搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子兰姆位移与超精细结构中的核结构效应

计晨

引用本文:
Citation:

原子兰姆位移与超精细结构中的核结构效应

计晨
cstr: 32037.14.aps.73.20241063

Nuclear structure effects to atomic Lamb shift and hyperfine splitting

Ji Chen
cstr: 32037.14.aps.73.20241063
PDF
HTML
导出引用
  • 精密原子光谱实验和理论在测量基本物理常数和检验量子电动力学理论中起着关键作用, 同时为研究原子核内部结构和发展高精度核结构理论提供重要观测平台. 许多原子光谱实验中, 核结构效应如电荷分布、磁矩分布和核极化度已被精确测定, 大大提高了核结构检测的精度. 本文系统论述了关于轻质量电子原子与缪子原子兰姆位移和超精细结构中的双光子交换效应的理论框架与研究发展. 着重介绍了先进的核力模型和核结构第一性原理计算方法在上述问题中的应用. 轻质量原子中双光子交换效应的理论研究对于从原子光谱测量中确定核电荷半径和Zemach半径具有重要作用. 这些研究结果不仅能加深对原子核内部结构以及核子-核子相互作用的理解, 还为未来实验提供重要的理论指导, 推进对质子半径难题以及其他轻核半径测量问题的理解.
    The development of precision atomic spectroscopy experiments and theoretical advancements plays a crucial role in measuring fundamental physical constants and testing quantum electrodynamics (QED) theories. It also provides a significant platform for studying the internal structure of atomic nuclei and developing high-precision nuclear structure theories. Nuclear structure effects such as charge distribution, magnetic moment distribution, and nuclear polarizability have been accurately determined in many atomic spectroscopy experiments, significantly enhancing the precision of nuclear structure detection.This paper systematically reviews the theoretical research and developments on the corrections of two-photon exchange (TPE) effects on the Lamb shift and hyperfine structure (HFS) in light ordinary and muonic atoms. Advanced nuclear force models and ab initio methods are employed to analyze the TPE nuclear structure corrections to the Lamb shift in a series of light muonic atoms. The paper compares the calculation of TPE effects from various nuclear models and evaluates the model dependencies and theoretical uncertainties of TPE effect predictions.Furthermore, the paper discusses the significant impact of TPE theory on explaining the discrepancies between experimental measurements and QED theoretical predictions in atomic hyperfine structures, resolving the accuracy difficulties in traditional theories. Detailed analyses of TPE effects on HFS in electronic and muonic deuterium using pionless effective field theory show good agreement with experimental measurements, validating the accuracy of theoretical predictions.The theoretical studies of TPE effects in light atoms are instrumental for determining nuclear charge radii and Zemach radii from spectroscopy measurements. These results not only enhance the understanding of nuclear structure and nuclear interactions but also offer crucial theoretical guidance for future experiments, thereby advancing the understanding of the proton radius puzzle and related studies.
      通信作者: 计晨, jichen@ccnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12175083, 12335002, 11805078)资助的课题.
      Corresponding author: Ji Chen, jichen@ccnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175083, 12335002, 11805078).
    [1]

    Mohr P J, Taylor B N, Newell D B 2012 Rev. Mod. Phys. 84 1527Google Scholar

    [2]

    Pohl R, Antognini A, Nez F, et al. 2010 Nature 466 213Google Scholar

    [3]

    Antognini A, Nez F, Schuhmann K, et al. 2013 Science 339 417Google Scholar

    [4]

    Mohr P J, Newell D B, Taylor B N 2016 Rev. Mod. Phys. 88 035009Google Scholar

    [5]

    Xiong W, Gasparian A, Gao H, et al. 2019 Nature 575 147Google Scholar

    [6]

    Bernauer J C, Achenbach P, Ayerbe Gayoso C, et al. 2010 Phys. Rev. Lett. 105 242001Google Scholar

    [7]

    Gilman R, Downie E J, Ron G, et al. 2017 arXiv:1709.09753 [physics.ins-det]

    [8]

    Pohl R, Nez F, Fernandes L M P, et al. 2016 Science 353 669Google Scholar

    [9]

    Krauth J J, Schuhmann K, Ahmed M A, et al. 2021 Nature 589 527Google Scholar

    [10]

    Schuhmann K, Fernandes L M P, Nez F, et al. 2023 arXiv:2305. 1 1679 [physics. atom-ph]

    [11]

    Borie E 2012 Annals of Physics 327 733Google Scholar

    [12]

    Hellwig H, Vessot R F C, Levine M W, Zitzewitz P W, Allan D W, Glaze D J 1970 IEEE Trans. Inst. Meas. 19 200Google Scholar

    [13]

    Wineland D J, Ramsey N F 1972 Phys. Rev. A 5 821Google Scholar

    [14]

    Rosner S D, Pipkin F M 1970 Phys. Rev. A 1 571Google Scholar

    [15]

    Kowalski J, Neumann R, Noehte S, Scheffzek K, Suhr H, Putlitz G z 1983 Hyp. Int. 15 159Google Scholar

    [16]

    Guan H, Chen S, Qi X Q, et al. 2020 Phys. Rev. A 102 030801Google Scholar

    [17]

    Sun W, Zhang P P, Zhou P, et al. 2023 Phys. Rev. Lett. 131 103002Google Scholar

    [18]

    Sato M, Ishida K, Iwasaki M, et al. 2014 20th International Conference on Particles and Nuclei (Hamburg, Germany), August 24, 2014 pp460–463

    [19]

    Pizzolotto C, Adamczak A, Bakalov D, et al. 2020 Eur. Phys. J. A 56 185Google Scholar

    [20]

    Amaro P, Adamczak A, Ahmed M A, et al. 2022 SciPost Phys. 13 020Google Scholar

    [21]

    Ohayon B, Abeln A, Bara S, et al. 2024 MDPI Phys. 6 206Google Scholar

    [22]

    Strasser P, Fukumura S, Ino T, et al. 2023 J. Phys.: Conf. Ser. 2462 012023Google Scholar

    [23]

    Schwartz C 1955 Phys. Rev. 97 380Google Scholar

    [24]

    Woodgate G K 1983 Elementary Atomic Structure. (2nd Ed.) (London, England: Oxford University Press) pp168–174

    [25]

    Eides M I, Grotch H, Shelyuto V A 2001 Phys. Rep. 342 63Google Scholar

    [26]

    Friar J L, Payne G L 2005 Phys. Rev. C 72 014002Google Scholar

    [27]

    Rosenfelder R 1983 Nucl. Phys. A 393 301Google Scholar

    [28]

    Leidemann W, Rosenfelder R 1995 Phys. Rev. C 51 427Google Scholar

    [29]

    Ji C, Zhang X, Platter L 2024 Phys. Rev. Lett. 133 042502Google Scholar

    [30]

    Friar J, Rosen M 1974 Annals of Physics 87 289Google Scholar

    [31]

    Zemach A C 1956 Phys. Rev. 104 1771Google Scholar

    [32]

    Friar J, Sick I 2004 Phys. Lett. B 579 285Google Scholar

    [33]

    Carlson C E, Nazaryan V, Griffioen K 2011 Phys. Rev. A 83 042509Google Scholar

    [34]

    Kamada H, Nogga A, Glöckle W, et al. 2001 Phys. Rev. C 64 044001Google Scholar

    [35]

    Leidemann W, Orlandini G 2013 Prog. Part. Nucl. Phys. 68 158Google Scholar

    [36]

    Efros V D, Leidemann W, Orlandini G 1994 Phys. Lett. B 338 130Google Scholar

    [37]

    Efros V D, Leidemann W, Orlandini G, Barnea N 2007 J. Phys. G 34 R459Google Scholar

    [38]

    Nevo Dinur N, Barnea N, Ji C, Bacca S 2014 Phys. Rev. C 89 064317Google Scholar

    [39]

    Hernandez J O, Ji C, Bacca S, Nevo Dinur N, Barnea N 2014 Phys. Lett. B 736 344Google Scholar

    [40]

    Hernandez O, Ekström A, Dinur N N, Ji C, Bacca S, Barnea N 2018 Phys. Lett. B 778 377Google Scholar

    [41]

    Pachucki K 2011 Phys. Rev. Lett. 106 193007Google Scholar

    [42]

    Pachucki K, Wienczek A 2015 Phys. Rev. A 91 040503Google Scholar

    [43]

    Hernandez O J, Ji C, Bacca S, Barnea N 2019 Phys. Rev. C 100 064315Google Scholar

    [44]

    Friar J L 2013 Phys. Rev. C 88 034003Google Scholar

    [45]

    Emmons S B, Ji C, Platter L 2021 J. Phys. G 48 035101Google Scholar

    [46]

    Lensky V, Hagelstein F, Pascalutsa V 2022 Eur. Phys. J. A 58 224Google Scholar

    [47]

    Lensky V, Hagelstein F, Pascalutsa V 2022 Phys. Lett. B 835 137500Google Scholar

    [48]

    Carlson C E, Gorchtein M, Vanderhaeghen M 2014 Phys. Rev. A 89 022504Google Scholar

    [49]

    Nevo Dinur N, Ji C, Bacca S, Barnea N 2016 Phys. Lett. B 755 380Google Scholar

    [50]

    Ji C, Nevo Dinur N, Bacca S, Barnea N 2013 Phys. Rev. Lett. 111 143402Google Scholar

    [51]

    Ji C, Bacca S, Barnea N, Hernandez O J, Nevo-Dinur N 2018 J. Phys. G 45 093002Google Scholar

    [52]

    Wiringa R B, Stoks V G J, Schiavilla R 1995 Phys. Rev. C 51 38Google Scholar

    [53]

    Pudliner B S, Pandharipande V R, Carlson J, Wiringa R B 1995 Phys. Rev. Lett. 74 4396Google Scholar

    [54]

    Entem D R, Machleidt R 2003 Phys. Rev. C 68 041001Google Scholar

    [55]

    Navrátil P 2007 Few-Body Syst. 41 117Google Scholar

    [56]

    Pohl R, Nez F, Udem T, et al. 2017 Metrologia 54 L1Google Scholar

    [57]

    Parthey C G, Matveev A, Alnis J, Pohl R, Udem T, Jentschura U D, Kolachevsky N, Hänsch T W 2010 Phys. Rev. Lett. 104 233001Google Scholar

    [58]

    Shiner D, Dixson R, Vedantham V 1995 Phys. Rev. Lett. 74 3553Google Scholar

    [59]

    van Rooij R, Borbely J S, Simonet J, Hoogerland M D, Eikema K S E, Rozendaal R A, Vassen W 2011 Science 333 196Google Scholar

    [60]

    Cancio Pastor P, Consolino L, Giusfredi G, De Natale P, Inguscio M, Yerokhin V A, Pachucki K 2012 Phys. Rev. Lett. 108 143001Google Scholar

    [61]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 119 263002Google Scholar

    [62]

    Rengelink R J, Werf Y, Notermans R P M J W, Jannin R, Eikema K S E, Hoogerland M D, Vassen W 2018 Nature Phys. 14 1132Google Scholar

    [63]

    Huang Y J, Guan Y C, Peng J L, Shy J T, Wang L B 2020 Phys. Rev. A 101 062507Google Scholar

    [64]

    Khriplovich I B, Milshtein A I, Petrosian S S 1996 Phys. Lett. B 366 13Google Scholar

    [65]

    Khriplovich I B, Milstein A I 2004 J. Exp. Theor. Phys. 98 181Google Scholar

    [66]

    Faustov R N, Martynenko A P 2003 Phys. Rev. A 67 052506Google Scholar

    [67]

    Faustov R N, Martynenko A P, Martynenko G A, Sorokin V V 2014 Phys. Rev. A 90 012520Google Scholar

    [68]

    Krauth J J, Diepold M, Franke B, Antognini A, Kottmann F, Pohl R 2016 Ann. Phys. 366 168Google Scholar

    [69]

    Friar J L, Payne G L 2005 Phys. Lett. B 618 68Google Scholar

    [70]

    Kalinowski M, Pachucki K, Yerokhin V A 2018 Phys. Rev. A 98 062513Google Scholar

    [71]

    Antognini A, Hagelstein F, Pascalutsa V 2022 Ann. Rev. Nucl. Part. Sci. 72 389Google Scholar

    [72]

    Tomalak O 2019 Eur. Phys. J A 55 64Google Scholar

    [73]

    Antognini A, Lin Y H, Meißner U G 2022 Phys. Lett. B 835 137575Google Scholar

    [74]

    Tomalak O 2019 Phys. Rev. D 99 056018Google Scholar

    [75]

    Lin Y H, Hammer H W, Meißner U G 2021 Phys. Lett. B 816 136254Google Scholar

    [76]

    Lin Y H, Hammer H W, Meißner U G 2021 Eur. Phys. J. A 57 255Google Scholar

    [77]

    Lin Y H, Hammer H W, Meißner U G 2022 Phys. Rev. Lett. 128 052002Google Scholar

    [78]

    Kelly J J 2004 Phys. Rev. C 70 068202Google Scholar

  • 图 1  轻子-原子核系统中的双光子交换费曼图, 从左至右依次对应箱图、交叉图与海鸥图. 波浪线、细直线、粗直线与椭圆分别对应光子、轻子、核基态与核激发态

    Fig. 1.  Two-photon exchange diagrams in lepton-nucleus systems. The diagrams from left to right are respectively the box, cross and seagull diagrams. Wiggled, thin-straight, thick-straight lines and ellipse represent respectively the photon, lepton, nuclear ground state and nuclear excited states.

    表 1  不同μ原子中$ \delta_{\rm TPE} $的计算结果和理论误差(单位meV). 结果被分解为弹性部分和核极化部分, 以及单核子部分. 数据来源于文献[51]

    Table 1.  Theoretical prediction and uncertainty of $ \delta_{\rm TPE} $ in various muonic atoms (in unit of meV). The results are decomposed into elastic, polarizability, and single-nucleon parts. Data collected from Ref. [51].

    $ \delta^{N}_{\rm el} $ $ \delta^{N}_{\rm pol} $ $ \delta^{A}_{\rm el} $ $ \delta^{A}_{\rm pol} $ $ \delta_{\rm TPE} $
    $ \text{µ}^2{\rm H} $ –0.030(02) –0.020(10) –0.423(04) –1.245(13) –1.718(17)
    $ \text{µ}^3{\rm H} $ –0.033(02) –0.031(17) –0.227(06) –0.480(11) –0.771(22)
    $ \text{µ}^3 {\rm He}^{+} $ –0.52(03) –0.25(13) –10.49(23) –4.23(18) –15.49(33)
    $ \text{µ}^4 {\rm He}^{+} $ –0.54(03) –0.34(20) –6.14(31) –2.35(13) –9.37(44)
    下载: 导出CSV

    表 2  单质子、单中子、核弹性和核极化TPE效应对2H与µ2H中HFS的修正. 数据来源于文献[29]

    Table 2.  The single-proton, single-neutron, nuclear elastic, and nuclear-polarizability TPE contributions to HFS in 2H and µ2H. Data from Ref. [29].

    2H (1S)/kHzµ2H (1S)/meVµ2H (2S)/meV
    $ E_{\rm el} $–42.1(2.1)–0.984(46)–0.123(6)
    $ E_{\rm pol} $109.8(4.5)2.86(12)0.358(14)
    $ E_{\rm nucl}=E_{\rm el}+E_{\rm pol} $67.7(4.2)1.878(88)0.235(11)
    $ E_{\rm 1 p} $[71]–35.54(8)–1.018(2)–0.1272(2)
    $ E_{\rm 1 n} $[72]9.6(1.0)0.079(32)0.010(4)
    $ \varDelta_{3\gamma} $±0.49±0.052±0.0065
    $ E_{\rm TPE} $41.7(4.4)0.94(11)0.117(13)
    Ref. [64,65]43
    Ref. [26,69] mod64.5
    Ref. [70]0.304(68)0.0383(86)
    $ \nu_{\rm exp}-\nu_\text{QED} $[25,68]45.20.0966(73)
    注: “mod”对原文献修正核子反冲与极化效应; TPE效应在µ2H的1S和2S态中相差8倍.
    下载: 导出CSV
  • [1]

    Mohr P J, Taylor B N, Newell D B 2012 Rev. Mod. Phys. 84 1527Google Scholar

    [2]

    Pohl R, Antognini A, Nez F, et al. 2010 Nature 466 213Google Scholar

    [3]

    Antognini A, Nez F, Schuhmann K, et al. 2013 Science 339 417Google Scholar

    [4]

    Mohr P J, Newell D B, Taylor B N 2016 Rev. Mod. Phys. 88 035009Google Scholar

    [5]

    Xiong W, Gasparian A, Gao H, et al. 2019 Nature 575 147Google Scholar

    [6]

    Bernauer J C, Achenbach P, Ayerbe Gayoso C, et al. 2010 Phys. Rev. Lett. 105 242001Google Scholar

    [7]

    Gilman R, Downie E J, Ron G, et al. 2017 arXiv:1709.09753 [physics.ins-det]

    [8]

    Pohl R, Nez F, Fernandes L M P, et al. 2016 Science 353 669Google Scholar

    [9]

    Krauth J J, Schuhmann K, Ahmed M A, et al. 2021 Nature 589 527Google Scholar

    [10]

    Schuhmann K, Fernandes L M P, Nez F, et al. 2023 arXiv:2305. 1 1679 [physics. atom-ph]

    [11]

    Borie E 2012 Annals of Physics 327 733Google Scholar

    [12]

    Hellwig H, Vessot R F C, Levine M W, Zitzewitz P W, Allan D W, Glaze D J 1970 IEEE Trans. Inst. Meas. 19 200Google Scholar

    [13]

    Wineland D J, Ramsey N F 1972 Phys. Rev. A 5 821Google Scholar

    [14]

    Rosner S D, Pipkin F M 1970 Phys. Rev. A 1 571Google Scholar

    [15]

    Kowalski J, Neumann R, Noehte S, Scheffzek K, Suhr H, Putlitz G z 1983 Hyp. Int. 15 159Google Scholar

    [16]

    Guan H, Chen S, Qi X Q, et al. 2020 Phys. Rev. A 102 030801Google Scholar

    [17]

    Sun W, Zhang P P, Zhou P, et al. 2023 Phys. Rev. Lett. 131 103002Google Scholar

    [18]

    Sato M, Ishida K, Iwasaki M, et al. 2014 20th International Conference on Particles and Nuclei (Hamburg, Germany), August 24, 2014 pp460–463

    [19]

    Pizzolotto C, Adamczak A, Bakalov D, et al. 2020 Eur. Phys. J. A 56 185Google Scholar

    [20]

    Amaro P, Adamczak A, Ahmed M A, et al. 2022 SciPost Phys. 13 020Google Scholar

    [21]

    Ohayon B, Abeln A, Bara S, et al. 2024 MDPI Phys. 6 206Google Scholar

    [22]

    Strasser P, Fukumura S, Ino T, et al. 2023 J. Phys.: Conf. Ser. 2462 012023Google Scholar

    [23]

    Schwartz C 1955 Phys. Rev. 97 380Google Scholar

    [24]

    Woodgate G K 1983 Elementary Atomic Structure. (2nd Ed.) (London, England: Oxford University Press) pp168–174

    [25]

    Eides M I, Grotch H, Shelyuto V A 2001 Phys. Rep. 342 63Google Scholar

    [26]

    Friar J L, Payne G L 2005 Phys. Rev. C 72 014002Google Scholar

    [27]

    Rosenfelder R 1983 Nucl. Phys. A 393 301Google Scholar

    [28]

    Leidemann W, Rosenfelder R 1995 Phys. Rev. C 51 427Google Scholar

    [29]

    Ji C, Zhang X, Platter L 2024 Phys. Rev. Lett. 133 042502Google Scholar

    [30]

    Friar J, Rosen M 1974 Annals of Physics 87 289Google Scholar

    [31]

    Zemach A C 1956 Phys. Rev. 104 1771Google Scholar

    [32]

    Friar J, Sick I 2004 Phys. Lett. B 579 285Google Scholar

    [33]

    Carlson C E, Nazaryan V, Griffioen K 2011 Phys. Rev. A 83 042509Google Scholar

    [34]

    Kamada H, Nogga A, Glöckle W, et al. 2001 Phys. Rev. C 64 044001Google Scholar

    [35]

    Leidemann W, Orlandini G 2013 Prog. Part. Nucl. Phys. 68 158Google Scholar

    [36]

    Efros V D, Leidemann W, Orlandini G 1994 Phys. Lett. B 338 130Google Scholar

    [37]

    Efros V D, Leidemann W, Orlandini G, Barnea N 2007 J. Phys. G 34 R459Google Scholar

    [38]

    Nevo Dinur N, Barnea N, Ji C, Bacca S 2014 Phys. Rev. C 89 064317Google Scholar

    [39]

    Hernandez J O, Ji C, Bacca S, Nevo Dinur N, Barnea N 2014 Phys. Lett. B 736 344Google Scholar

    [40]

    Hernandez O, Ekström A, Dinur N N, Ji C, Bacca S, Barnea N 2018 Phys. Lett. B 778 377Google Scholar

    [41]

    Pachucki K 2011 Phys. Rev. Lett. 106 193007Google Scholar

    [42]

    Pachucki K, Wienczek A 2015 Phys. Rev. A 91 040503Google Scholar

    [43]

    Hernandez O J, Ji C, Bacca S, Barnea N 2019 Phys. Rev. C 100 064315Google Scholar

    [44]

    Friar J L 2013 Phys. Rev. C 88 034003Google Scholar

    [45]

    Emmons S B, Ji C, Platter L 2021 J. Phys. G 48 035101Google Scholar

    [46]

    Lensky V, Hagelstein F, Pascalutsa V 2022 Eur. Phys. J. A 58 224Google Scholar

    [47]

    Lensky V, Hagelstein F, Pascalutsa V 2022 Phys. Lett. B 835 137500Google Scholar

    [48]

    Carlson C E, Gorchtein M, Vanderhaeghen M 2014 Phys. Rev. A 89 022504Google Scholar

    [49]

    Nevo Dinur N, Ji C, Bacca S, Barnea N 2016 Phys. Lett. B 755 380Google Scholar

    [50]

    Ji C, Nevo Dinur N, Bacca S, Barnea N 2013 Phys. Rev. Lett. 111 143402Google Scholar

    [51]

    Ji C, Bacca S, Barnea N, Hernandez O J, Nevo-Dinur N 2018 J. Phys. G 45 093002Google Scholar

    [52]

    Wiringa R B, Stoks V G J, Schiavilla R 1995 Phys. Rev. C 51 38Google Scholar

    [53]

    Pudliner B S, Pandharipande V R, Carlson J, Wiringa R B 1995 Phys. Rev. Lett. 74 4396Google Scholar

    [54]

    Entem D R, Machleidt R 2003 Phys. Rev. C 68 041001Google Scholar

    [55]

    Navrátil P 2007 Few-Body Syst. 41 117Google Scholar

    [56]

    Pohl R, Nez F, Udem T, et al. 2017 Metrologia 54 L1Google Scholar

    [57]

    Parthey C G, Matveev A, Alnis J, Pohl R, Udem T, Jentschura U D, Kolachevsky N, Hänsch T W 2010 Phys. Rev. Lett. 104 233001Google Scholar

    [58]

    Shiner D, Dixson R, Vedantham V 1995 Phys. Rev. Lett. 74 3553Google Scholar

    [59]

    van Rooij R, Borbely J S, Simonet J, Hoogerland M D, Eikema K S E, Rozendaal R A, Vassen W 2011 Science 333 196Google Scholar

    [60]

    Cancio Pastor P, Consolino L, Giusfredi G, De Natale P, Inguscio M, Yerokhin V A, Pachucki K 2012 Phys. Rev. Lett. 108 143001Google Scholar

    [61]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 119 263002Google Scholar

    [62]

    Rengelink R J, Werf Y, Notermans R P M J W, Jannin R, Eikema K S E, Hoogerland M D, Vassen W 2018 Nature Phys. 14 1132Google Scholar

    [63]

    Huang Y J, Guan Y C, Peng J L, Shy J T, Wang L B 2020 Phys. Rev. A 101 062507Google Scholar

    [64]

    Khriplovich I B, Milshtein A I, Petrosian S S 1996 Phys. Lett. B 366 13Google Scholar

    [65]

    Khriplovich I B, Milstein A I 2004 J. Exp. Theor. Phys. 98 181Google Scholar

    [66]

    Faustov R N, Martynenko A P 2003 Phys. Rev. A 67 052506Google Scholar

    [67]

    Faustov R N, Martynenko A P, Martynenko G A, Sorokin V V 2014 Phys. Rev. A 90 012520Google Scholar

    [68]

    Krauth J J, Diepold M, Franke B, Antognini A, Kottmann F, Pohl R 2016 Ann. Phys. 366 168Google Scholar

    [69]

    Friar J L, Payne G L 2005 Phys. Lett. B 618 68Google Scholar

    [70]

    Kalinowski M, Pachucki K, Yerokhin V A 2018 Phys. Rev. A 98 062513Google Scholar

    [71]

    Antognini A, Hagelstein F, Pascalutsa V 2022 Ann. Rev. Nucl. Part. Sci. 72 389Google Scholar

    [72]

    Tomalak O 2019 Eur. Phys. J A 55 64Google Scholar

    [73]

    Antognini A, Lin Y H, Meißner U G 2022 Phys. Lett. B 835 137575Google Scholar

    [74]

    Tomalak O 2019 Phys. Rev. D 99 056018Google Scholar

    [75]

    Lin Y H, Hammer H W, Meißner U G 2021 Phys. Lett. B 816 136254Google Scholar

    [76]

    Lin Y H, Hammer H W, Meißner U G 2021 Eur. Phys. J. A 57 255Google Scholar

    [77]

    Lin Y H, Hammer H W, Meißner U G 2022 Phys. Rev. Lett. 128 052002Google Scholar

    [78]

    Kelly J J 2004 Phys. Rev. C 70 068202Google Scholar

  • [1] 钟振祥. 氢分子离子超精细结构理论综述. 物理学报, 2024, 73(20): 203104. doi: 10.7498/aps.73.20241101
    [2] 陈润, 邵旭萍, 黄云霞, 杨晓华. BrF分子电磁偶极跃迁转动超精细微波谱模拟. 物理学报, 2023, 72(4): 043301. doi: 10.7498/aps.72.20221957
    [3] 唐家栋, 刘乾昊, 程存峰, 胡水明. 磁场中HD分子振转跃迁的超精细结构. 物理学报, 2021, 70(17): 170301. doi: 10.7498/aps.70.20210512
    [4] 彭军辉, TikhonovEvgenii. 三元Hf-C-N体系的空位有序结构及其力学性质和电子性质的第一性原理研究. 物理学报, 2021, 70(21): 216101. doi: 10.7498/aps.70.20210244
    [5] 李君, 刘立胜, 徐爽, 张金咏. 单轴压缩下Ti3B4的力学、电学性能及变形机制的第一性原理研究. 物理学报, 2020, 69(4): 043102. doi: 10.7498/aps.69.20191194
    [6] 黄瑞, 李春, 金蔚, GeorgiosLefkidis, WolfgangHübner. 双磁性中心内嵌富勒烯Y2C2@C82-C2(1)中的超快自旋动力学行为. 物理学报, 2019, 68(2): 023101. doi: 10.7498/aps.68.20181887
    [7] 张祥, 卢本全, 李冀光, 邹宏新. Hg+离子5d106s 2S1/2→5d96s2 2D5/2钟跃迁同位素位移和超精细结构的理论研究. 物理学报, 2019, 68(4): 043101. doi: 10.7498/aps.68.20182136
    [8] 裴栋梁, 何军, 王杰英, 王家超, 王军民. 铯原子里德伯态精细结构测量. 物理学报, 2017, 66(19): 193701. doi: 10.7498/aps.66.193701
    [9] 任雅娜, 杨保东, 王杰, 杨光, 王军民. 铯原子7S1/2态磁偶极超精细常数的测量. 物理学报, 2016, 65(7): 073103. doi: 10.7498/aps.65.073103
    [10] 王欣欣, 张颖, 周洪波, 王金龙. 铌对钨中氦行为影响的第一性原理研究. 物理学报, 2014, 63(4): 046103. doi: 10.7498/aps.63.046103
    [11] 金硕, 孙璐. 带有碳杂质的钨中氢稳定性的第一性原理研究. 物理学报, 2012, 61(4): 046104. doi: 10.7498/aps.61.046104
    [12] 杨保东, 高静, 王杰, 张天才, 王军民. 铯6S1/2 -6P3/2 -8S1/2阶梯型系统中超精细能级的多重电磁感应透明. 物理学报, 2011, 60(11): 114207. doi: 10.7498/aps.60.114207
    [13] 原鹏飞, 祝文军, 徐济安, 刘绍军, 经福谦. BeO高压相变和声子谱的第一性原理计算. 物理学报, 2010, 59(12): 8755-8761. doi: 10.7498/aps.59.8755
    [14] 李金, 桂贵, 孙立忠, 钟建新. 单轴大应变下二维六角氮化硼的结构变化. 物理学报, 2010, 59(12): 8820-8828. doi: 10.7498/aps.59.8820
    [15] 顾娟, 王山鹰, 苟秉聪. Au和3d过渡金属元素混合团簇结构、电子结构和磁性的研究. 物理学报, 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [16] 陈岁元, 刘常升, 李慧莉, 崔 彤. 非晶Fe73.5Cu1Nb3Si13.5B9合金激光纳米化的超精细结构研究. 物理学报, 2005, 54(9): 4157-4163. doi: 10.7498/aps.54.4157
    [17] 王立军, 余慧莺. 窄带激光与能级具有超精细结构的二能级原子的相干激发. 物理学报, 2004, 53(12): 4151-4156. doi: 10.7498/aps.53.4151
    [18] 马洪良, 陆 江, 王春涛. 141Pr+波长56908 nm谱线超精细结构测量. 物理学报, 2003, 52(3): 566-569. doi: 10.7498/aps.52.566
    [19] 赵鹭明, 王立军. 超精细结构对激光与二能级原子相互作用的影响. 物理学报, 2002, 51(6): 1227-1232. doi: 10.7498/aps.51.1227
    [20] 黎光武, 马洪良, 李茂生, 陈志骏, 陈淼华, 陆福全, 彭先觉, 杨福家. LaⅡ5d2 1G4→4f5d 1F3超精 细结构光谱测量. 物理学报, 2000, 49(7): 1256-1259. doi: 10.7498/aps.49.1256
计量
  • 文章访问数:  1123
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-31
  • 修回日期:  2024-09-08
  • 上网日期:  2024-09-25
  • 刊出日期:  2024-10-20

/

返回文章
返回