搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于冷分子离子HD+振转光谱的精密测量

张乾煜 白文丽 敖致远 丁彦皓 彭文翠 何胜国 童昕

引用本文:
Citation:

基于冷分子离子HD+振转光谱的精密测量

张乾煜, 白文丽, 敖致远, 丁彦皓, 彭文翠, 何胜国, 童昕

Precision spectroscopic study on rovibrational transitions of cold molecular hydrogen ions

Zhang Qian-Yu, Bai Wen-Li, Ao Zhi-Yuan, Ding Yan-hao, Peng Wen-Cui, He Sheng-Guo, Tong Xin
PDF
导出引用
  • 由一个质子、一个氘核和一个电子组成的氢分子离子“HD+”是最简单的异核双原子分子,其有着丰富的、可精确计算和测量的振转跃迁谱线。通过HD+振转光谱实验测量和理论计算的对比,可实现物理常数的精确确定,QED理论的检验,并开启了超越标准模型新物理的探寻。目前,HD+的振转跃迁频率确定的相对精度已经进入了10-12量级,并由此获得了当前最高精度的质子电子质量比,相对精度达到20 ppt。本文全面介绍了目前HD+振转光谱的研究现状与理论背景,阐述了基于Be+离子协同冷却HD+分子离子的高精度振转光谱测量方法,包括Be+离子和HD+分子离子的产生与囚禁,HD+外态冷却与内态制备,双组份库仑晶体中HD+数目的确定,以及HD+振转跃迁的探测。最后,文章展望了进一步提高频率测量精度的光谱前沿技术,及同位素氢分子离子的振转光谱在未来研究中的发展前景。
    A molecular hydrogen ion HD+, composed of a proton, a deuteron, and an electron, has a rich set of rovibrational transitions that can be theoretically calculated and experimentally measured precisely. Currently, the relative accuracy of the rovibrational transition frequencies of the HD+ molecular ions has reached the order of 10-12. By comparing experimental measurements and theoretical calculations of the HD+ rovibrational spectrum, the precise determination of the proton-electron mass ratio, the testing of QED (quantum electrodynamics) theory, and the exploration of new physics beyond the standard model can be achieved. The HD+ rovibrational spectrum experiment has achieved the highest accuracy in measuring proton-electron mass ratio, with an accuracy of 20 ppt. This article comprehensively introduces the current state of research on HD+ rovibrational spectroscopy, detailing the experimental method of the high-precision rovibrational spectroscopic measurement based on the sympathetic cooling of HD+ ions by laser-cooled Be+ ions. In section 2, the generation and trapping technique of both Be+ and HD+ ions are introduced. Three ion generation methods including electron impact, laser ablation and photoionization are also compared in this section. In section 3, we show the successful control of the kinetic energy of HD+ molecular ions through the sympathetic cooling, and the importance of laser frequency stabilization for sympathetic cooling of HD+ molecular ions. In section 4, two methods for preparing internal states of HD+ molecular ions, optical pumping and resonance enhanced threshold photoionization, are introduced. Both methods show the significant increase of population on the ground rovibrational state. In section 5, we introduce two methods for determining the number changes of HD+ molecular ions: secular excitation and molecular dynamic simulation. Both methods combined with resonance enhanced multiphoton dissociation can detect the rovibrational transitions of HD+ molecular ions. In section 6, the experimental setup and process for the rovibrational spectrum of HD+ molecular ions are given and the up-to-date results are shown. Finally, the paper is concluded with the summary of the techniques used in HD+ rovibrational spectroscopic measurements, the prospects of potential spectroscopic technologies for further improving frequency measurement precision, and the development of spectroscopic methods of different isotopic hydrogen molecular ions.
  • [1]

    Karr J P, Hilico L, Koelemeij J C, Korobov V 2016 Phys. Rev. A 94 050501

    [2]

    Colbourn E A, Bunker P R 1976 J. Mol. Spectrosc 63 155

    [3]

    Korobov V I, Karr J P 2021 Phys. Rev. A 104 032806

    [4]

    Korobov V I 2022 Phys. Part. Nuclei 53 1

    [5]

    Yan Z C, Zhang J Y 2004 J. Phys. B: At. Mol. Opt. Phys. 37 1055

    [6]

    Ye N, Yan Z C 2014 Phys. Rev. A 90 032516

    [7]

    Aznabayev D T, Bekbaev A K, Korobov V I 2019 Phys. Rev. A 99 012501

    [8]

    Bakalov D, Korobov V I, Schiller S 2006 Phys. Rev. Lett. 97 243001

    [9]

    Haidar M, Korobov V I, Hilico L, Karr J P 2022 Phys. Rev. A 106 042815

    [10]

    Zhong Z X, Zhang P P, Yan Z C, Shi T Y 2012 Phys. Rev. A 86 064502

    [11]

    Zhong Z X, Zhou W P, Mei X S 2018 Phys. Rev. A 98 032502

    [12]

    Korobov V I, Karr J P, Haidar M, Zhong Z X 2020 Phys. Rev. A 102 022804

    [13]

    Wing W H, Ruff G A, Lamb Jr W E, Spezeski J J 1976 Phys. Rev. Lett. 36 1488

    [14]

    Koelemeij J C J, Roth B, Wicht A, Ernsting I, Schiller S 2007 Phys. Rev. Lett. 98 173002

    [15]

    Bressel U, Borodin A, Shen J, Hansen M G, Ernsting I, Schiller S 2012 Phys. Rev. Lett. 108 18 183003

    [16]

    Alighanbari S, Hansen M G, Korobov V I, Schiller S 2018 Nat. Phys. 14 555

    [17]

    Alighanbari S, Giri G S, Constantin F L, Korobov V I, Schiller S 2020 Nature 581 152

    [18]

    Kortunov I V, Alighanbari S, Hansen M G, Giri G, Korobov V I, Schiller S 2021 Nat. Phys. 17 569

    [19]

    Alighanbari S, Kortunov I V, Giri G S, Schiller S 2023 Nat. Phys. 19 1263

    [20]

    Biesheuvel J, Karr J P, Hilico L, Eikema K, Ubachs W, Koelemeij J 2016 Nat. Commun. 7 10385

    [21]

    Patra S, Germann M, Karr J P, Haidar M, Hilico L, Korobov V I, Cozijn F M J, Eikema K S E, Ubachs W, Koelemeij J C J 2020 Science 369 1238

    [22]

    Sturm S, Köhler F, Zatorski J, Wagner A, Harman Z, Werth G, Quint W, Keitel C H, Blaum K 2014 Nature 506 467

    [23]

    Heiße F, Rau S, Köhler-Langes F, Quint W, Werth G, Sturm S, Blaum K 2019 Phys. Rev. A 100 022518

    [24]

    Hori M, Aghai-Khozani H, Sótér A, Barna D, Dax A, Hayano R, Kobayashi T, Murakami Y, Todoroki K, Yamada H, Horváth D, Venturelli L 2016 Science 354 610

    [25]

    Borkowski M, Buchachenko A A, Ciuryo R, Julienne P S, Takahashi Y 2019 Sci. Rep. 9 14807

    [26]

    Germann M, Patra S, Karr J P, Hilico L, Koelemeij J C J 2021 Phys. Rev. Res. 3 L022028

    [27]

    Shi W, Jacobi J, Knopp H, Schippers S, Müller A 2003 Nucl. Instrum. Methods B 205 201

    [28]

    Udrescu S M, Torres D A, Garcia Ruiz R F 2024 Phys. Rev. Res. 6 013128

    [29]

    Leibrandt D R, Clark R J, Labaziewicz J, Antohi P, Bakr W, Brown K R, Chuang I L 2007 Phys. Rev. A 76 055403

    [30]

    Thini F, Romans K L, Acharya B P, de Silva A H N C, Compton K, Foster K, Rischbieter C, Russ O, Sharma S, Dubey S, Fischer D 2020 J. Phys. B: At. Mol. Opt. Phys. 53 095201

    [31]

    Benda J, Mašín Z 2021 Sci. Rep. 11 11686

    [32]

    Hashimoto Y, Matsuoka L, Osaki H, Fukushima Y, Hasegawa S 2006 Jpn. J. Appl. Phys. 45 7108

    [33]

    Li M, Zhang Y, Zhang Q Y, Bai W L, He S G, Peng W C, Tong X 2022 J. Phys. B: At. Mol. Opt. Phys. 55 035002

    [34]

    Wahnschaffe M 2016 Ph.D. Dissertation (Hannover: Gottfried Wilhelm Leibniz University)

    [35]

    Zhang Y, Zhang Q Y, Bai W L, Peng W C, He S G, Tong X 2023 Chinese J. Phys. 84 164

    [36]

    Roth B, Blythe P, Wenz H, Daerr H, Schiller S 2006 Phys. Rev. A 73 042712

    [37]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281

    [38]

    Blythe P, Roth B, Fröhlich U, Wenz H, Schiller S 2005 Phys. Rev. Lett. 95 183002

    [39]

    Carollo R A, Lane D A, Kleiner E K, Kyaw P A, Teng C C, Ou C Y, Qiao S, Hanneke D 2017 Opt. Express 25 7220

    [40]

    Wellers C, Schenkel M R, Giri G S, Brown K R, Schiller S 2022 Mol. Phys. 120 e2001599

    [41]

    Okada K, Wada M, Nakamura T, Iida R, Ohtani S, Tanaka J-i, Kawakami H, Katayama I 1998 J. Phys. Soc. Jpn. 67 3073

    [42]

    Wu Q, Filzinger M, Shi Y, Wang Z, Zhang J 2021 Rev. Sci. Instrum. 92 063201

    [43]

    Li Z, Li L, Hua X, Tong X 2024 J. Appl. Phys. 135 144402

    [44]

    Li L, Li Z, Hua X, Tong X 2024 J. Phys. D: Appl. Phys. 57 315205

    [45]

    Buica G, Nakajima T 2008 J. Quant. Spectrosc. Radiat. Transfer 109 107

    [46]

    Tang X, Bachau H 1993 J. Phys. B: At. Mol. Opt. Phys. 26 75

    [47]

    Wolf S, Studer D, Wendt K, Schmidt-Kaler F 2018 Appl. Phys. B 124 30

    [48]

    Zhang Y, Zhang Q Y, Bai W L, Ao Z Y, Peng W C, He S G, Tong X 2023 Phys. Rev. A 107 043101

    [49]

    Chandler D W, Thorne L R 1986 J. Chem. Phys. 85 1733

    [50]

    Buck J D, Robie D C, Hickman A P, Bamford D J, Bischel W K 1989 Phys. Rev. A 39 3932

    [51]

    Trimby E, Hirzler H, Fürst H, Safavi-Naini A, Gerritsma R, Lous R S 2022 New J. Phys. 24 035004

    [52]

    Wayne M I, Bergquist J C, Bollinger J J, Wineland D J 1995 Phys. Scr. 1995 106

    [53]

    Larson D J, Bergquist J C, Bollinger J J, Itano W M, Wineland D J 1986 Phys. Rev. Lett. 57 70

    [54]

    Bohman M, Grunhofer V, Smorra C, Wiesinger M, Will C, Borchert M J, Devlin J A, Erlewein S, Fleck M, Gavranovic S, Harrington J, Latacz B, Mooser A, Popper D, Wursten E, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Ulmer S, Collaboration B 2021 Nature 596 514

    [55]

    Karl R, Yin Y, Willitsch S 2024 Mol. Phys. 122 2199099

    [56]

    Li M, Zhang Y, Zhang Q Y, Bai W L, He S G, Peng W C, Tong X 2023 Chin. Phys. B 32 036402

    [57]

    Cozijn F M J, Biesheuvel J, Flores A S, Ubachs W, Blume G, Wicht A, Paschke K, Erbert G, Koelemeij J C J 2013 Opt. Lett. 38 13 2370

    [58]

    King S A, Leopold T, Thekkeppatt P, Schmidt P O 2018 Appl. Phys. B 124 214

    [59]

    Ohmae N, Katori H 2019 Rev. Sci. Instrum. 90 063201

    [60]

    Vasilyev S, Nevsky A, Ernsting I, Hansen M, Shen J, Schiller S 2011 Appl. Phys. B 103 27

    [61]

    Lo H Y, Alonso J, Kienzler D, Keitch B C, de Clercq L E, Negnevitsky V, Home J P 2014 Appl. Phys. B 114 17

    [62]

    Schnitzler H, Fröhlich U, Boley T K W, Clemen A E M, Mlynek J, Peters A, Schiller S 2002 Appl. Opt. 41 7000

    [63]

    Wilson A C, Ospelkaus C, VanDevender A P, Mlynek J A, Brown K R, Leibfried D, Wineland D J 2011 Appl. Phys. B 105 741

    [64]

    Ahmadi M, Alves B X R, Baker C J, Bertsche W, Butler E, Capra A, Carruth C, Cesar C L, Charlton M, Cohen S, Collister R, Eriksson S, Evans A, Evetts N, Fajans J, Friesen T, Fujiwara M C, Gill D R, Gutierrez A, Hangst J S, Hardy W N, Hayden M E, Isaac C A, Ishida A, Johnson M A, Jones S A, Jonsell S, Kurchaninov L, Madsen N, Mathers M, Maxwell D, McKenna J T K, Menary S, Michan J M, Momose T, Munich J J, Nolan P, Olchanski K, Olin A, Pusa P, Rasmussen C Ø, Robicheaux F, Sacramento R L, Sameed M, Sarid E, Silveira D M, Stracka S, Stutter G, So C, Tharp T D, Thompson J E, Thompson R I, van der Werf D P, Wurtele J S 2017 Nature 541 506

    [65]

    Kraus B, Dawel F, Hannig S, Kramer J, Nauk C, Schmidt P O 2022 Opt. Express 30 44992

    [66]

    Cook E C, Vira A D, Patterson C, Livernois E, Williams W D 2018 Phys. Rev. Lett. 121 053001

    [67]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [68]

    Bai W L, Peng W C, Zhang Q Y, Wang C, Ao Z Y, Tong X 2024 Chinese J. Phys. 89 1500

    [69]

    Hirota A, Igosawa R, Kimura N, Kuma S, Chartkunchand K C, Mishra P M, Lindley M, Yamaguchi T, Nakano Y, Azuma T 2020 Phys. Rev. A 102 023119

    [70]

    Windberger A, Schwarz M, Versolato O O, Baumann T, Bekker H, Schmöger L, Hansen A K, Gingell A D, Klosowski L, Kristensen S, Schmidt P O, Ullrich J, Drewsen M, López-Urrutia J R C 2013 10th International Workshop on Non-Neutral Plasmas Greifswald, GERMANY, Aug 27-30 p250-256

    [71]

    Pagano G, Hess P W, Kaplan H B, Tan W L, Richerme P, Becker P, Kyprianidis A, Zhang J, Birckelbaw E, Hernandez M R, Wu Y, Monroe C 2019 Quantum Sci. Technol 4 014004

    [72]

    Kas M, Liévin J, Vaeck N, Loreau J 2020 31st International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC) Deauville, FRANCE, Jul 23-30

    [73]

    Dörfler A D, Yurtsever E, Villarreal P, González-Lezana T, Gianturco F A, Willitsch S 2020 Phys. Rev. A 101 012706

    [74]

    Schmidt J, Louvradoux T, Heinrich J, Sillitoe N, Simpson M, Karr J P, Hilico L 2020 Phys. Rev. Appl. 14 024053

    [75]

    Tong X, Winney A H, Willitsch S 2010 Phys. Rev. Lett. 105 143001

    [76]

    Lien C Y, Seck C M, Lin Y W, Nguyen J H V, Tabor D A, Odom B C 2014 Nat. Commun. 5 4783

    [77]

    Schneider T, Roth B, Duncker H, Ernsting I, Schiller S 2010 Nat. Phys. 6 275

    [78]

    Wu H, Mills M, West E, Heaven M C, Hudson E R 2021 Phys. Rev. A 104 063103

    [79]

    Kilaj A, Käser S, Wang J, Straňák P, Schwilk M, Xu L, von Lilienfeld O A, Küpper J, Meuwly M, Willitsch S 2023 Phys. Chem. Chem. Phys 25 13933

    [80]

    Calvin A, Eierman S, Peng Z, Brzeczek M, Satterthwaite L, Patterson D 2023 Nature 621 295

    [81]

    Moreno J, Schmid F, Weitenberg J, Karshenboim S G, Hänsch T W, Udem T, Ozawa A 2023 Eur. Phys. J. D 77 1

    [82]

    Okada K, Ichikawa M, Wada M, Schuessler H A 2015 Phys. Rev. Appl. 4 054009

    [83]

    Germann M, Tong X, Willitsch S 2014 Nat. Phys. 10 820

    [84]

    Tran V Q, Karr J P, Douillet A, Koelemeij J C J, Hilico L 2013 Phys. Rev. A 88 033421

    [85]

    Karr J P 2014 J. Mol. Spectrosc 300 37

    [86]

    Schiller S, Bakalov D, Korobov V I 2014 Phys. Rev. Lett. 113 023004

    [87]

    Koelemeij J C J, Roth B, Schiller S 2007 Phys. Rev. A 76 023413

    [88]

    Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C, Wineland D J 2005 Science 309 749

    [89]

    Myers E G 2018 Phys. Rev. A 98 010101

    [90]

    Puchalski M, Komasa J, Pachucki K 2020 Phys. Rev. Lett. 125 253001

    [91]

    Danev P, Bakalov D, Korobov V I, Schiller S 2021 Phys. Rev. A 103 012805

    [92]

    Schenkel M, Alighanbari S, Schiller S 2024 Nat. Phys. 20 383

    [93]

    Zammit M C, Charlton M, Jonsell S, Colgan J, Savage J S, Fursa D V, Kadyrov A S, Bray I, Forrey R C, Fontes C J, Leiding J A, Kilcrease D P, Hakel P, Timmermans E 2019 Phys. Rev. A 100 042709

  • [1] 杨文斌, 张华磊, 齐新华, 车庆丰, 周江宁, 白冰, 陈爽, 母金河. 非平衡等离子体流场相干反斯托克斯拉曼散射光谱计算及振转温度测量. 物理学报, doi: 10.7498/aps.73.20240455
    [2] 文琳, 樊群超, 蹇君, 范志祥, 李会东, 付佳, 马杰, 谢锋. 基于SO分子振转能级计算其宏观气体摩尔热容. 物理学报, doi: 10.7498/aps.71.20212273
    [3] 唐家栋, 刘乾昊, 程存峰, 胡水明. 磁场中HD分子振转跃迁的超精细结构. 物理学报, doi: 10.7498/aps.70.20210512
    [4] 王巧霞, 王玉敏, 马日, 闫冰. 7Li2(0, ±1)分子体系基态振-转能级的全电子计算. 物理学报, doi: 10.7498/aps.68.20190359
    [5] 汪野, 张静宁, 金奇奂. 相干时间超过10 min的单离子量子比特. 物理学报, doi: 10.7498/aps.68.20181729
    [6] 徐慧颖, 刘勇, 李仲缘, 杨玉军, 闫冰. CO分子四个电子态的振转谱:两种效应修正方法的比较. 物理学报, doi: 10.7498/aps.67.20181469
    [7] 徐梅, 王晓璐, 令狐荣锋, 杨向东. Ne原子与HF分子碰撞振转激发分波截面的研究. 物理学报, doi: 10.7498/aps.62.063102
    [8] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究. 物理学报, doi: 10.7498/aps.62.113102
    [9] 汪丽蓉, 冯薪林, 马杰, 赵延霆, 肖连团, 贾锁堂. 超冷铯分子0g-长程态的振转光谱研究. 物理学报, doi: 10.7498/aps.62.183301
    [10] 李春, 张少斌, 金蔚, Georgios Lefkidis, Wolfgang Hübner. 线性磁性分子离子中由激光诱导的超快自旋转移. 物理学报, doi: 10.7498/aps.61.177502
    [11] 沈光先, 汪荣凯, 令狐荣锋, 周勋, 杨向东. He-HD (HT, DT) 非对称碰撞体系振转势能面及微分散射截面的理论计算. 物理学报, doi: 10.7498/aps.61.213101
    [12] 杨艳, 姬中华, 元晋鹏, 汪丽蓉, 赵延霆, 马杰, 肖连团, 贾锁堂. 超冷铷铯极性分子振转光谱的实验研究. 物理学报, doi: 10.7498/aps.61.213301
    [13] 王晓璐, 徐梅, 令狐荣锋, 孙克斌, 杨向东. 氦同位素与氢分子碰撞的振转激发分波截面研究. 物理学报, doi: 10.7498/aps.59.1689
    [14] 唐小锋, 牛铭理, 周晓国, 刘世林. 基于阈值光电子-光离子符合技术的分子离子光谱和解离动力学研究. 物理学报, doi: 10.7498/aps.59.6940
    [15] 张一驰, 武寄洲, 马杰, 赵延霆, 汪丽蓉, 肖连团, 贾锁堂. 最优化参数控制提高超冷铯分子振转光谱的信噪比. 物理学报, doi: 10.7498/aps.59.5418
    [16] 樊群超, 孙卫国, 渠双双. 用代数方法精确研究HF分子B1Σ的振转能谱. 物理学报, doi: 10.7498/aps.57.4110
    [17] 龚天林, 杨晓华, 李红兵, 韩良恺, 陈扬骎. 分子离子光谱强度与母体分子气体压强的关系. 物理学报, doi: 10.7498/aps.53.418
    [18] 杨晓华, 陈扬骎, 蔡佩佩, 卢晶晶, 王荣军. 差分速度调制分子离子激光光谱技术. 物理学报, doi: 10.7498/aps.48.834
    [19] 王效刚, 朱清时. 用局域模型研究分子局域模振动态的振转光谱. 物理学报, doi: 10.7498/aps.46.1906
    [20] 方子韦, 林成鲁, 邹世昌. 磷分子离子(P2+)注入硅的损伤行为. 物理学报, doi: 10.7498/aps.37.1425
计量
  • 文章访问数:  74
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-23

/

返回文章
返回