搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极强激光场驱动超亮伽马辐射和正负电子对产生的研究进展

朱兴龙 王伟民 余同普 何峰 陈民 翁苏明 陈黎明 李玉同 盛政明 张杰

引用本文:
Citation:

极强激光场驱动超亮伽马辐射和正负电子对产生的研究进展

朱兴龙, 王伟民, 余同普, 何峰, 陈民, 翁苏明, 陈黎明, 李玉同, 盛政明, 张杰

Research progress of ultrabright γ-ray radiation and electron-positron pair production driven by extremely intense laser fields

Zhu Xing-Long, Wang Wei-Min, Yu Tong-Pu, He Feng, Chen Min, Weng Su-Ming, Chen Li-Ming, Li Yu-Tong, Sheng Zheng-Ming, Zhang Jie
PDF
HTML
导出引用
  • 高功率超短超强激光脉冲的诞生开启了相对论非线性光学、高强场物理、新型激光聚变、实验室天体物理等前沿领域. 近年来, 随着数拍瓦级乃至更高峰值功率激光装置的建成, 超强激光与等离子体相互作用进入到一个全新的高强场范畴. 这种极强激光场与等离子体相互作用蕴含着丰富的物理过程, 除了经典的波与粒子作用、相对论效应、有质动力效应等非线性物理过程外, 量子电动力学(QED)效应变得格外重要, 例如辐射阻尼效应、正负电子对产生、强伽马射线辐射、QED级联、真空极化等. 本文主要介绍我们近年来在极端强激光场与等离子体相互作用中激发的QED效应以及伴随的超亮强伽马射线辐射和稠密正负电子对产生等方面的研究进展.
    The advent of high-power ultra-short ultra-intense laser pulses opens up the new frontiers of relativistic nonlinear optics, high-field physics, laser-driven inertial confined fusion, etc. In recent years, with the construction of high power laser facilities at a multi-petawatt (PW) level and above, the interaction between laser and matter enters into a new realm of high field physics, where extremely rich nonlinear physics is involved. In addition to classical nonlinear physics involving wave-particle interactions, relativistic effects, and ponderomotive force effects, the quantum electrodynamic (QED) effects occur, such as radiation reaction force, electron-positron pair production, strong γ-ray radiation, QED cascades, and vacuum polarization. This paper presents a brief overview of electron-positron pair creation and bright γ-ray emission driven by the extremely intense laser fields.
      通信作者: 王伟民, weiminwang1@ruc.edu.cn ; 盛政明, zmsheng@sjtu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFA0404802, 2018YFA0404801)、国家自然科学基金(批准号: 11775144, 11991074, 11975154, 11925405, 11775302, 11875319)、中国科学院先导科技专项(批准号: XDA25050100, XDA25050300)和中央高校基本科研业务费(批准号: 20XNLG01)资助的课题
      Corresponding author: Wang Wei-Min, weiminwang1@ruc.edu.cn ; Sheng Zheng-Ming, zmsheng@sjtu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2018YFA0404802, 2018YFA0404801), the National Natural Science Foundation of China (Grant Nos. 11775144, 11991074, 11975154, 11925405, 11775302, 11875319), the Strategic Priority Research Program of Chinese Academy of Sciences, China (Grant Nos. XDA25050100, XDA25050300), and the Fundamental Research Fund for the Central Universities, China (Grant No. 20XNLG01)
    [1]

    Maiman T H 1960 Nature 187 493Google Scholar

    [2]

    Mourou G A, Tajima T, Bulanov S V 2006 Rev. Mod. Phys. 78 309Google Scholar

    [3]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [4]

    Mourou G 2019 Rev. Mod. Phys. 91 030501Google Scholar

    [5]

    Strickland D 2019 Rev. Mod. Phys. 91 030502Google Scholar

    [6]

    Esarey E, Schroeder C, Leemans W 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [7]

    Teubner U, Gibbon P 2009 Rev. Mod. Phys. 81 445Google Scholar

    [8]

    Corde S, Ta Phuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A, Lefebvre E 2013 Rev. Mod. Phys. 85 1Google Scholar

    [9]

    Danson C N, Haefner C, Bromage J, Butcher T, Chanteloup J C F, Chowdhury E A, Galvanauskas A, Gizzi L A, Hein J, Hillier D I, et al. 2019 High Power Laser Sci. Eng. 7 e54Google Scholar

    [10]

    Shen B, Bu Z, Xu J, Xu T, Ji L, Li R, Xu Z 2018 Plasma Phys. Controlled Fusion 60 044002Google Scholar

    [11]

    Röntgen W C 1896 Science 3 227Google Scholar

    [12]

    Pellegrini C, Marinelli A, Reiche S 2016 Rev. Mod. Phys. 88 015006Google Scholar

    [13]

    Rousse A, Rischel C, Gauthier J C 2001 Rev. Mod. Phys. 73 17Google Scholar

    [14]

    Pfeifer T, Spielmann C, Gerber G 2006 Rep. Prog. Phys. 69 443Google Scholar

    [15]

    Bilderback D H, Elleaume P, Weckert E 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S773Google Scholar

    [16]

    Kmetec J D, Gordon C L, Macklin J J, Lemoff B E, Brown G S, Harris S E 1992 Phys. Rev. Lett. 68 1527Google Scholar

    [17]

    Sheng Z M, Sentoku Y, Mima K, Zhang J, Yu W, Meyer-ter-Vehn J 2000 Phys. Rev. Lett. 85 5340Google Scholar

    [18]

    Rosmej O N, Gyrdymov M, Günther M M, Andreev N E, Tavana P, Neumayer P, Zähter S, Zahn N, Popov V S, Borisenko N G, et al. 2020 Plasma Phys. Controlled Fusion 62 115024Google Scholar

    [19]

    Benedetti A, Tamburini M, Keitel C H 2018 Nat. Photonics 12 319Google Scholar

    [20]

    Tajima T, Dawson J 1979 Phys. Rev. Lett. 43 267Google Scholar

    [21]

    Malka V, Faure J, Gauduel Y A, Lefebvre E, Rousse A, Phuoc K T 2008 Nat. Phys. 4 447Google Scholar

    [22]

    Hooker S M 2013 Nat. Photonics 7 775Google Scholar

    [23]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, et al. 2004 Nature 431 535Google Scholar

    [24]

    Geddes C G, Toth C S, Van Tilborg J, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J, Leemans W P 2004 Nature 431 538Google Scholar

    [25]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541Google Scholar

    [26]

    Gonsalves A J, Nakamura K, Daniels J, et al. 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [27]

    Leemans W, Esarey E 2009 Phys. Today 62 44

    [28]

    Schlenvoigt H P, Haupt K, Debus A, et al. 2008 Nat. Phys. 4 130Google Scholar

    [29]

    Kneip S, McGuffey C, Martins J L, et al. 2010 Nat. Phys. 6 980Google Scholar

    [30]

    Cipiccia S, Islam M R, Ersfeld B, et al. 2011 Nat. Phys. 7 867Google Scholar

    [31]

    Wenz J, Schleede S, Khrennikov K, Bech M, Thibault P, Heigoldt M, Pfeiffer F, Karsch S 2015 Nat. Commun. 6 7568Google Scholar

    [32]

    Chen L M, Yan W C, Li D Z, et al. 2013 Sci. Rep. 3

    [33]

    Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse 2012 Nat. Photonics 6 308Google Scholar

    [34]

    Sarri G, Corvan D J, Schumaker W, et al. 2014 Phys. Rev. Lett. 113 224801Google Scholar

    [35]

    Yu C, Qi R, Wang W, et al. 2016 Sci. Rep. 6 29518Google Scholar

    [36]

    Yan W, Fruhling C, Golovin G, et al. 2017 Nat. Photonics 11 514Google Scholar

    [37]

    Holloway J A, Norreys P A, Thomas A G R, Bartolini R, Bingham R, Nydell J, Trines R M G M, Walker R, Wing M 2017 Sci. Rep. 7 3985Google Scholar

    [38]

    Ferri J, Corde S, Döpp A, et al. 2018 Phys. Rev. Lett. 120 254802Google Scholar

    [39]

    Ta Phuoc K, Esarey E, Leurent V, Cormier-Michel E, Geddes C G R, Schroeder C B, Rousse A, Leemans W P 2008 Phys. Plasmas 15 063102Google Scholar

    [40]

    Marklund M, Shukla P K 2006 Rev. Mod. Phys. 78 591Google Scholar

    [41]

    Aaboud M, Aad G, Abbott B, et al. 2017 Nat. Phys. 13 852Google Scholar

    [42]

    Piran T 2005 Rev. Mod. Phys. 76 1143Google Scholar

    [43]

    Badelek B, BlÖChinger C, BlÜMlein J, et al. 2004 Int. J. Mod. Phys. A 19 5097Google Scholar

    [44]

    Crystal Ball at M, Collaboration A, Tarbert C M, et al. 2014 Phys. Rev. Lett. 112 242502Google Scholar

    [45]

    Gari M, Hebach H 1981 Phys. Rep. 72 1Google Scholar

    [46]

    Di Piazza A, Müller C, Hatsagortsyan K Z, Keitel C H 2012 Rev. Mod. Phys. 84 1177Google Scholar

    [47]

    Ackermann W, Asova G, Ayvazyan V, et al. 2007 Nat. Photonics 1 336Google Scholar

    [48]

    Huang K, Li Y F, Li D Z, et al. 2016 Sci. Rep. 6 27633Google Scholar

    [49]

    Cipiccia S, Wiggins S M, Shanks R P, et al. 2012 J. Appl. Phys. 111 063302Google Scholar

    [50]

    Zhu X L, Yin Y, Yu T P, Shao F Q, Ge Z Y, Wang W Q, Liu J J 2015 New J. Phys. 17 053039Google Scholar

    [51]

    Zhu X L, Yin Y, Yu T P, Liu J J, Zou D B, Ge Z Y, Wang W Q, Shao F Q 2015 Phys. Plasmas 22 093109Google Scholar

    [52]

    Liu C, Shen B, Zhang X, et al. 2018 Phys. Plasmas 25 023107Google Scholar

    [53]

    Nakamura T, Koga J K, Esirkepov T Z, Kando M, Korn G, Bulanov S V 2012 Phys. Rev. Lett. 108 195001Google Scholar

    [54]

    Ji L L, Pukhov A, Kostyukov I Y, Shen B F, Akli K 2014 Phys. Rev. Lett. 112 145003Google Scholar

    [55]

    Stark D J, Toncian T, Arefiev A V 2016 Phys. Rev. Lett. 116 185003Google Scholar

    [56]

    Huang T W, Kim C M, Zhou C T, Ryu C M, Nakajima K, Ruan S C, Nam C H 2018 Plasma Phys. Controlled Fusion 60 115006Google Scholar

    [57]

    Blackburn T G, Ridgers C P, Kirk J G, Bell A R 2014 Phys. Rev. Lett. 112 015001Google Scholar

    [58]

    Lobet M, Davoine X, d’Humières E, Gremillet L 2017 Phys. Rev. Accel. Beams 20 043401Google Scholar

    [59]

    Bulanov S S, Schroeder C B, Esarey E, Leemans W P 2013 Phys. Rev. A 87 062110Google Scholar

    [60]

    Gonoskov A, Bashinov A, Bastrakov S, Efimenko E, Ilderton A, Kim A, Marklund M, Meyerov I, Muraviev A, Sergeev A 2017 Phys. Rev. X 7 041003

    [61]

    Yoon J W, Jeon C, Shin J, Lee S K, Lee H W, Choi I W, Kim H T, Sung J H, Nam C H 2019 Opt. Express 27 20412Google Scholar

    [62]

    Cole J M, Behm K T, Gerstmayr E, et al. 2018 Phys. Rev. X 8 011020

    [63]

    Poder K, Tamburini M, Sarri G, et al. 2018 Phys. Rev. X 8 031004

    [64]

    Zhu X L, Chen M, Yu T P, Weng S M, Hu L X, McKenna P, Sheng Z M 2018 Appl. Phys. Lett. 112 174102Google Scholar

    [65]

    Zhu X L, Yu T P, Chen M, Weng S M, Sheng Z M 2018 New J. Phys. 20 083013Google Scholar

    [66]

    Zhu X L, Chen M, Weng S M, Yu T P, Wang W M, He F, Sheng Z M, McKenna P, Jaroszynski D A, Zhang J 2020 Sci. Adv. 6 eaaz7240Google Scholar

    [67]

    Liu J J, Yu T P, Yin Y, Zhu X L, Shao F Q 2016 Opt. Express 24 15978Google Scholar

    [68]

    Li H Z, Yu T P, Liu J J, Yin Y, Zhu X L, Capdessus R, Pegoraro F, Sheng Z M, McKenna P, Shao F Q 2017 Sci. Rep. 7 17312Google Scholar

    [69]

    Lu Y, Zhang H, Hu Y T, Zhao J, Hu L X, Zou D B, Xu X R, Wang W Q, Liu K, Yu T P 2020 Plasma Phys. Controlled Fusion 62 035002Google Scholar

    [70]

    Chang H X, Qiao B, Xu Z, Xu X R, Zhou C T, Yan X Q, Wu S Z, Borghesi M, Zepf M, He X T 2015 Phys. Rev. E 92 053107Google Scholar

    [71]

    Gong Z, Hu R, Shou Y, Qiao B, Chen C, Xu F, He X, Yan X 2016 Matter Radiat. Extremes 1 308Google Scholar

    [72]

    Wang W M, Gibbon P, Sheng Z M, Li Y T, Zhang J 2017 Phys. Rev. E 96 013201Google Scholar

    [73]

    Zhang Z M, Teng J, Zhang B, Deng Z G, He S K, Cui B, Hong W, Zhou W M, Gu Y Q 2018 Appl. Phys. Lett. 113 264101Google Scholar

    [74]

    Li Y F, Shaisultanov R, Chen Y Y, Wan F, Hatsagortsyan K Z, Keitel C H, Li J X 2020 Phys. Rev. Lett. 124 014801Google Scholar

    [75]

    Li Y F, Chen Y Y, Wang W M, Hu H S 2020 Phys. Rev. Lett. 125 044802Google Scholar

    [76]

    Liu W Y, Luo W, Yuan T, Yu J Y, Chen M, Sheng Z M 2017 Phys. Plasmas 24 103130Google Scholar

    [77]

    Luo W, Liu W Y, Yuan T, Chen M, Yu J Y, Li F Y, Sorbo D, Ridgers C, Sheng Z M 2018 Sci. Rep. 8 8400Google Scholar

    [78]

    Xie B S, Li Z L, Tang S 2017 Matter Radiat. Extremes 2 225Google Scholar

    [79]

    Long T Y, Zhou C T, Huang T W, et al. 2019 Plasma Phys. Controlled Fusion 61 085002Google Scholar

    [80]

    Wang W M, Sheng Z M, Gibbon P, Chen L M, Li Y T, Zhang J 2018 Proc. Natl. Acad. Sci. 115 9911Google Scholar

    [81]

    Snyder J, Ji L L, George K M, et al. 2019 Phys. Plasmas 26 033110Google Scholar

    [82]

    Schwinger J 1951 Phys. Rev. 82 664Google Scholar

    [83]

    Gordienko S, Pukhov A 2005 Phys. Plasmas 12 043109Google Scholar

    [84]

    Zhou C, Bai Y, Song L, et al. 2021 Nat. Photonics 15 216

    [85]

    Anderson C D 1933 Phys. Rev. 43 491Google Scholar

    [86]

    Danielson J R, Dubin D H E, Greaves R G, Surko C M 2015 Rev. Mod. Phys. 87 247Google Scholar

    [87]

    Moortgat-Pick G, Abe T, Alexander G, et al. 2008 Phys. Rep. 460 131Google Scholar

    [88]

    Müller C, Keitel C H 2009 Nat. Photonics 3 245Google Scholar

    [89]

    Ruffini R, Vereshchagin G, Xue S S 2010 Phys. Rep. 487 1Google Scholar

    [90]

    Chen H, Fiuza F, Link A, et al. 2015 Phys. Rev. Lett. 114 215001Google Scholar

    [91]

    Liang E, Clarke T, Henderson A, et al. 2015 Sci. Rep. 5 13968Google Scholar

    [92]

    Gahn C, Tsakiris G D, Pretzler G, Witte K, Delfin C, Wahlström C G, Habs D 2000 Appl. Phys. Lett. 77 2662Google Scholar

    [93]

    Sarri G, Poder K, Cole J M, Schumaker W, Di Piazza A, Reville B, Dzelzainis T, Doria D, Gizzi L A, Grittani G, et al. 2015 Nat. Commun. 6 6747Google Scholar

    [94]

    Xu T, Shen B, Xu J, Li S, et al. 2016 Phys. Plasmas 23 033109Google Scholar

    [95]

    Bethe H, Heitler W 1934 Proc. R. Soc. London, Ser. A 146 83Google Scholar

    [96]

    Breit G, Wheeler J A 1934 Phys. Rev. 46 1087Google Scholar

    [97]

    Bell A R, Kirk J G 2008 Phys. Rev. Lett. 101 200403Google Scholar

    [98]

    Ridgers C P, Brady C S, Duclous R, Kirk J G, Bennett K, Arber T D, Robinson A P L, Bell A R 2012 Phys. Rev. Lett. 108 165006Google Scholar

    [99]

    Beth R A 1936 Phys. Rev. 50 115Google Scholar

    [100]

    Haines M G 2001 Phys. Rev. Lett. 87 135005Google Scholar

    [101]

    Shvets G, Fisch N J, Rax J M 2002 Phys. Rev. E 65 046403Google Scholar

    [102]

    Thaury C, Guillaume E, Corde S, Lehe R, Le Bouteiller M, Ta Phuoc K, Davoine X, Rax J M, Rousse A, Malka V 2013 Phys. Rev. Lett. 111 135002Google Scholar

    [103]

    Ju L B, Zhou C T, Huang T W, Jiang K, Zhang H, Wu S Z, Qiao B, Ruan S C 2017 Phys. Rev. E 95 053205Google Scholar

    [104]

    Katoh M, Fujimoto M, Kawaguchi H, Tsuchiya K, Ohmi K, Kaneyasu T, Taira Y, Hosaka M, Mochihashi A, Takashima Y 2017 Phys. Rev. Lett. 118 094801Google Scholar

    [105]

    Gong Z, Hu R H, Lu H Y, Yu J Q, Wang D H, Fu E G, Chen C E, He X T, Yan X Q 2018 Plasma Phys. Controlled Fusion 60 044004Google Scholar

    [106]

    Zhu X L, Yu T P, Sheng Z M, Yin Y, Turcu I C E, Pukhov A 2016 Nat. Commun. 7 13686Google Scholar

    [107]

    Zhu X L, Chen M, Yu T P, Weng S M, He F, Sheng Z M 2019 Matter Radiat. Extremes 4 014401Google Scholar

    [108]

    Corde S, Adli E, Allen J M, et al. 2015 Nature 524 442Google Scholar

    [109]

    Gessner S, Adli E, Allen J M, et al. 2016 Nat. Commun. 7 11785Google Scholar

    [110]

    Vieira J, Mendonça J T 2014 Phys. Rev. Lett. 112 215001Google Scholar

    [111]

    Chen Y Y, He P L, Shaisultanov R, Hatsagortsyan K Z, Keitel C H 2019 Phys. Rev. Lett. 123 174801Google Scholar

    [112]

    Xu Z, Yi L, Shen B, Xu J, Ji L, Xu T, Zhang L, Li S, Xu Z 2020 Commun. Phys. 3 191Google Scholar

    [113]

    Liu W Y, Xue K, Wan F, Chen M, Li J X, Liu F, Weng S M, Sheng Z M, Zhang J 2020 arXiv preprint arXiv: 2011.00156

  • 图 1  聚焦激光强度随时间的发展历程及其相应的物理研究范畴[4]

    Fig. 1.  Progress of the focused laser intensity over years and the development of laser-driven physics[4].

    图 2  基于第三代同步辐射源、X射线自由电子激光[47] (a)和激光等离子体方法[8] (b)所产生的X射线辐射源的峰值亮度范围

    Fig. 2.  Peak brilliance for different types of X-ray radiation sources from the third-generation synchrotron-radiation sources and XFELs[47] (a) and laser-plasma-based radiation sources[8] (b).

    图 3  (a)丝靶方案的示意图; (b) X射线自由电子激光装置、同步辐射装置、基于激光尾场加速器的Betatron或Compton散射光源以及该细丝靶方案产生的伽马射线源光子能量和峰值亮度的范围; (c), (d)在不同驱动激光功率条件下所产生的伽马射线源的角分布和能谱分布, 图示中“ ×10”表示光子数放大10倍[80]

    Fig. 3.  (a) Schematic diagram of the wire scheme; (b) chart of photon energy and brilliance of gamma-rays generated from our wire scheme, XFEL, synchrotron radiation facilities, and betatron radiation and Compton scattering based on LWFA; the angular distributions (c) and energy spectra (d) of the generated gamma-rays under different laser powers, where “ ×10” in the legend indicates the photon number multiplied by a factor of 10[80].

    图 4  (a) 利用两级激光等离子体加速器产生极高亮度伽马射线源的原理图; (b) 三维数值模拟结果; (c)伽马射线源的能谱分布和角分布; (d) 伽马射线源峰值亮度(单位: photons/(s·mm2·mrad2·0.1%BW))关于辐射光子能量的分布[66]

    Fig. 4.  (a) Concept of extremely brilliant γ-rays from a two-stage laser-plasma accelerator; (b) 3D simulation results of collimated γ-rays radiation in the two-stage LWFA scheme; (c) the angular-spectrum and angular distribution of the emitted gamma-rays; (d) the gamma-ray peak brilliance (photons/(s·mm2·mrad2·0.1%BW)) as a function of the radiated photon energy[66].

    图 5  (a) 圆偏振拉盖尔高斯激光驱动锥-固体薄靶产生超亮阿秒伽马射线脉冲的示意图, 在强激光场作用下, 电子(红色环)从锥壁中被周期性地拉出, 并沿着激光传播方向被加速; 随后, 聚焦的强激光场被放置在锥靶外的固体薄靶(蓝色平板)反射, 从而与加速的稠密阿秒高能电子束对撞产生数MeV光子能量的超亮阿秒伽马射线脉冲(橙绿色环); (b), (c) 入射激光场和聚焦激光场的强度分布; (d)时刻t = 14T0处的电子密度分布; (e) 时刻t = 30T0 处的伽马光子密度分布[64]

    Fig. 5.  (a) Schematic diagram of attosecond γ-ray pulse generation from a circularly-polarized Laguerre-Gaussian laser-driven cone-foil target. Electrons (red rings) are extracted from the cone walls and accelerated by the focusing laser. Then, the focusing laser pulse is reflected by a plasma mirror/foil (blue plate) and collides head-on with the dense energetic attosecond electron bunches, resulting in efficient emission of bright multi-MeV attosecond γ-ray pulses. The spatial distributions of the laser intensity for the incident pulse (b) and in-cone pulse (c). Density distributions of electrons (d) and γ-photons (e)[64].

    表 1  当前实验中不同物理机制下激光驱动的X射线源和伽马射线源的性能比较

    Table 1.  Comparison of the performance of laser-driven X-ray and gamma-ray sources under different physical mechanisms in current experiments.

    Betatron[48]Compton[35]Bremsstrahlung[49]
    能量范围/MeV~0.10.3—2.00.1—30.0
    带宽/%~10033—60~100
    光子数108—109107—108108—109
    峰值亮度/
    (photons·s–1·
    mm–2·mrad–2·
    0.1%BW–1)
    ~1023~1022~1017
    尺寸/μm~5~4~100
    脉宽/fs~10~10~104
    发散角/mrad~5~4~40
    下载: 导出CSV
  • [1]

    Maiman T H 1960 Nature 187 493Google Scholar

    [2]

    Mourou G A, Tajima T, Bulanov S V 2006 Rev. Mod. Phys. 78 309Google Scholar

    [3]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [4]

    Mourou G 2019 Rev. Mod. Phys. 91 030501Google Scholar

    [5]

    Strickland D 2019 Rev. Mod. Phys. 91 030502Google Scholar

    [6]

    Esarey E, Schroeder C, Leemans W 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [7]

    Teubner U, Gibbon P 2009 Rev. Mod. Phys. 81 445Google Scholar

    [8]

    Corde S, Ta Phuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A, Lefebvre E 2013 Rev. Mod. Phys. 85 1Google Scholar

    [9]

    Danson C N, Haefner C, Bromage J, Butcher T, Chanteloup J C F, Chowdhury E A, Galvanauskas A, Gizzi L A, Hein J, Hillier D I, et al. 2019 High Power Laser Sci. Eng. 7 e54Google Scholar

    [10]

    Shen B, Bu Z, Xu J, Xu T, Ji L, Li R, Xu Z 2018 Plasma Phys. Controlled Fusion 60 044002Google Scholar

    [11]

    Röntgen W C 1896 Science 3 227Google Scholar

    [12]

    Pellegrini C, Marinelli A, Reiche S 2016 Rev. Mod. Phys. 88 015006Google Scholar

    [13]

    Rousse A, Rischel C, Gauthier J C 2001 Rev. Mod. Phys. 73 17Google Scholar

    [14]

    Pfeifer T, Spielmann C, Gerber G 2006 Rep. Prog. Phys. 69 443Google Scholar

    [15]

    Bilderback D H, Elleaume P, Weckert E 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S773Google Scholar

    [16]

    Kmetec J D, Gordon C L, Macklin J J, Lemoff B E, Brown G S, Harris S E 1992 Phys. Rev. Lett. 68 1527Google Scholar

    [17]

    Sheng Z M, Sentoku Y, Mima K, Zhang J, Yu W, Meyer-ter-Vehn J 2000 Phys. Rev. Lett. 85 5340Google Scholar

    [18]

    Rosmej O N, Gyrdymov M, Günther M M, Andreev N E, Tavana P, Neumayer P, Zähter S, Zahn N, Popov V S, Borisenko N G, et al. 2020 Plasma Phys. Controlled Fusion 62 115024Google Scholar

    [19]

    Benedetti A, Tamburini M, Keitel C H 2018 Nat. Photonics 12 319Google Scholar

    [20]

    Tajima T, Dawson J 1979 Phys. Rev. Lett. 43 267Google Scholar

    [21]

    Malka V, Faure J, Gauduel Y A, Lefebvre E, Rousse A, Phuoc K T 2008 Nat. Phys. 4 447Google Scholar

    [22]

    Hooker S M 2013 Nat. Photonics 7 775Google Scholar

    [23]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, et al. 2004 Nature 431 535Google Scholar

    [24]

    Geddes C G, Toth C S, Van Tilborg J, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J, Leemans W P 2004 Nature 431 538Google Scholar

    [25]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541Google Scholar

    [26]

    Gonsalves A J, Nakamura K, Daniels J, et al. 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [27]

    Leemans W, Esarey E 2009 Phys. Today 62 44

    [28]

    Schlenvoigt H P, Haupt K, Debus A, et al. 2008 Nat. Phys. 4 130Google Scholar

    [29]

    Kneip S, McGuffey C, Martins J L, et al. 2010 Nat. Phys. 6 980Google Scholar

    [30]

    Cipiccia S, Islam M R, Ersfeld B, et al. 2011 Nat. Phys. 7 867Google Scholar

    [31]

    Wenz J, Schleede S, Khrennikov K, Bech M, Thibault P, Heigoldt M, Pfeiffer F, Karsch S 2015 Nat. Commun. 6 7568Google Scholar

    [32]

    Chen L M, Yan W C, Li D Z, et al. 2013 Sci. Rep. 3

    [33]

    Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse 2012 Nat. Photonics 6 308Google Scholar

    [34]

    Sarri G, Corvan D J, Schumaker W, et al. 2014 Phys. Rev. Lett. 113 224801Google Scholar

    [35]

    Yu C, Qi R, Wang W, et al. 2016 Sci. Rep. 6 29518Google Scholar

    [36]

    Yan W, Fruhling C, Golovin G, et al. 2017 Nat. Photonics 11 514Google Scholar

    [37]

    Holloway J A, Norreys P A, Thomas A G R, Bartolini R, Bingham R, Nydell J, Trines R M G M, Walker R, Wing M 2017 Sci. Rep. 7 3985Google Scholar

    [38]

    Ferri J, Corde S, Döpp A, et al. 2018 Phys. Rev. Lett. 120 254802Google Scholar

    [39]

    Ta Phuoc K, Esarey E, Leurent V, Cormier-Michel E, Geddes C G R, Schroeder C B, Rousse A, Leemans W P 2008 Phys. Plasmas 15 063102Google Scholar

    [40]

    Marklund M, Shukla P K 2006 Rev. Mod. Phys. 78 591Google Scholar

    [41]

    Aaboud M, Aad G, Abbott B, et al. 2017 Nat. Phys. 13 852Google Scholar

    [42]

    Piran T 2005 Rev. Mod. Phys. 76 1143Google Scholar

    [43]

    Badelek B, BlÖChinger C, BlÜMlein J, et al. 2004 Int. J. Mod. Phys. A 19 5097Google Scholar

    [44]

    Crystal Ball at M, Collaboration A, Tarbert C M, et al. 2014 Phys. Rev. Lett. 112 242502Google Scholar

    [45]

    Gari M, Hebach H 1981 Phys. Rep. 72 1Google Scholar

    [46]

    Di Piazza A, Müller C, Hatsagortsyan K Z, Keitel C H 2012 Rev. Mod. Phys. 84 1177Google Scholar

    [47]

    Ackermann W, Asova G, Ayvazyan V, et al. 2007 Nat. Photonics 1 336Google Scholar

    [48]

    Huang K, Li Y F, Li D Z, et al. 2016 Sci. Rep. 6 27633Google Scholar

    [49]

    Cipiccia S, Wiggins S M, Shanks R P, et al. 2012 J. Appl. Phys. 111 063302Google Scholar

    [50]

    Zhu X L, Yin Y, Yu T P, Shao F Q, Ge Z Y, Wang W Q, Liu J J 2015 New J. Phys. 17 053039Google Scholar

    [51]

    Zhu X L, Yin Y, Yu T P, Liu J J, Zou D B, Ge Z Y, Wang W Q, Shao F Q 2015 Phys. Plasmas 22 093109Google Scholar

    [52]

    Liu C, Shen B, Zhang X, et al. 2018 Phys. Plasmas 25 023107Google Scholar

    [53]

    Nakamura T, Koga J K, Esirkepov T Z, Kando M, Korn G, Bulanov S V 2012 Phys. Rev. Lett. 108 195001Google Scholar

    [54]

    Ji L L, Pukhov A, Kostyukov I Y, Shen B F, Akli K 2014 Phys. Rev. Lett. 112 145003Google Scholar

    [55]

    Stark D J, Toncian T, Arefiev A V 2016 Phys. Rev. Lett. 116 185003Google Scholar

    [56]

    Huang T W, Kim C M, Zhou C T, Ryu C M, Nakajima K, Ruan S C, Nam C H 2018 Plasma Phys. Controlled Fusion 60 115006Google Scholar

    [57]

    Blackburn T G, Ridgers C P, Kirk J G, Bell A R 2014 Phys. Rev. Lett. 112 015001Google Scholar

    [58]

    Lobet M, Davoine X, d’Humières E, Gremillet L 2017 Phys. Rev. Accel. Beams 20 043401Google Scholar

    [59]

    Bulanov S S, Schroeder C B, Esarey E, Leemans W P 2013 Phys. Rev. A 87 062110Google Scholar

    [60]

    Gonoskov A, Bashinov A, Bastrakov S, Efimenko E, Ilderton A, Kim A, Marklund M, Meyerov I, Muraviev A, Sergeev A 2017 Phys. Rev. X 7 041003

    [61]

    Yoon J W, Jeon C, Shin J, Lee S K, Lee H W, Choi I W, Kim H T, Sung J H, Nam C H 2019 Opt. Express 27 20412Google Scholar

    [62]

    Cole J M, Behm K T, Gerstmayr E, et al. 2018 Phys. Rev. X 8 011020

    [63]

    Poder K, Tamburini M, Sarri G, et al. 2018 Phys. Rev. X 8 031004

    [64]

    Zhu X L, Chen M, Yu T P, Weng S M, Hu L X, McKenna P, Sheng Z M 2018 Appl. Phys. Lett. 112 174102Google Scholar

    [65]

    Zhu X L, Yu T P, Chen M, Weng S M, Sheng Z M 2018 New J. Phys. 20 083013Google Scholar

    [66]

    Zhu X L, Chen M, Weng S M, Yu T P, Wang W M, He F, Sheng Z M, McKenna P, Jaroszynski D A, Zhang J 2020 Sci. Adv. 6 eaaz7240Google Scholar

    [67]

    Liu J J, Yu T P, Yin Y, Zhu X L, Shao F Q 2016 Opt. Express 24 15978Google Scholar

    [68]

    Li H Z, Yu T P, Liu J J, Yin Y, Zhu X L, Capdessus R, Pegoraro F, Sheng Z M, McKenna P, Shao F Q 2017 Sci. Rep. 7 17312Google Scholar

    [69]

    Lu Y, Zhang H, Hu Y T, Zhao J, Hu L X, Zou D B, Xu X R, Wang W Q, Liu K, Yu T P 2020 Plasma Phys. Controlled Fusion 62 035002Google Scholar

    [70]

    Chang H X, Qiao B, Xu Z, Xu X R, Zhou C T, Yan X Q, Wu S Z, Borghesi M, Zepf M, He X T 2015 Phys. Rev. E 92 053107Google Scholar

    [71]

    Gong Z, Hu R, Shou Y, Qiao B, Chen C, Xu F, He X, Yan X 2016 Matter Radiat. Extremes 1 308Google Scholar

    [72]

    Wang W M, Gibbon P, Sheng Z M, Li Y T, Zhang J 2017 Phys. Rev. E 96 013201Google Scholar

    [73]

    Zhang Z M, Teng J, Zhang B, Deng Z G, He S K, Cui B, Hong W, Zhou W M, Gu Y Q 2018 Appl. Phys. Lett. 113 264101Google Scholar

    [74]

    Li Y F, Shaisultanov R, Chen Y Y, Wan F, Hatsagortsyan K Z, Keitel C H, Li J X 2020 Phys. Rev. Lett. 124 014801Google Scholar

    [75]

    Li Y F, Chen Y Y, Wang W M, Hu H S 2020 Phys. Rev. Lett. 125 044802Google Scholar

    [76]

    Liu W Y, Luo W, Yuan T, Yu J Y, Chen M, Sheng Z M 2017 Phys. Plasmas 24 103130Google Scholar

    [77]

    Luo W, Liu W Y, Yuan T, Chen M, Yu J Y, Li F Y, Sorbo D, Ridgers C, Sheng Z M 2018 Sci. Rep. 8 8400Google Scholar

    [78]

    Xie B S, Li Z L, Tang S 2017 Matter Radiat. Extremes 2 225Google Scholar

    [79]

    Long T Y, Zhou C T, Huang T W, et al. 2019 Plasma Phys. Controlled Fusion 61 085002Google Scholar

    [80]

    Wang W M, Sheng Z M, Gibbon P, Chen L M, Li Y T, Zhang J 2018 Proc. Natl. Acad. Sci. 115 9911Google Scholar

    [81]

    Snyder J, Ji L L, George K M, et al. 2019 Phys. Plasmas 26 033110Google Scholar

    [82]

    Schwinger J 1951 Phys. Rev. 82 664Google Scholar

    [83]

    Gordienko S, Pukhov A 2005 Phys. Plasmas 12 043109Google Scholar

    [84]

    Zhou C, Bai Y, Song L, et al. 2021 Nat. Photonics 15 216

    [85]

    Anderson C D 1933 Phys. Rev. 43 491Google Scholar

    [86]

    Danielson J R, Dubin D H E, Greaves R G, Surko C M 2015 Rev. Mod. Phys. 87 247Google Scholar

    [87]

    Moortgat-Pick G, Abe T, Alexander G, et al. 2008 Phys. Rep. 460 131Google Scholar

    [88]

    Müller C, Keitel C H 2009 Nat. Photonics 3 245Google Scholar

    [89]

    Ruffini R, Vereshchagin G, Xue S S 2010 Phys. Rep. 487 1Google Scholar

    [90]

    Chen H, Fiuza F, Link A, et al. 2015 Phys. Rev. Lett. 114 215001Google Scholar

    [91]

    Liang E, Clarke T, Henderson A, et al. 2015 Sci. Rep. 5 13968Google Scholar

    [92]

    Gahn C, Tsakiris G D, Pretzler G, Witte K, Delfin C, Wahlström C G, Habs D 2000 Appl. Phys. Lett. 77 2662Google Scholar

    [93]

    Sarri G, Poder K, Cole J M, Schumaker W, Di Piazza A, Reville B, Dzelzainis T, Doria D, Gizzi L A, Grittani G, et al. 2015 Nat. Commun. 6 6747Google Scholar

    [94]

    Xu T, Shen B, Xu J, Li S, et al. 2016 Phys. Plasmas 23 033109Google Scholar

    [95]

    Bethe H, Heitler W 1934 Proc. R. Soc. London, Ser. A 146 83Google Scholar

    [96]

    Breit G, Wheeler J A 1934 Phys. Rev. 46 1087Google Scholar

    [97]

    Bell A R, Kirk J G 2008 Phys. Rev. Lett. 101 200403Google Scholar

    [98]

    Ridgers C P, Brady C S, Duclous R, Kirk J G, Bennett K, Arber T D, Robinson A P L, Bell A R 2012 Phys. Rev. Lett. 108 165006Google Scholar

    [99]

    Beth R A 1936 Phys. Rev. 50 115Google Scholar

    [100]

    Haines M G 2001 Phys. Rev. Lett. 87 135005Google Scholar

    [101]

    Shvets G, Fisch N J, Rax J M 2002 Phys. Rev. E 65 046403Google Scholar

    [102]

    Thaury C, Guillaume E, Corde S, Lehe R, Le Bouteiller M, Ta Phuoc K, Davoine X, Rax J M, Rousse A, Malka V 2013 Phys. Rev. Lett. 111 135002Google Scholar

    [103]

    Ju L B, Zhou C T, Huang T W, Jiang K, Zhang H, Wu S Z, Qiao B, Ruan S C 2017 Phys. Rev. E 95 053205Google Scholar

    [104]

    Katoh M, Fujimoto M, Kawaguchi H, Tsuchiya K, Ohmi K, Kaneyasu T, Taira Y, Hosaka M, Mochihashi A, Takashima Y 2017 Phys. Rev. Lett. 118 094801Google Scholar

    [105]

    Gong Z, Hu R H, Lu H Y, Yu J Q, Wang D H, Fu E G, Chen C E, He X T, Yan X Q 2018 Plasma Phys. Controlled Fusion 60 044004Google Scholar

    [106]

    Zhu X L, Yu T P, Sheng Z M, Yin Y, Turcu I C E, Pukhov A 2016 Nat. Commun. 7 13686Google Scholar

    [107]

    Zhu X L, Chen M, Yu T P, Weng S M, He F, Sheng Z M 2019 Matter Radiat. Extremes 4 014401Google Scholar

    [108]

    Corde S, Adli E, Allen J M, et al. 2015 Nature 524 442Google Scholar

    [109]

    Gessner S, Adli E, Allen J M, et al. 2016 Nat. Commun. 7 11785Google Scholar

    [110]

    Vieira J, Mendonça J T 2014 Phys. Rev. Lett. 112 215001Google Scholar

    [111]

    Chen Y Y, He P L, Shaisultanov R, Hatsagortsyan K Z, Keitel C H 2019 Phys. Rev. Lett. 123 174801Google Scholar

    [112]

    Xu Z, Yi L, Shen B, Xu J, Ji L, Xu T, Zhang L, Li S, Xu Z 2020 Commun. Phys. 3 191Google Scholar

    [113]

    Liu W Y, Xue K, Wan F, Chen M, Li J X, Liu F, Weng S M, Sheng Z M, Zhang J 2020 arXiv preprint arXiv: 2011.00156

  • [1] 李传可, 林南省, 周鲜鲜, 江淼, 李英骏. 双振荡场产生正负电子对的理论研究. 物理学报, 2024, 73(4): 044201. doi: 10.7498/aps.73.20230432
    [2] 罗蕙一, 江淼, 徐妙华, 李英骏. 不同频率的组合振荡场下产生正负电子对. 物理学报, 2023, 72(2): 021201. doi: 10.7498/aps.72.20221660
    [3] 谢柏松, 李烈娟, 麦丽开·麦提斯迪克, 王莉. 频率啁啾对强场下真空正负电子对产生的增强效应. 物理学报, 2022, 71(13): 131201. doi: 10.7498/aps.71.20220148
    [4] 江淼, 郑晓冉, 林南省, 李英骏. 正负电子对产生过程中不同外场宽度下的多光子跃迁效应. 物理学报, 2021, 70(23): 231202. doi: 10.7498/aps.70.20202101
    [5] 陈娇娇, 孙羽, 温金录, 胡水明. 稳定的高亮度低速亚稳态氦原子束流. 物理学报, 2021, 70(13): 133201. doi: 10.7498/aps.70.20201833
    [6] 孙婷, 王宇, 郭任彤, 卢知为, 栗建兴. 强激光驱动高能极化正负电子束与偏振伽马射线的研究进展. 物理学报, 2021, 70(8): 087901. doi: 10.7498/aps.70.20210009
    [7] 周英, 谢双媛, 许静平. 磁-腔量子电动力学系统中压缩驱动导致的两体与三体纠缠. 物理学报, 2020, 69(22): 220301. doi: 10.7498/aps.69.20200838
    [8] 李昂, 余金清, 陈玉清, 颜学庆. 光子对撞机产生正负电子对的数值方法. 物理学报, 2020, 69(1): 019501. doi: 10.7498/aps.69.20190729
    [9] 姜炜曼, 李玉同, 张喆, 朱保君, 张翌航, 袁大伟, 魏会冈, 梁贵云, 韩波, 刘畅, 原晓霞, 华能, 朱宝强, 朱健强, 方志恒, 王琛, 黄秀光, 张杰. 纳秒激光等离子体相互作用过程中激光强度对微波辐射影响的研究. 物理学报, 2019, 68(12): 125201. doi: 10.7498/aps.68.20190501
    [10] 郑昕, 孙羽, 陈娇娇, 胡水明. 氦原子2 3S–2 3P精密光谱研究. 物理学报, 2018, 67(16): 164203. doi: 10.7498/aps.67.20180914
    [11] 陈翔, 米贤武. 量子点腔系统中抽运诱导受激辐射与非谐振腔量子电动力学特性的研究. 物理学报, 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [12] 栾仕霞, 张秋菊, 桂维玲. 交叉传播激光脉冲与等离子体相互作用产生的等离子体密度光栅. 物理学报, 2008, 57(11): 7030-7037. doi: 10.7498/aps.57.7030
    [13] 刘占军, 郑春阳, 曹莉华, 李 斌, 朱少平. 次稠密等离子体对激光与锥形靶相互作用的影响. 物理学报, 2006, 55(1): 304-309. doi: 10.7498/aps.55.304
    [14] 李百文, 郑春阳, 宋 敏, 刘占军. 高强度激光与等离子体相互作用中的受激Raman级联散射、光子凝聚以及大振幅电磁孤立子的产生与加速. 物理学报, 2006, 55(10): 5325-5337. doi: 10.7498/aps.55.5325
    [15] 徐妙华, 梁天骄, 张 杰. 利用韧致辐射诊断激光等离子体相互作用产生的超热电子. 物理学报, 2006, 55(5): 2357-2363. doi: 10.7498/aps.55.2357
    [16] 张 翼, 李玉同, 张 杰, 陈正林, R. Kodama. 超强激光与等离子体相互作用产生中子的计算. 物理学报, 2005, 54(10): 4799-4802. doi: 10.7498/aps.54.4799
    [17] 蒋维洲, 傅德基, 王震遐, 艾小白, 朱志远. 柱环腔中的量子电动力学效应. 物理学报, 2003, 52(4): 813-822. doi: 10.7498/aps.52.813
    [18] 苍宇, 王薇, 张杰. 对超短脉冲激光与固体密度等离子体相互作用动力学过程的研究. 物理学报, 2001, 50(9): 1742-1746. doi: 10.7498/aps.50.1742
    [19] 袁晓利, 施 毅, 杨红官, 卜惠明, 吴 军, 赵 波, 张 荣, 郑有钭. 硅量子点中电子的荷电动力学特征. 物理学报, 2000, 49(10): 2037-2040. doi: 10.7498/aps.49.2037
    [20] 罗辽复, 陆埮. 高能正负电子对的湮没与超窄共振ψ粒子的作用. 物理学报, 1975, 24(2): 145-150. doi: 10.7498/aps.24.145
计量
  • 文章访问数:  5810
  • PDF下载量:  306
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-29
  • 修回日期:  2021-01-31
  • 上网日期:  2021-04-12
  • 刊出日期:  2021-04-20

/

返回文章
返回