben F 2011 Phys. Rev. Lett. 106 080801Google Scholar

    [8]

    Webb J K, Flambaum V V, Churchill C W, Drinkwater M J, Barrow J D 1999 Phys. Rev. Lett. 82 884Google Scholar

    [9]

    Liang Q, Chan Y C, Changala P B, Nesbitt D J, Ye J, Toscano J 2021 Proc. Natl. Acad. Sci. 118 e2105063118Google Scholar

    [10]

    Kolkowitz S P I, Langellier N, Lukin M D, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [11]

    Valtolina G, Matsuda K, Tobias W G, Li J R, Marco L D, Ye J 2020 Nature 588 239Google Scholar

    [12]

    William D, Phillips 1998 Rev. Mod. Phys. 70 721Google Scholar

    [13]

    Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558Google Scholar

    [14]

    Barry F J, McCarron J D, Norrgard B E, Steinecker H M, DeMille D 2014 Nature 512 286Google Scholar

    [15]

    Marco L D, Valtolina G, Matsuda K, Tobias W G, Covey J P, Ye J 2019 Science 363 853Google Scholar

    [16]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [17]

    Mccarron D J, Norrgard E B, Steinecker M H, Demille D 2015 New J. Phys. 17 035014Google Scholar

    [18]

    Yeo M, Hummon M T, Collopy A L, Yan B, Hemmerling B, Chae E, Doyle J M, Ye J 2015 Phys. Rev. Lett. 114 223003Google Scholar

    [19]

    Ni K K, Ospelkaus S, Miranda M, Pe'Er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S, Ye J 2008 Science 322 231Google Scholar

    [20]

    Peter, Molony K, Philip, Gregory D, Zhonghua, Ji, Bo, Lu, Michael, Köppinger P 2014 Phys. Rev. Lett. 113 255301Google Scholar

    [21]

    Takekoshi T, Reichsoellner L, Schindewolf A, Hutson J M, Sueur C, Dulieu O, Ferlaino F, Grimm R, Naegerl H C 2014 Phys. Rev. Lett. 113 205301Google Scholar

    [22]

    Park J W, Will S A, Zwierlein M W 2015 Phys. Rev. Lett. 114 205302Google Scholar

    [23]

    Wang F, He X, Li X, Zhu B, Chen J, Wang D 2015 New J. Phys. 17 035003Google Scholar

    [24]

    Matsuda K, Marco L D, Li J R, Tobias W G, Ye J 2020 Science 370 1324Google Scholar

    [25]

    Gu Y, Chen K, Huang Y, Yang X 2019 Chin. Phys. B 28 43702Google Scholar

    [26]

    Huang Y, Shao X, Yang X 2016 J. Phys. B 49 135101Google Scholar

    [27]

    Chen K, Huang Y, Yang X 2017 Chin. J Chem. Phys. 30 418Google Scholar

    [28]

    Smith D F, Tidwell M, Williams D V P 1950 Phys. Rev. 77 420Google Scholar

    [29]

    Calder V, Hansen D, Hoffman D, Ruedenberg K 1972 J Chem. Phys. 49 5399

    [30]

    Nair K, Hoeft J, Tiemann E 1979 J Mol. Spectrosc. 78 506Google Scholar

    [31]

    Clyne M A A, Curran A H, Coxon J A 1976 J Mol. Spectrosc. 63 43Google Scholar

    [32]

    Aldegunde J, Hutson J M 2008 Phys. Rev. A 78 033434Google Scholar

    [33]

    Wang D, Shao X, Huang Y, Li C, Yang X 2021 Chin. Phys. B 30 113301Google Scholar

    [34]

    Yang Q S, Li S C, Yu Y, Gao T 2018 J Phys. Chem. A 122 3021Google Scholar

    [35]

    Brown J M, Carrington A 2003 Cambridge University Press

    [36]

    Arima A, Horie H, Sano M 1957 Prog. Theor. Exp. Phys. 17 567Google Scholar

    [37]

    Müller H S, Gerry M C 1995 J. Chem. Phys. 103 577Google Scholar

    [38]

    Shao X, Gong T, Wu L, Yang X 2011 J. Quant. Spectrosc. Radiat. Transfer 112 1005Google Scholar

    [39]

    Ospelkaus S, Ni K K, Quéméner G, Neyenhuis B, Wang D, Miranda M D, Bohn J, Ye J, Jin D 2010 Phys. Rev. Lett. 104 030402Google Scholar

  • 图 1  79BrF(上)和81BrF(下)振动基态(X1Σ, v = 0)下的超精细能级. 图中还标明了各能级的能量值和量子数

    Fig. 1.  Hyperfine-rotation energy levels of 79BrF (upper) and 81BrF (lower) in the vibronic ground state (X1Σ, v = 0). The quantum numbers and the values of the levels are labeled as well.

    图 2  BrF振动基态(X1Σ, v = 0)下J = 1←0转动超精细跃迁光谱模拟(下图), 红线代表79BrF, 黑线代表81BrF. 两同位素丰度相差很小, 使得它们的光谱强度几乎相等. 超高分辨的光谱模拟见上图(79BrF)和中图(81BrF), 其中, 谱线1.5, 11.5, 2, 1.5, 21.5, 1和2.5, 21.5, 2的相对强度极小, 导致它们无法观测到(蓝圈部分)

    Fig. 2.  Simulated hyperfine-rotation spectra (lower) of the J = 1←0 transition within the vibronic ground state (X1Σ, v = 0) of BrF of its two isotopes, 79BrF in Red and 81BrF in black. Their spectral intensities are almost the same accordingly due to their nearly equal natural abundance of the two isotopes. Details of the spectra of 79BrF (upper) and 81BrF (medium) of the unresolved spectra (lower) are plotted as well. Intensities of the spectra F1, F = 1.5, 1–1.5, 2, 1.5, 2–1.5, 1 and 2.5, 2–1.5, 2 are too small to observe, as shown in the blue circles.

    表 1  BrF(X1Σ, v = 0)分子常数

    Table 1.  Molecular parameters of BrF(X1Σ, v = 0)

    79BrF81BrF
    B/MHz10628.4630210577.63957
    D/kHz12.02811.956
    eqQ/MHz1086.89197907.97681
    C1/kHz89.05195.818
    C2/kHz–24.17–24.54
    C3/kHz–7.15–7.71
    C4/kHz4.865.24
    下载: 导出CSV

    表 2  BrF分子振动基态(X1Σ, v = 0)中J = 1←0跃迁的转动超精细光谱计算值(单位: MHz), 同时列出了其与实验值的偏差和归一化光谱强度

    Table 2.  Calculated hyperfine-rotation spectra (in MHz) of the J = 1←0 transition in the vibronic ground state (X1Σ, v = 0) of BrF molecule. Deviations (in MHz) from the experimental spectra and the normalized intensity are listed as well.

    $F_1',F'\text{-}F''_1,F'' $79BrF81BrF强度
    (归一化)
    计算值误差a计算值误差a
    0.5, 0–1.5, 120986.07440.000320928.793300.1428
    0.5, 1–1.5, 120986.1035–0.001120928.82360.00020.0917
    1.5, 1–1.5, 121475.0918021337.38540.00010.3571
    1.5, 2–1.5, 121475.073021337.36600.0713
    2.5, 2–1.5, 121203.17340.000121110.335800.6427
    0.5, 1–1.5, 220986.0937020928.8131–0.00020.3570
    1.5, 1–1.5, 221475.082021337.37490.0714
    1.5, 2–1.5, 221475.0632021337.3556–0.00010.6427
    2.5, 2–1.5, 221203.163621110.32530.0713
    2.5, 3–1.5, 221203.1484021110.310901
    σb0.00040.0001
    a 计算值减去参考文献中的实验值[37], 误差缺失表示谱线强度太弱而实验无法观测到.
    b σ为计算总体方差.
    下载: 导出CSV

    表 3  BrF振动基态下的转动超精细跃迁偶极矩

    Table 3.  Hyperfine-rotation transition dipoles of BrF within its vibronic ground state.

    $ (J' = 1)F_1', F' $$(J'' = 0) F_1'', F''$
    0.5, 00.5, 11.5, 11.5, 22.5, 22.5, 3
    1.5, 10.22470.11240.56160.11231.01100
    1.5, 200.56170.11231.01100.11221.5728
    下载: 导出CSV
  • [1]

    Bernath P F 2020 ????? (Oxford: Oxford University Press)

    [2]

    Kennedy C J, Oelker E, Robinson J M, Bothwell T, D. Kedar, Milner W R, Marti G E, Derevianko A, Ye J 2020 Phys. Rev. Lett. 125 201302Google Scholar

    [3]

    Changala P B, Weichman M L, Lee K F, Fermann M E, Ye J 2019 Science 363 49Google Scholar

    [4]

    Denis M, Pi A, Timmermans R, Eliav E, Borschevsky A 2019 Phys. Rev. A 99 042512Google Scholar

    [5]

    Hudson J J, Sauer B E, Tarbutt M R, Hinds E A 2002 Phys. Rev. Lett. 89 023003Google Scholar

    [6]

    Cairncross W B, Gresh D N, Grau M, Cossel K C, Roussy T S, Ni Y, Zhou Y, Ye J, Cornell E A 2017 Phys. Rev. Lett. 119 153001Google Scholar

    [7]

    Bouchendira R, Cladé P, Biraben F 2011 Phys. Rev. Lett. 106 080801Google Scholar

    [8]

    Webb J K, Flambaum V V, Churchill C W, Drinkwater M J, Barrow J D 1999 Phys. Rev. Lett. 82 884Google Scholar

    [9]

    Liang Q, Chan Y C, Changala P B, Nesbitt D J, Ye J, Toscano J 2021 Proc. Natl. Acad. Sci. 118 e2105063118Google Scholar

    [10]

    Kolkowitz S P I, Langellier N, Lukin M D, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [11]

    Valtolina G, Matsuda K, Tobias W G, Li J R, Marco L D, Ye J 2020 Nature 588 239Google Scholar

    [12]

    William D, Phillips 1998 Rev. Mod. Phys. 70 721Google Scholar

    [13]

    Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558Google Scholar

    [14]

    Barry F J, McCarron J D, Norrgard B E, Steinecker H M, DeMille D 2014 Nature 512 286Google Scholar

    [15]

    Marco L D, Valtolina G, Matsuda K, Tobias W G, Covey J P, Ye J 2019 Science 363 853Google Scholar

    [16]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [17]

    Mccarron D J, Norrgard E B, Steinecker M H, Demille D 2015 New J. Phys. 17 035014Google Scholar

    [18]

    Yeo M, Hummon M T, Collopy A L, Yan B, Hemmerling B, Chae E, Doyle J M, Ye J 2015 Phys. Rev. Lett. 114 223003Google Scholar

    [19]

    Ni K K, Ospelkaus S, Miranda M, Pe'Er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S, Ye J 2008 Science 322 231Google Scholar

    [20]

    Peter, Molony K, Philip, Gregory D, Zhonghua, Ji, Bo, Lu, Michael, Köppinger P 2014 Phys. Rev. Lett. 113 255301Google Scholar

    [21]

    Takekoshi T, Reichsoellner L, Schindewolf A, Hutson J M, Sueur C, Dulieu O, Ferlaino F, Grimm R, Naegerl H C 2014 Phys. Rev. Lett. 113 205301Google Scholar

    [22]

    Park J W, Will S A, Zwierlein M W 2015 Phys. Rev. Lett. 114 205302Google Scholar

    [23]

    Wang F, He X, Li X, Zhu B, Chen J, Wang D 2015 New J. Phys. 17 035003Google Scholar

    [24]

    Matsuda K, Marco L D, Li J R, Tobias W G, Ye J 2020 Science 370 1324Google Scholar

    [25]

    Gu Y, Chen K, Huang Y, Yang X 2019 Chin. Phys. B 28 43702Google Scholar

    [26]

    Huang Y, Shao X, Yang X 2016 J. Phys. B 49 135101Google Scholar

    [27]

    Chen K, Huang Y, Yang X 2017 Chin. J Chem. Phys. 30 418Google Scholar

    [28]

    Smith D F, Tidwell M, Williams D V P 1950 Phys. Rev. 77 420Google Scholar

    [29]

    Calder V, Hansen D, Hoffman D, Ruedenberg K 1972 J Chem. Phys. 49 5399

    [30]

    Nair K, Hoeft J, Tiemann E 1979 J Mol. Spectrosc. 78 506Google Scholar

    [31]

    Clyne M A A, Curran A H, Coxon J A 1976 J Mol. Spectrosc. 63 43Google Scholar

    [32]

    Aldegunde J, Hutson J M 2008 Phys. Rev. A 78 033434Google Scholar

    [33]

    Wang D, Shao X, Huang Y, Li C, Yang X 2021 Chin. Phys. B 30 113301Google Scholar

    [34]

    Yang Q S, Li S C, Yu Y, Gao T 2018 J Phys. Chem. A 122 3021Google Scholar

    [35]

    Brown J M, Carrington A 2003 Cambridge University Press

    [36]

    Arima A, Horie H, Sano M 1957 Prog. Theor. Exp. Phys. 17 567Google Scholar

    [37]

    Müller H S, Gerry M C 1995 J. Chem. Phys. 103 577Google Scholar

    [38]

    Shao X, Gong T, Wu L, Yang X 2011 J. Quant. Spectrosc. Radiat. Transfer 112 1005Google Scholar

    [39]

    Ospelkaus S, Ni K K, Quéméner G, Neyenhuis B, Wang D, Miranda M D, Bohn J, Ye J, Jin D 2010 Phys. Rev. Lett. 104 030402Google Scholar

  • [1] 刘鑫, 汶伟强, 李冀光, 魏宝仁, 肖君. 高电荷态类硼离子2P3/22P1/2跃迁的实验和理论研究进展. 物理学报, 2024, 73(20): 203102. doi: 10.7498/aps.73.20241190
    [2] 钟振祥. 氢分子离子超精细结构理论综述. 物理学报, 2024, 73(20): 203104. doi: 10.7498/aps.73.20241101
    [3] 计晨. 原子兰姆位移与超精细结构中的核结构效应. 物理学报, 2024, 73(20): 202101. doi: 10.7498/aps.73.20241063
    [4] 王霞, 贾方石, 姚科, 颜君, 李冀光, 吴勇, 王建国. 类铝离子钟跃迁能级的超精细结构常数和朗德g因子. 物理学报, 2023, 72(22): 223101. doi: 10.7498/aps.72.20230940
    [5] 唐家栋, 刘乾昊, 程存峰, 胡水明. 磁场中HD分子振转跃迁的超精细结构. 物理学报, 2021, 70(17): 170301. doi: 10.7498/aps.70.20210512
    [6] 娄冰琼, 李芳, 王沛妍, 王黎明, 唐永波. 钫原子磁偶极超精细结构常数及其同位素的磁偶极矩的理论计算. 物理学报, 2019, 68(9): 093101. doi: 10.7498/aps.68.20190113
    [7] 张祥, 卢本全, 李冀光, 邹宏新. Hg+离子5d106s 2S1/2→5d96s2 2D5/2钟跃迁同位素位移和超精细结构的理论研究. 物理学报, 2019, 68(4): 043101. doi: 10.7498/aps.68.20182136
    [8] 裴栋梁, 何军, 王杰英, 王家超, 王军民. 铯原子里德伯态精细结构测量. 物理学报, 2017, 66(19): 193701. doi: 10.7498/aps.66.193701
    [9] 任雅娜, 杨保东, 王杰, 杨光, 王军民. 铯原子7S1/2态磁偶极超精细常数的测量. 物理学报, 2016, 65(7): 073103. doi: 10.7498/aps.65.073103
    [10] 杨保东, 高静, 王杰, 张天才, 王军民. 铯6S1/2 -6P3/2 -8S1/2阶梯型系统中超精细能级的多重电磁感应透明. 物理学报, 2011, 60(11): 114207. doi: 10.7498/aps.60.114207
    [11] 侯碧辉, 李 勇, 刘国庆, 张桂花, 刘凤艳, 陶世荃. 单晶LiNbO3:Mn2+的ESR谱研究. 物理学报, 2005, 54(1): 373-378. doi: 10.7498/aps.54.373
    [12] 陈岁元, 刘常升, 李慧莉, 崔 彤. 非晶Fe73.5Cu1Nb3Si13.5B9合金激光纳米化的超精细结构研究. 物理学报, 2005, 54(9): 4157-4163. doi: 10.7498/aps.54.4157
    [13] 王立军, 余慧莺. 窄带激光与能级具有超精细结构的二能级原子的相干激发. 物理学报, 2004, 53(12): 4151-4156. doi: 10.7498/aps.53.4151
    [14] 马洪良, 陆 江, 王春涛. 141Pr+波长56908 nm谱线超精细结构测量. 物理学报, 2003, 52(3): 566-569. doi: 10.7498/aps.52.566
    [15] 赵鹭明, 王立军. 超精细结构对激光与二能级原子相互作用的影响. 物理学报, 2002, 51(6): 1227-1232. doi: 10.7498/aps.51.1227
    [16] 黎光武, 马洪良, 李茂生, 陈志骏, 陈淼华, 陆福全, 彭先觉, 杨福家. LaⅡ5d2 1G4→4f5d 1F3超精 细结构光谱测量. 物理学报, 2000, 49(7): 1256-1259. doi: 10.7498/aps.49.1256
    [17] 陈志骏, 马洪良, 陈淼华, 李茂生, 施 伟, 陆福全, 汤家镛. 单电荷态钡离子超精细结构光谱. 物理学报, 1999, 48(11): 2038-2041. doi: 10.7498/aps.48.2038
    [18] 潘守甫, 张凤梧. Li原子的超精细结构计算. 物理学报, 1964, 20(8): 822-824. doi: 10.7498/aps.20.822
    [19] 余友文, 张宗烨. 关於镧La57的超精细结构. 物理学报, 1958, 14(6): 488-496. doi: 10.7498/aps.14.488
    [20] 赵广增, 郑志豪. 水银共振線超精细结构的强度分布. 物理学报, 1955, 11(4): 359-362. doi: 10.7498/aps.11.359
计量
  • 文章访问数:  3807
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-14
  • 修回日期:  2022-11-14
  • 上网日期:  2022-12-09
  • 刊出日期:  2023-02-20

/

返回文章
返回