搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子精密光谱与核结构信息

管桦 戚晓秋 陈邵龙 史庭云 高克林

引用本文:
Citation:

锂离子精密光谱与核结构信息

管桦, 戚晓秋, 陈邵龙, 史庭云, 高克林

Precision spectroscopy and nuclear structure information of Li+ ions

Guan Hua, Qi Xiao-Qiu, Chen Shao-Long, Shi Ting-Yun, Gao Ke-Lin
PDF
导出引用
  • 锂离子精密光谱为束缚态量子电动力学的验证以及原子核结构的研究提供了独特的平台.本文综述了实验和理论联合研究团队近年来对6,7Li+离子23S1和23PJ态超精细劈裂的高精度理论计算与实验测量的研究成果.在理论方面,理论团队采用束缚态量子电动力学方法对23S1和23PJ态的超精细劈裂进行了计算,精确至6阶.在实验方面,实验团队分别通过饱和荧光光谱法和光学Ramsey方法对7Li+6Li+离子的超精细劈裂进行了高精度测量,并由此提取了6,7Li核的Zemach半径.结果显示,6Li的Zemach半径与核模型计算值存在显著差异,揭示了6Li核的奇异特性.这不仅为原子核结构的探索提供了重要信息,也将进一步推动少电子原子和分子的精密光谱研究.
    Precision spectroscopy of lithium ions offers a unique research platform for exploring bound state quantum electrodynamics and investigating the structure of atomic nuclei. This article provides an overview of our recent efforts, which focus on the precision theoretical calculations and experimental measurements of the hyperfine splittings of 6,7Li+ ions in the 23S1 and 23PJ states. In our theoretical framework, we apply bound state quantum electrodynamics to calculate the hyperfine splitting of the 23S1 and 23PJ states with remarkable precision, achieving an accuracy on the order of 6. Using Hylleraas basis sets, we first solve the non-relativistic Hamiltonian of the three-body system to derive highprecision energies and wave functions. Subsequently, we consider various orders of relativity and QED corrections using the perturbation method, leading to a final calculated accuracy of the hyperfine splitting on the order of tens of kHz. In our experimental efforts, we have developed a low-energy metastable lithium-ion source that provides a stable and continuous ion beam in the 23S1 state. Using this ion beam, we employed saturated fluorescence spectroscopy to enhance the precision of hyperfine structure splittings of 7Li+ in the 23S1 and 23PJ states to about 100 kHz. Furthermore, by utilizing the optical Ramsey method, we obtained the most precise values of the hyperfine splittings of 6Li+, with the smallest uncertainty of about 10 kHz. By combining theoretical calculations and experimental measurements, our team derived the Zemach radii of the 6,7Li nuclei, revealing a significant deviation between the Zemach radius of 6Li and the values predicted by the nuclear model. These findings illuminate the distinct attributes of the 6Li nucleus, catalyzing further investigations in atomic nucleus and propelling advancements in precision spectroscopy of few-electron atoms and molecules.
  • [1]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118 063001

    [2]

    Pachucki K, Patkóš V, Yerokhin V A 2017 Phys. Rev. A 95 062510

    [3]

    Heydarizadmotlagh F, Skinner T D G, Kato K, George M C, Hessels E A 2024 Phys. Rev. Lett. 132 163001

    [4]

    Yan Z C, Drake G W F 1995 Phys. Rev. Lett. 74 4791

    [5]

    Sánchez R, Nörtershäuser W, Ewald G, Albers D, Behr J, Bricault P, Bushaw B A, Dax A, Dilling J, Dombsky M, Drake G W F, Götte S, Kirchner R, Kluge H J, Kühl T, Lassen J, Levy C D P, Pearson M R, Prime E J, Ryjkov V, Wojtaszek A, Yan Z C, Zimmermann C 2006 Phys. Rev. Lett. 96 033002

    [6]

    Ewald G, Nörtershäuser W, Dax A, Götte S, Kirchner R, Kluge H J, Kühl T, Sanchez R, Wojtaszek A, Bushaw B A, Drake G W F, Yan Z C, Zimmermann C 2004 Phys. Rev. Lett. 93 113002

    [7]

    Lu Z T, Mueller P, Drake G W F, Nörtershäuser W, Pieper S C, Yan Z C 2013Rev. Mod. Phys. 85 1383

    [8]

    Kubota Y, Corsi A, Authelet G, Baba H, Caesar C, Calvet D, Delbart A, Dozono M, Feng J, Flavigny F, Gheller J M, Gibelin J, Giganon A, Gillibert A, Hasegawa K, Isobe T, Kanaya Y, Kawakami S, Kim D, Kikuchi Y, Kiyokawa Y, Kobayashi M, Kobayashi N, Kobayashi T, Kondo Y, Korkulu Z, Koyama S, Lapoux V, Maeda Y, Marqués F, M, Motobayashi T, Miyazaki T, Nakamura T, Nakatsuka N, Nishio Y, Obertelli A, Ogata K, Ohkura A, Orr N A, Ota S, Otsu H, Ozaki T, Panin V, Paschalis S, Pollacco E C, Reichert S, Roussé J Y, Saito A T, Sakaguchi S, Sako M, Santamaria C, Sasano M, Sato H, Shikata M, Shimizu Y, Shindo Y, Stuhl L, Sumikama T, Sun Y L, Tabata M, Togano Y, Tsubota J, Yang Z H, Yasuda J, Yoneda K, Zenihiro J, Uesaka T 2020 Phys. Rev. Lett. 125 252501

    [9]

    Drake G W F, Dhindsa H S, Marton V J, 2021 Phys. Rev. A 104 L060801

    [10]

    Knight R D, Prior M H 1980 Phys. Rev. A 21 179

    [11]

    Kowalski J, Neumann R, Noehte S, Scheffzek K, Suhr H, zu Putlitz G 1983 Hyperfine Interact. 15 159

    [12]

    Drake G W F 1971 Phys. Rev. A 3 908

    [13]

    Schüler H 1924 Naturwissenschaften 12 579

    [14]

    Herzberg G, Moore H R 1959 Can. J Phys. 37 1293

    [15]

    Heisenberg W 1926 Z. Phys. 39 499

    [16]

    Güttinger P, Pauli W 1931 Z. Phys. 67 743

    [17]

    Güttinger P 1930 Z. Physik A 64 749

    [18]

    Macek J 1969 Phys. Rev. Lett. 23 1

    [19]

    Berry H G, Subtil J L 1971 Phys. Rev. Lett. 27 1103

    [20]

    Wing W H, Ruff G A, Lamb W E, Spezeski J J 1976 Phys. Rev. Lett. 36 1488

    [21]

    Fan B, Grischkowsky D, Lurio A 1979 Opt. Lett. 4 233

    [22]

    Fan B, Lurio A, Grischkowsky D 1978 Phys. Rev. Lett. 41 1460

    [23]

    Kötz U, Kowalski J, Neumann R, Noehte S, Suhr H, Winkler K, zu Putlitz G 1981 Z. Phys. A: Hadrons Nucl. 300 25

    [24]

    Englert M, Kowalski J, Mayer F, Neumann R, Noehte S, Schwarzwald P, Suhr H, Winkler K, Putlitz G 1982 Sov. J. Quantum Electron. 12 664

    [25]

    Rong H, GrafströM S, Kowalski J, zu Putlitz G, Jastrzebski W, Neumann R 1993 Opt. Commun. 100 268

    [26]

    Riis E, Berry H G, Poulsen O, Lee S A, Tang S Y 1986 Phys. Rev. A 33 3023

    [27]

    Riis E, Sinclair A G, Poulsen O, Drake G W F, Rowley W R C, Levick A P 1994 Phys. Rev. A 49 207

    [28]

    Clarke J J, van Wijngaarden W A 2003 Phys. Rev. A 67 012506

    [29]

    Johnson W R, Cheng K T, Plante D R 1997 Phys. Rev. A 55 2728

    [30]

    Puchalski M, Pachucki K 2013 Phys. Rev. Lett. 111 243001

    [31]

    Yerokhin V A 2008 Phys. Rev. A 78 012513

    [32]

    Li R, Wu Y, Rui Y, Li B, Jiang Y, Ma L, Wu H 2020 Phys. Rev. Lett. 124 063002

    [33]

    Guan H, S. Chen, Qi X Q, S. Liang, Sun W, P. Zhou, Huang Y, Zhang P P, Zhong Z X, Yan Z C, Drake G W F, Shi T Y, K. Gao 2020 Phys. Rev. A 102 030801

    [34]

    Qi X Q, Zhang P P, Yan Z C, Drake G W F, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H, Gao K L 2020 Phys. Rev. Lett. 125 183002

    [35]

    Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W F, Zhong Z X, Guan H, Gao K L 2023 Phys. Rev. Lett. 131 103002

    [36]

    Puchalski M, Pachucki K 2009 Phys. Rev. A 79 032510

    [37]

    Pachucki K, Yerokhin V A, Cancio Pastor P 2012 Phys. Rev. A 85 042517

    [38]

    Patkóš V c v, Yerokhin V A, Pachucki K 2019 Phys. Rev. A 100 042510

    [39]

    Haidar M, Zhong Z X, Korobov V I, Karr J P 2020 Phys. Rev. A 101 022501

    [40]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403

    [41]

    Pachucki K 2006 Phys. Rev. A 74 022512

    [42]

    Yerokhin V A, Pachucki K 2015 J Phys. Chem. Ref. Data 44 031206

    [43]

    Karshenboim S G, Ivanov V G 2002 Eur. Phys. J D 19 13

    [44]

    McKenzie D K, Drake G W F 1991 Phys. Rev. A 44 R6973

    [45]

    Yan Z C, Drake G W F 2000 Phys. Rev. A 61 022504

    [46]

    Zemach A C 1956 Phys. Rev. 104 1771

    [47]

    Zhang P P, Zhong Z X, Yan Z C 2013 Phys. Rev. A 88 032519

    [48]

    Chen S L, Liang S Y, Sun W, Huang Y, Guan H, Gao K L 2019 Rev. Sci. Instrum. 90 043112

    [49]

    Artoni, M. and Carusotto, I. and Minardi, F. 2000 Phys. Rev. A 62 023402

    [50]

    Brown R C, Wu S J, Porto J V, Sansonetti C J, Simien C E, Brewer S M, Tan J N, Gillaspy J D 2013 Phys. Rev. A 87 032504

    [51]

    Beyer A, Maisenbacher L, Matveev A, Pohl R, Khabarova K, Grinin A, Lamour T, Yost D C, Hänsch T W, Kolachevsky N, Udem T 2017 it Science 358 79

    [52]

    Ramsey N F 1950 Phys. Rev. 78 695

    [53]

    Zhou P P, Sun W, Liang S Y, Chen S L, Zhou Z Q, Huang Y, Guan H, Gao K L 2021 Appl. Optics 21 6097

    [54]

    Stone N 2016 At. Data Nucl. Data Tables 111 1

    [55]

    Pachucki K, Patkóš V, Yerokhin V A 2023 Phys. Rev. A 108 052802

  • [1] 杜小娇, 魏龙, 孙羽, 胡水明. 自由电子激光制备高强度亚稳态氦原子和类氦离子. 物理学报, doi: 10.7498/aps.73.20240554
    [2] 王雪梅, 张安琪, 赵生妹. 电路量子电动力学中基于超绝热捷径的控制相位门实现. 物理学报, doi: 10.7498/aps.71.20220248
    [3] 朱兴龙, 王伟民, 余同普, 何峰, 陈民, 翁苏明, 陈黎明, 李玉同, 盛政明, 张杰. 极强激光场驱动超亮伽马辐射和正负电子对产生的研究进展. 物理学报, doi: 10.7498/aps.70.20202224
    [4] 陈娇娇, 孙羽, 温金录, 胡水明. 稳定的高亮度低速亚稳态氦原子束流. 物理学报, doi: 10.7498/aps.70.20201833
    [5] 孙婷, 王宇, 郭任彤, 卢知为, 栗建兴. 强激光驱动高能极化正负电子束与偏振伽马射线的研究进展. 物理学报, doi: 10.7498/aps.70.20210009
    [6] 陈臻, 王帅鹏, 李铁夫, 游建强. 超强耦合电路量子电动力学系统中反旋波效应对量子比特频率移动的影响. 物理学报, doi: 10.7498/aps.69.20200474
    [7] 郑昕, 孙羽, 陈娇娇, 胡水明. 氦原子2 3S–2 3P精密光谱研究. 物理学报, doi: 10.7498/aps.67.20180914
    [8] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性. 物理学报, doi: 10.7498/aps.63.060301
    [9] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, doi: 10.7498/aps.63.244205
    [10] 孟建宇, 王培月, 冯伟, 杨国建, 李新奇. 关于电路量子电动力学系统中光子自由度的消除方案. 物理学报, doi: 10.7498/aps.61.180302
    [11] 孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明. 利用激光冷却原子束测量氦原子精密光谱. 物理学报, doi: 10.7498/aps.61.170601
    [12] 陈翔, 米贤武. 量子点腔系统中抽运诱导受激辐射与非谐振腔量子电动力学特性的研究. 物理学报, doi: 10.7498/aps.60.044202
    [13] 余晓光, 王兵兵, 程太旺, 李晓峰, 傅盘铭. 高阶阈值上电离的量子电动力学理论. 物理学报, doi: 10.7498/aps.54.3542
    [14] 蒋维洲, 傅德基, 王震遐, 艾小白, 朱志远. 柱环腔中的量子电动力学效应. 物理学报, doi: 10.7498/aps.52.813
    [15] 袁晓利, 施 毅, 杨红官, 卜惠明, 吴 军, 赵 波, 张 荣, 郑有钭. 硅量子点中电子的荷电动力学特征. 物理学报, doi: 10.7498/aps.49.2037
    [16] 刘 辽. 时空泡沫结构与量子电动力学中发散的消除. 物理学报, doi: 10.7498/aps.47.363
    [17] 倪光炯, 徐建军. 含Chern-Simons项的(2+1)维标量量子电动力学. 物理学报, doi: 10.7498/aps.40.1217
    [18] 陈宗蕴, 周义昌, 黄念宁. 关于标量量子电动力学有效势的泛函算法. 物理学报, doi: 10.7498/aps.31.660
    [19] 张元仲. 运动介质电动力学和Fresnel牵引实验. 物理学报, doi: 10.7498/aps.24.180
    [20] 张宗燧. 在经典电动力学中纵场的消除. 物理学报, doi: 10.7498/aps.11.453
计量
  • 文章访问数:  114
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-07

/

返回文章
返回