搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超强激光驱动的辐射反作用力效应与极化粒子加速

吉亮亮 耿学松 伍艺通 沈百飞 李儒新

引用本文:
Citation:

超强激光驱动的辐射反作用力效应与极化粒子加速

吉亮亮, 耿学松, 伍艺通, 沈百飞, 李儒新

Laser-driven radiation-reaction effect and polarized particle acceleration

Ji Liang-Liang, Geng Xue-Song, Wu Yi-Tong, Shen Bai-Fei, Li Ru-Xin
PDF
HTML
导出引用
  • 光强超过1022 W/cm2的极端超强激光将光与物质的相互作用推进到辐射主导区域, 激发高能伽马光子辐射, 产生明显的辐射反作用力效应. 辐射反作用力可以显著影响强场中带电粒子的动力学行为, 并从根本上改变了极端强场区域的激光等离子体相互作用规律. 如何理解和验证辐射反作用力效应是强场物理研究的核心内容之一. 本文结合该方向的国内外研究进展, 论述了辐射反作用力的经典形式与强场量子电动力学的理论计算与模拟方法, 详细讨论了单粒子在强场中的反射、量子随机辐射、自旋-辐射耦合等效应, 介绍了激光等离子体相互作用中的电子冷却、辐射俘获、高效伽马辐射等机制, 并给出了目前辐射反作用力效应的实验验证方法与进展. 针对自旋在强场量子电动力学方面的效应, 介绍了激光加速产生极化粒子源的方法.
    Laser-plasma interaction at intensities beyond 1022 W/cm2 enters a new regime where gamma-photon emission and the induced radiation-reaction effect dominate. In extreme laser fields, high energy electrons emit gamma-photons efficiently, which take considerable portion of energy away and impose strong reaction forces on radiating electrons. When the radiation power is comparable to the electron energy gained in a certain period of time, the radiation-reaction (RR) effect becomes significant, which fundamentally changes the picture of laser-plasma interaction. In this review article, we introduce the physics of radiation-reaction force, including both classical description and quantum description. The effects of stochastic emission and particle spins in the quantum-electrodynamics (QED) RR process are discussed. We summarize the RR-induced phenomena in laser-plasma interaction and some proposed measurements of RR. As a supplement, we also introduce the latest progress of producing spin polarized particles based on laser-plasma accelerations, which provides polarized beam sources for verifying the QED-RR effects.In the classical picture, the RR force can be described by the Landau-Lifshitz (LL) equation, which eliminates the non-physical run-away solution from the Lorentz-Abraham-Dirac (LAD) equation. The damping force could induce the electron trajectories to instantaneously reverse, electrons to cool and even high energy electrons to be reflected by laser pulses. The latter leads to a “potential barrier” at a certain threshold that prevents the electrons of arbitrarily high energy from penetrating the laser field. In general, classical LL equation overestimates the RR effect, thus calling for more accurate quantum description.When the emitted photon energy is close to the electron energy, radiation becomes discrete. Quantum effects arise such that the process, also known as nonlinear multi-photon Compton Scattering, must be considered in the strong-field QED picture. This is resolved in the Furry picture by using the laser-dressed Volkov state in the local constant cross-field approximation (LCFA). The QED model is applied to particle dynamics via Monte-Carlo (MC) sampling. We introduce the prominent feature of quantum RR-stochastic photon emission. It allows the processes forbidden in classical picture to emerge, such as quantum ‘quenching’, quantum ‘reflection’, etc. These observables validate the strong-field QED theory. Recently, there has been a rising interest in identifying the spin effect in the QED-RR force. We summarize the latest progress of this topic, showing that when spins are coupled with photon emission the electrons of different spin states undergo distinctive RR force. The RR force has a significant effect on laser-plasma interaction. The review paper introduces recent QED-MC based PIC simulation results. Some key features include electron cooling in laser-driven radiation pressure acceleration and the radiation-reaction trapping (RRT) mechanism. In the RRT regime the laser pulse conveys over 10% of its energy to gamma-photons, facilitating the creation of a highly efficient gamma-ray source and electron-positron pair. In addition, the paper mentions the major efforts to measure the RR effect in recent years. It relies on high energy electrons either colliding with ultra-intense laser pulses or traversing crystals. Primitive observations indicate that existing theories do not match experimental results. Further investigation is required in both SF-QED theory and experiment.Finally, the review paper discusses the idea of laser-driven polarized particle acceleration as a supplement. The all-optical approach integrates pre-polarized gas target into laser wakefield acceleration, offering a compact all-optical polarized particle source, which is highly favorable for strong-field QED studies, high-energy colliders and material science.
      通信作者: 吉亮亮, jill@siom.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11875307, 11935008)和中国科学院B类战略性先导科技专项课题(批准号: XDB 16010000)资助的课题
      Corresponding author: Ji Liang-Liang, jill@siom.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875307, 11935008) and the Strategic Priority Research Program of the Chinese Academy of Sciences, China (Grant No. XDB 16010000)
    [1]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar

    [2]

    Mulser P, Bauer D 2010 High Power Laser-Matter Interaction (Berlin: Springer)

    [3]

    Vshivkov V, Naumova N, Pegoraro F, Bulanov S 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 410 493Google Scholar

    [4]

    Vshivkov V, Naumova N, Pegoraro F, Bulanov S 1998 Phys. Plasmas 5 2727Google Scholar

    [5]

    Shen B, Meyer-ter-Vehn J 2001 Phys. Rev. E 65 01640

    [6]

    Cherepenin V A, Kulagin V V 2004 Phys. Lett. A 321 103Google Scholar

    [7]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [8]

    Snavely R A, Key M H, Hatchett S P, et al. 2000 Phys. Rev. Lett 85 2945Google Scholar

    [9]

    Németh K, Shen B, Li Y, et al. 2008 Phys. Rev. Lett 100 095002Google Scholar

    [10]

    Albert F, Anderson S G, Gibson D J, et al. 2010 Phys. Rev. ST Accel. Beams 13 070704Google Scholar

    [11]

    Liao G, Liu H, Scott G, et al. 2020 Phys. Rev. X 10 031062

    [12]

    Kodama R, Norreys P A, Mima K, et al. 2001 Nature 412 798Google Scholar

    [13]

    Zhong J, Li Y, Wang X, et al. 2010 Nat. Phys 6 984Google Scholar

    [14]

    Chen H, Meyerhofer D D, Wilks S C, et al. 2011 High Energy Density Phys 7 225Google Scholar

    [15]

    Xu T, Shen B, Xu J, et al. 2016 Phys. Plasmas 23 033109Google Scholar

    [16]

    Ritus V I 1985 J. Russian Laser Res. 6 497Google Scholar

    [17]

    Baier V N, Katkov V M 1967 Phys. Lett. A 25 492Google Scholar

    [18]

    Fedotov A M, Narozhny N B, Mourou G, Korn G 2010 Phys. Rev. Lett. 105 080402Google Scholar

    [19]

    Elkina N V, Fedotov A M, Kostyukov I, et al. 2011 Phys. Rev. Special Topics-Accel. and Beams 14 054401Google Scholar

    [20]

    Li J, Chen Y, Hatsagortsyan K Z, Keitel C H 2017 Sci. Rep. 7 11556Google Scholar

    [21]

    Geng X S, Ji L L, Shen B F, et al. 2019 Commun. Phys 2 66Google Scholar

    [22]

    Wu Y, Ji L, Geng X, et al. 2019 New J. Phys 21 073052Google Scholar

    [23]

    Wen M, Tamburini M, Keitel C H 2019 Phys. Rev. Lett. 122 214801Google Scholar

    [24]

    Büscher M, Hützen A, Ji L, Lehrach A 2020 High Power Laser Science and Engineering 8 e35Google Scholar

    [25]

    Koga J, Esirkepov T, Bulanov S V 2005 Phys. Plasmas 12 093106Google Scholar

    [26]

    Landau L D, Lifshitz E M 1971The Classical Theory of Fields (Oxford: Pergamon Press)

    [27]

    Vranic M, Grismayer T, Fonseca R A, Silva L O 2016 Journal of Physics 18 073035

    [28]

    Harvey C N, Gonoskov A, Ilderton A, Marklund M 2017 Phys. Rev. Lett. 118 105004Google Scholar

    [29]

    Sorbo D D, Seipt D, Thomas A G R, Ridgers C P 2018 Plasma Phys. and Control. Fusion 60 064003Google Scholar

    [30]

    Seipt D, Sorbo D D, Ridgers C P, Thomas A G R, 2018 Phys. Rev. A 98 023417Google Scholar

    [31]

    Geng X S, Ji L L, Shen B F, et al. 2020 New J. Phys 22 013007Google Scholar

    [32]

    Dirac P A M 1938 Proc. R. Soc. Lond. A 167 148Google Scholar

    [33]

    Piazza A D 2008 Lett. Math. Phys. 83 30

    [34]

    Piazza A D, Hatsagortsyan K Z, Keitel C H 2009 Phys. Rev. Lett. 102 254802Google Scholar

    [35]

    Baier V N, Katkov V M, Strakhovenko V M 1991 Rad. Eff. 527 122

    [36]

    Ridgers C P, Blackburn T G, Sorbo D D, et al. 2017 J. Phys. Plasmas 83 715830502Google Scholar

    [37]

    Berestetskii V B, Lifshitz E M, Pitaevskii L P 1982 Quantum Electrodynamics (Amsterdam: Elsevier)

    [38]

    Wolkow D M 1936 Z. Physik 94 250

    [39]

    Furry W H 1951 Phys. Rev. 81 115Google Scholar

    [40]

    Piazza A D, Tamburini M, Meuren S, Keitel C H 2019 Phys. Rev. A 99 022125Google Scholar

    [41]

    Pausch R 2012 Diploma Thesis (Dresden: Technische Universität Dresden)

    [42]

    Nikishov A, Ritus V 1964 Sov. Phys. Jetp-Ussr 19 529

    [43]

    Gonoskov A, Bastrakov S, Efimenko E, et al. 2015 Phys. Rev. E 92 023305Google Scholar

    [44]

    Duclous R, Kirk J G, Bell A R 2010 Plasma Phys. and Control. Fusion 53 015009

    [45]

    Blackburn T G, Seipt D, Bulanov S S, Marklund M 2018 Phys. Plasmas 25 083108Google Scholar

    [46]

    Neitz N, Piazza A D 2013 Phys. Rev. Lett. 111 054802Google Scholar

    [47]

    Wen M, Keitel C H, Bauke H 2017 Phys. Rev. A 95 042102Google Scholar

    [48]

    Bargmann V, Michel L, Telegdi V L 1959 Phys. Rev. Lett. 2 435Google Scholar

    [49]

    Jackson J D 1998 Classical Electrodynamics (3rd Ed.) (New York: Wiley)

    [50]

    Ternov I M 1995 Phys.-Usp. 38 409Google Scholar

    [51]

    Mane S R, Shatunov Y M, Yokoya K 2005 Rep. Prog. Phys. 68 1997Google Scholar

    [52]

    Sorbo D D, Seipt D, Blackburn T G, et al. 2017 Phys. Rev. A 96 043407Google Scholar

    [53]

    Li Y, Shaisultanov R, Hatsagortsyan K Z, et al. 2019 Phys. Rev. Lett 122 154801Google Scholar

    [54]

    Seipt D, Sorbo D D, Ridgers C P, Thomas A G R 2019 Phys. Rev. A 100 061402Google Scholar

    [55]

    Geng X S, Bu Z G, Wu Y T, et al. 2020 ArXiv: 1912.03625 [Physics]

    [56]

    Guo R T, Wang Y, Shaisultanov R, et al. 2020 Phys. Rev. Res 2 033483Google Scholar

    [57]

    Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003Google Scholar

    [58]

    Klimo O, Psikal J, Limpouch J, Tikhonchuk V T 2008 Phys. Rev. ST Accel. Beams 11 031301Google Scholar

    [59]

    Robinson A P L, Zepf M, Kar S, Evans R G, Bellei C 2008 New J. Phys. 10 013021Google Scholar

    [60]

    Yan X Q, Lin C, Sheng Z M, et al. 2008 Phys. Rev. Lett 100 135003Google Scholar

    [61]

    Qiao B, Zepf M, Borghesi M, Geissler M 2009 Phys. Rev. Lett. 102 145002Google Scholar

    [62]

    Shen B, Xu Z 2001 Phys. Rev. E 64 056406Google Scholar

    [63]

    Zhang X, Shen B, Li X, et al. 2007 Phys. Plasmas 14 123108Google Scholar

    [64]

    Chen M, Pukhov A, Yu T P, Sheng Z M 2009 Phys. Rev. Lett. 103 024801Google Scholar

    [65]

    Yu T P, Pukhov A, Shvets G, Chen M 2010 Phys. Rev. Lett. 105 065002Google Scholar

    [66]

    Yan X Q, Wu H C, Sheng Z M, Chen J E, Meyer-ter-Vehn J 2009 Phys. Rev. Lett. 103 135001Google Scholar

    [67]

    M Tamburini, F Pegoraro, Piazza A D, Keitel C H, Macchi A 2010 New J. Phys. 12 123005Google Scholar

    [68]

    Chen M, Pukhov A, Yu T P, Sheng Z M 2010 Plasma Phys. and Control. Fusion 53 014004

    [69]

    Tamburini M, Pegoraro F, Piazza A D, Keitel C H, Liseykina T V, Macchi A 2011 Nucl. Instrum. Methods Phys. Res., Sect. A 653 181Google Scholar

    [70]

    Duff M J, Capdessus R, Sorbo D D, Ridgers C P, King M, McKenna P 2018 Plasma Phys. and Control. Fusion 60 064006Google Scholar

    [71]

    Ji L L, Pukhov A, Kostyukov I, Shen B F, Akli K 2014 Phys. Rev. Lett. 112 145003Google Scholar

    [72]

    Gonoskov A, Bashinov A, Gonoskov I, et al. 2014 Phys. Rev. Lett 113 014801Google Scholar

    [73]

    Lehmann G, Spatschek K H 2012 Phys. Rev. E 85 056412Google Scholar

    [74]

    Gong Z, Hu R, Shou Y, Qiao B, et al. 2016 Matter and Radiat. Extremes 1 308Google Scholar

    [75]

    Gonoskov A, Marklund M 2018 Phys. Plasmas 25 093109Google Scholar

    [76]

    Bulanov S V, Esirkepov T Z, Kando M, Koga J K, Bulanov S S 2011 Phys. Rev. E 84 056605Google Scholar

    [77]

    Guo Z, Ji L, Yu Q, et al. 2019 Plasma Phys. and Control. Fusion 61 065007Google Scholar

    [78]

    Piazza A D, Hatsagortsyan K Z, Keitel C H 2010 Phys. Rev. Lett. 105 220403Google Scholar

    [79]

    Liu C, Shen B, Zhang X, et al. 2018 Phys. Plasmas 25 023107Google Scholar

    [80]

    Gong Z, Mackenroth F, Yan X Q, Arefiev A V 2019 Sci. Rep. 9 1

    [81]

    Ji L L, Pukhov A, Nerush E N, et al. 2014 Eur. Phys. J. ST 223 1069Google Scholar

    [82]

    Ji L L, Pukhov A, Nerush E N, et al. 2014 Phys. Plasmas 21 023109Google Scholar

    [83]

    Zhu X L, Yu T P, Sheng Z M, Yin Y, Turcu I C E, Pukhov A 2016 Nat. Commun. 7 1

    [84]

    Cole J M, Behm K T, Gerstmayr E, et al. 2018 Phys. Rev. X 8 011020

    [85]

    Poder K, Tamburini M, Sarri G, et al. 2018 Phys. Rev. X 8 031004

    [86]

    Blackburn T G, Ridgers C P, Kirk J G, Bell A R 2014 Phys. Rev. Lett. 112 015001Google Scholar

    [87]

    Vranic M, Martins J L, Vieira J, Fonseca R A, Silva L O 2014 Phys. Rev. Lett. 113 134801Google Scholar

    [88]

    Wistisen T N, Piazza A D, Knudsen H V, Uggerhøj U I 2018 Nat. Commun. 9 1Google Scholar

    [89]

    Ji L L, Snyder J, Shen B F 2019 Plasma Phys. and Control. Fusion 61 065019Google Scholar

    [90]

    Snyder J, Ji L L, George K M, et al. 2019 Phys. Plasmas 26 033110Google Scholar

    [91]

    Mironov A A, Meuren S, Fedotov A M 2020 Phys. Rev. D 102 053005Google Scholar

    [92]

    Ilderton A, King B, Seipt D 2019 Phys. Rev. A 99 042121Google Scholar

    [93]

    Gay T J. 2009 Adv. At. Mol. Opt. Phys. 57 157

    [94]

    Jefferson Lab Qweak, 2018 Nature 557 207Google Scholar

    [95]

    Schlimme B S, et al. 2013 Phys. Rev. Lett 111 132504Google Scholar

    [96]

    Ageev E S, et al. 2005 Phys. Lett. B 612 154Google Scholar

    [97]

    Salajegheh M, Mohammad S, Khanpour H, Atashbar T S 2018 Phys. Rev. C 97 055201Google Scholar

    [98]

    Huang H, Kewisch J, Liu C, et al. 2019 Phys. Rev. Lett 122 204803Google Scholar

    [99]

    X J Wang, H Sun, X Luo 2017 Advances in High Energy Phys. 2017 1

    [100]

    Burkardt M, Miller C A, Nowak W D 2010 Rep. Prog. Phys. 73 016201Google Scholar

    [101]

    Sokolov A A, Ternov I M 1964 Sov. Phys. Dokl. 8 1203

    [102]

    Rathmann F, Saleev A, Nikolaev N N 2014 Phys. Part. Nucl. 45 229Google Scholar

    [103]

    Pierce D T, Meier F, Zürcher P 1975 Appl. Phys. Lett. 26 670Google Scholar

    [104]

    Batelaan H, Green A S, Hitt B A, Gay T J 1999 Phys. Rev. Lett. 82 4216Google Scholar

    [105]

    Hützen A, Thomas J, Böker J, et al. 2019 High Power Laser Sci. Eng. 7 e16Google Scholar

    [106]

    Alekseev I, Allgower C, Bai M, et al. 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 499 392Google Scholar

    [107]

    Wu Y, Ji L, Geng X, et al. 2020 Phys. Rev. Appl 13 044064Google Scholar

    [108]

    Wu Y, Ji L, Geng X, et al. 2019 Phys. Rev. E 100 043202Google Scholar

    [109]

    Hartung A, Morales F, Kunitski M, et al. 2016 Nat. Photon 10 526Google Scholar

    [110]

    Trabert D, Hartung A, Eckart S, et al. 2018 Phys. Rev. Lett 120 043202Google Scholar

    [111]

    Barth I, Smirnova O 2013 Phys. Rev. A 88 013401Google Scholar

    [112]

    Rakitzis T P, Samartzis P C, Toomes R L, et al. 2003 Science 300 1936Google Scholar

    [113]

    Rakitzis T P 2004 Chem. Phys. Chem. 5 1489Google Scholar

    [114]

    Sofikitis D, Kannis C S, Boulogiannis G K, Rakitzis T P 2018 Phys. Rev. Lett. 121 083001Google Scholar

    [115]

    Sofikitis D, Rubio-Lago L, Bougas L, Alexander A J, Rakitzis T P 2008 J. Chem. Phys. 129 144302Google Scholar

    [116]

    Thomas J, Hützen A, Lehrach A, et al. 2020 Phys. Rev. ST Accel. Beams 23 064401Google Scholar

    [117]

    Vieira J, Huang C K, Mori W B, Silva L O 2011 Phys. Rev. ST Accel. Beams 14 071303Google Scholar

    [118]

    Golovanov A A, Kostyukov I Y, Thomas J, Pukhov 2017 Phys. Plasmas 24 103104Google Scholar

    [119]

    Lu W, Huang C, Zhou M, Mori W B, Katsouleas T 2006 Phys. Rev. Lett. 96 165002Google Scholar

    [120]

    Gonsalves A J, Nakamura K, Lin C, et al. 2011 Nat. Phys 7 862Google Scholar

    [121]

    Schmid K, Buck A, Sears C M S, et al. 2010 Phys. Rev. Special Topics-Accel. Beams 13 091301Google Scholar

    [122]

    Zou J P, Blanc C L, Papadopoulos D, et al. 2015 High Power Laser Sci. Eng 3 e2Google Scholar

    [123]

    Zamfir N V 2014 Eur. Phys. J. Special Topics 223 1221Google Scholar

    [124]

    Li W, Gan Z, Yu L, et al. 2018 Opt. Lett 43 5681Google Scholar

    [125]

    Gomez C H, Blake S P, Chekhlov O, et al. 2010 IOP Publishing 244 032006

    [126]

    Jin L, Wen M, Zhang X, et al. 2020 Phys. Rev. E 102 011201Google Scholar

    [127]

    Hützen A, Thomas J, Lehrach A, et al. 2020 J. Phys.: Conf. Series 1596 012013Google Scholar

    [128]

    Makdisi Y 1998 AIP Conf. Proc. 451 40

    [129]

    Roser T (Edited by A Chao and M Tigner) 2002 Handbook of Accelerator Physics and Engineering (Singapore: World Scientific)

  • 图 1  在激光、电子对撞情况下, 激光强度(波长为800 nm)和电子能量对应的非线性量子参数$ {\chi }_{\mathrm{e}} $和辐射反作用效应参数$ R $

    Fig. 1.  The nonlinear quantum parameter $ {\chi }_{\mathrm{e}} $ and radiation-reaction effect parameter $ R $ as a function of the laser intensity (at wavelength of 800 nm) and electron energy in the case of laser and electron collision.

    图 2  电子与激光对撞在方位角$ \phi ={180}^{\circ } $处的角度能谱 (a) 无辐射反作用; (b) 有辐射反作用. 激光强度为$ 5\times {10}^{22}\;\mathrm{W}\cdot \mathrm{c}{\mathrm{m}}^{-2} $, 电子能量为40 MeV

    Fig. 2.  Angle energy spectrum for electron and laser colliding at azimuth angle $ \phi ={180}^{\circ } $: (a) Without radiation reaction; (b) with radiation reaction. The laser intensity is $ 5\times {10}^{22}\;\mathrm{W}\cdot \mathrm{c}{\mathrm{m}}^{-2} $ and the electron energy is 40 MeV.

    图 3  不同电子能量$ {\gamma }_{0} $与不同场强$ {a}_{0} $的激光对撞后电子被反射的比例 (a)基于LL方程的试探粒子模拟结果, 白线为(5)式给出的边界; (b)考虑量子修正因子(6)式的结果

    Fig. 3.  The ratio of electrons reflected after colliding with laser pulse at different electron energy $ {\gamma }_{0} $ and laser field amplitude $ {a}_{0} $: (a) From test particle simulations using the LL equation, the white line corresponds to the threshold defined in Eq. (5); (b) after considering the quantum correction factor according to Eq. (6).

    图 4  (a) $ {\gamma }_{0}=1000 $的电子和不同脉宽激光对撞后辐射的光子数量, $ \tau $为激光周期数, 直线为Monte-Carlo模拟的结果, 点为解析结果[45]; (b)两种途径的光子数量相对误差[45]; (c) 不同激光参数下能谱的对比, 其中$ f=\delta $, 灰色实线为QED结果, 虚线为Monte-Carlo结果. 垂直的虚线为第一阶非线性Compton的边界${f}_{\mathrm{C}}\approx 2\dfrac{{\chi }_{\mathrm{e}}}{{a}_{0}^{3}}$[45]

    Fig. 4.  (a) The number of photons emitted by electrons of $ {\gamma }_{0} $=1000 head-on colliding with a laser pulse with different pulse width (τ is the pulse duration in laser period). Lines are the result from Monte-Carlo simulations while points are from analytical result[45]; (b) relative error of the photon number between the two approaches[45]; (c) comparison of energy spectra under different laser parameters where $ f=\delta $. The solid gray line gives the QED result, and the dashed line is the Monte-Carlo result, respectively. The perpendicular dotted line is the boundary of the first order nonlinear Compton${f}_{\mathrm{C}}\approx 2\dfrac{{\chi }_{\mathrm{e}}}{{a}_{0}^{3}}$[45].

    图 5  500 MeV电子与a0 = 100激光场对撞的电子轨迹, 黑线为QED-MC方法计算20次给出的轨迹, 红线、蓝线分别为Lorentz方程、LL方程的轨迹

    Fig. 5.  Trajectories of electrons with 500 MeV colliding with a0 = 100 laser field. Black solid lines are the ones given by the QED-MC method (repeated 20 times at exactly the same condition). The red and blue solid lines are the trajectory from Lorentz equation and LL equation, respectively.

    图 6  电子束与(a)中的激光对撞后的能谱变化, 其中激光强度约为$ {a}_{0}=68 $, 电子中心能量约为1 GeV[46]; (b) 量子随机辐射模型[46]; (c) LL方程[46]; (d) 量子修正的LL方程[46]

    Fig. 6.  The energy spectra after the electron beam collides with the laser in (a), where the laser intensity is about $ {a}_{0}=68 $ and the electron center energy is about 1 GeV; (b) quantum stochastic radiation model; (c) LL equation; (d) the quantum-modified LL equation[46].

    图 7  半周期(左)、单周期(右)激光和电子对撞的空间轨迹(上)和能量变化趋势(下)[28]

    Fig. 7.  Trajectories (top) and energy evolution (bottom) of electrons in collision with half-cycle (left) and one-cycle (right) laser pulse[28].

    图 8  (a)—(f) Lorentz方程、LL方程和QED光子辐射给出的两种电子能量下的运动轨迹, 其中红色箭头表示反常透射与反射的电子[21]; (g)—(i) 不同激光强度和电子能量下电子被激光反射的比例, 红色和蓝色方块而分别为第二列和第一列所对应的参数[21]

    Fig. 8.  (a)–(f) Electron trajectories at two given values of kinetic energy, modelled by the Lorentz equation, the LL equation and the QED photon radiation. The red arrows represent anomalously transmitted and reflected electrons[21]. (g)–(i) Proportion of electrons reflected by the laser pulse at different laser intensities and electron energies. The red and blue squares correspond to the parameters in the second and first columns, respectively[21].

    图 9  电子束在存储环中极化率随时间的变化[51]

    Fig. 9.  Polarization evolution of an electron beam in a storage ring[51].

    图 10  圆偏振驻波场中不同场强对应的电子极化率随时间的演化[52]

    Fig. 10.  Electron polarization evolution as a function of the laser amplitude in circularly polarized standing wave field[52].

    图 11  极化电子在激光场中的振荡${\Delta }{p}_{x}$表示无自旋电子在半周期内由于辐射反作用产生的动量变化, $ \pm $表示相反的自旋极化方向[31]

    Fig. 11.  The oscillation of polarized electrons in laser field. ${\Delta }{p}_{x}$ represents the momentum shift of unpolarized electrons in a half cycle, plus or minus sign denote electron initially polarized parallel or anti-parallel to the laser magnetic field[31].

    图 12  考虑与不考虑辐射反作用力的结果对比[68] (a)电子x-px分布; (b)质子x-px分布; (c)电子能谱; (d)质子能谱

    Fig. 12.  Simulation results with and without radiation reaction[68]: (a) x-px distribution of electrons; (b) x-px distribution of protons; (c) energy spectrum of electrons; (d) energy spectrum of protons[68].

    图 13  $ {a}_{0}=500 $的激光和$ {n}_{\mathrm{e}}=20{n}_{\mathrm{c}} $的等离子相互作用, 在$ t=80{T}_{0} $时刻电子、质子、电磁场和$ \gamma $光子的分布[71] (a)—(c) 无辐射反作用; (d)—(g) 存在辐射反作用

    Fig. 13.  The distribution of electrons, protons, electromagnetic fields, and gamma photons at t = 80T0 when a laser of $ {a}_{0}=500 $ interacts with a plasma of $ {n}_{\mathrm{e}}=20{n}_{\mathrm{c}} $[71]: (a)–(c) with radiation reaction; (d)–(g) without of radiation reaction.

    图 14  (a) 不同场强下电子在驻波场中的密度分布, 电子的辐射过程采用QED-MC模型[72]; (b) 辐射模型为经典辐射[72]; (c) 不同场强下典型的电子轨迹[72]

    Fig. 14.  (a) Density distribution of electrons in the standing wave field at different field intensities. Photon emission is modelled via QED-MC method[72]; (b) the result from classical radiation-reaction model[72]; (c) typical electron trajectories at different field intensities[72].

    图 15  (a)有辐射反作用力情况下, 不同等离子体密度下电子的轨迹[77]; (b)辐射反作用力所做的功[77]; (c) 等离子体场的空间尺度、场强[77]. 图例中Eq.(4)是等离子体场电势$ \phi ={E}_{x0}d/{\gamma }_{x} $

    Fig. 15.  (a) Electron trajectories at different plasma densities[77]; (b) work done by the radiation reaction force; (c) length scale and field strength of plasma field at different plasma densities[77]. Eq. (4) is the electric potential of the plasma field $ \phi ={E}_{x0}d/{\gamma }_{x} $.

    图 16  能量为1 GeV的电子和$ 5\times {10}^{22}\;\mathrm{W}\cdot \mathrm{c}{\mathrm{m}}^{-2} $(${a}_{0}= $$ 154$)激光对撞产生的辐射谱[78]. 黑线和红色虚线为量子辐射情况下有、无辐射反作用的辐射谱线; 蓝色虚线和红色点线是经典理论给出的有、无辐射反作用的辐射谱线

    Fig. 16.  The radiation spectrum from the collision between 1 GeV electrons and $ 5\times {10}^{22}\;\mathrm{W}\cdot \mathrm{c}{\mathrm{m}}^{-2} $($ {a}_{0}=154 $) laser pulse[78]. The black and red dotted lines are the spectra with and without radiation reaction in quantum radiation. The blue dotted and red dotted lines are the ones given by classical theory, with and without radiation reaction.

    图 17  不同激光光强下, (a) 激光到等离子体的总能量转换效率和 (b) 激光到伽马光子的能量转换效率[82]

    Fig. 17.  The total energy conversion efficiency of laser to plasma (a) and the energy conversion efficiency of laser to gamma photon (b) as a function of laser intensity[82].

    图 18  全光探测辐射反作用效应示意图. 电子束经过尾场加速后, 与散射激光对撞产生高能光子[87]

    Fig. 18.  A sketch of all-light detection of radiation reaction. After the electron beam accelerates through the tail field, it collides with the scattering laser to produce high-energy photons[87].

    图 19  (a)激光加速电子进入微通道靶后经过薄膜的反射与电子对撞[89]; (b)电子能量的角分布[89]

    Fig. 19.  (a) The laser accelerates the electron into the microchannel target and then collides with the electron through the reflection of the film[89]; (b) angular distribution of electron energy[89].

    图 20  高能正电子束穿过晶体后测量光子能谱及其与不同模型计算结果对比[88] (a)靶厚为3.8 mm; (b)靶厚为10.0 mm, 其中QRRM为量子辐射模型, QnoRRM为量子无辐射模型, SCRRM为半经典辐射模型, CRRM为经典辐射模型

    Fig. 20.  Measured photon energy spectra generated by high-energy positron beam penetrating crystal and its comparison with theoretical results from different models[88]: (a) Target thickness of 3.8 mm; (b) target thickness of 10.0 mm. QRRM is the quantum RR model, QNorRM is the quantum model without RR, ScrRM is the semi-classical RR model, and CrRM is the classical RR model.

    图 21  电子以及卤化物极化率和激光波长的关系, 质子极化与电子一致[113]

    Fig. 21.  Polarization of electrons and the halide as a function of the ionization laser wavelength[113].

    图 22  基于激光尾场的预极化电子加速的(a)实验设计和(b)相互作用流程[22]

    Fig. 22.  (a) Experimental design and (b) interaction processes for polarized electron acceleration based on laser-driven wakefield[22].

    图 23  添加自旋模块后的PIC流程

    Fig. 23.  PIC flow after adding spin module.

    图 24  激光尾场加速过程中电子束极化率随时间演化(a)及与激光强度的关系(b)[23]

    Fig. 24.  The electron beam polarization versus time (a) and laser amplitude (b) in laser wakefield acceleration[23].

    图 25  LG涡旋光和高斯光作为驱动源时 (a)横向预极化和(b)纵向预极化尾场极化电子束峰值电流与极化率的关系[22]

    Fig. 25.  The electron beam polarization as a function of the peak current for wakefield acceleration driven by LG vortex and Gaussian laser for (a) transverse pre-polarized case and (b) longitudinal pre-polarized case[22].

    图 26  激光尾场加速横向预极化电子时电子束极化率的横向相空间分布, 分别对应纵向sx, 横向sysz, 初始自旋为sz方向[107]

    Fig. 26.  The transverse phase space distribution of electron beam polarization in laser wakefield acceleration for transversely pre-polarized electrons(sz direction). Left to right: longitudinal polarization sx, transverse polarization sy and sz[107].

    图 27  尾场加速横向预极化电子的(a)自旋过滤器示意图, (b)激光驱动和电子束驱动对比及(c)不同筛选角下极化率与归一化参数ψ的关系[107]

    Fig. 27.  (a) Sketch of the spin filter, (b) beam polarization in laser driven and electron beam driven scenarios, and (c) the relationship between the polarization and the normalized parameter ψ at different screening angles[107].

  • [1]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar

    [2]

    Mulser P, Bauer D 2010 High Power Laser-Matter Interaction (Berlin: Springer)

    [3]

    Vshivkov V, Naumova N, Pegoraro F, Bulanov S 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 410 493Google Scholar

    [4]

    Vshivkov V, Naumova N, Pegoraro F, Bulanov S 1998 Phys. Plasmas 5 2727Google Scholar

    [5]

    Shen B, Meyer-ter-Vehn J 2001 Phys. Rev. E 65 01640

    [6]

    Cherepenin V A, Kulagin V V 2004 Phys. Lett. A 321 103Google Scholar

    [7]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [8]

    Snavely R A, Key M H, Hatchett S P, et al. 2000 Phys. Rev. Lett 85 2945Google Scholar

    [9]

    Németh K, Shen B, Li Y, et al. 2008 Phys. Rev. Lett 100 095002Google Scholar

    [10]

    Albert F, Anderson S G, Gibson D J, et al. 2010 Phys. Rev. ST Accel. Beams 13 070704Google Scholar

    [11]

    Liao G, Liu H, Scott G, et al. 2020 Phys. Rev. X 10 031062

    [12]

    Kodama R, Norreys P A, Mima K, et al. 2001 Nature 412 798Google Scholar

    [13]

    Zhong J, Li Y, Wang X, et al. 2010 Nat. Phys 6 984Google Scholar

    [14]

    Chen H, Meyerhofer D D, Wilks S C, et al. 2011 High Energy Density Phys 7 225Google Scholar

    [15]

    Xu T, Shen B, Xu J, et al. 2016 Phys. Plasmas 23 033109Google Scholar

    [16]

    Ritus V I 1985 J. Russian Laser Res. 6 497Google Scholar

    [17]

    Baier V N, Katkov V M 1967 Phys. Lett. A 25 492Google Scholar

    [18]

    Fedotov A M, Narozhny N B, Mourou G, Korn G 2010 Phys. Rev. Lett. 105 080402Google Scholar

    [19]

    Elkina N V, Fedotov A M, Kostyukov I, et al. 2011 Phys. Rev. Special Topics-Accel. and Beams 14 054401Google Scholar

    [20]

    Li J, Chen Y, Hatsagortsyan K Z, Keitel C H 2017 Sci. Rep. 7 11556Google Scholar

    [21]

    Geng X S, Ji L L, Shen B F, et al. 2019 Commun. Phys 2 66Google Scholar

    [22]

    Wu Y, Ji L, Geng X, et al. 2019 New J. Phys 21 073052Google Scholar

    [23]

    Wen M, Tamburini M, Keitel C H 2019 Phys. Rev. Lett. 122 214801Google Scholar

    [24]

    Büscher M, Hützen A, Ji L, Lehrach A 2020 High Power Laser Science and Engineering 8 e35Google Scholar

    [25]

    Koga J, Esirkepov T, Bulanov S V 2005 Phys. Plasmas 12 093106Google Scholar

    [26]

    Landau L D, Lifshitz E M 1971The Classical Theory of Fields (Oxford: Pergamon Press)

    [27]

    Vranic M, Grismayer T, Fonseca R A, Silva L O 2016 Journal of Physics 18 073035

    [28]

    Harvey C N, Gonoskov A, Ilderton A, Marklund M 2017 Phys. Rev. Lett. 118 105004Google Scholar

    [29]

    Sorbo D D, Seipt D, Thomas A G R, Ridgers C P 2018 Plasma Phys. and Control. Fusion 60 064003Google Scholar

    [30]

    Seipt D, Sorbo D D, Ridgers C P, Thomas A G R, 2018 Phys. Rev. A 98 023417Google Scholar

    [31]

    Geng X S, Ji L L, Shen B F, et al. 2020 New J. Phys 22 013007Google Scholar

    [32]

    Dirac P A M 1938 Proc. R. Soc. Lond. A 167 148Google Scholar

    [33]

    Piazza A D 2008 Lett. Math. Phys. 83 30

    [34]

    Piazza A D, Hatsagortsyan K Z, Keitel C H 2009 Phys. Rev. Lett. 102 254802Google Scholar

    [35]

    Baier V N, Katkov V M, Strakhovenko V M 1991 Rad. Eff. 527 122

    [36]

    Ridgers C P, Blackburn T G, Sorbo D D, et al. 2017 J. Phys. Plasmas 83 715830502Google Scholar

    [37]

    Berestetskii V B, Lifshitz E M, Pitaevskii L P 1982 Quantum Electrodynamics (Amsterdam: Elsevier)

    [38]

    Wolkow D M 1936 Z. Physik 94 250

    [39]

    Furry W H 1951 Phys. Rev. 81 115Google Scholar

    [40]

    Piazza A D, Tamburini M, Meuren S, Keitel C H 2019 Phys. Rev. A 99 022125Google Scholar

    [41]

    Pausch R 2012 Diploma Thesis (Dresden: Technische Universität Dresden)

    [42]

    Nikishov A, Ritus V 1964 Sov. Phys. Jetp-Ussr 19 529

    [43]

    Gonoskov A, Bastrakov S, Efimenko E, et al. 2015 Phys. Rev. E 92 023305Google Scholar

    [44]

    Duclous R, Kirk J G, Bell A R 2010 Plasma Phys. and Control. Fusion 53 015009

    [45]

    Blackburn T G, Seipt D, Bulanov S S, Marklund M 2018 Phys. Plasmas 25 083108Google Scholar

    [46]

    Neitz N, Piazza A D 2013 Phys. Rev. Lett. 111 054802Google Scholar

    [47]

    Wen M, Keitel C H, Bauke H 2017 Phys. Rev. A 95 042102Google Scholar

    [48]

    Bargmann V, Michel L, Telegdi V L 1959 Phys. Rev. Lett. 2 435Google Scholar

    [49]

    Jackson J D 1998 Classical Electrodynamics (3rd Ed.) (New York: Wiley)

    [50]

    Ternov I M 1995 Phys.-Usp. 38 409Google Scholar

    [51]

    Mane S R, Shatunov Y M, Yokoya K 2005 Rep. Prog. Phys. 68 1997Google Scholar

    [52]

    Sorbo D D, Seipt D, Blackburn T G, et al. 2017 Phys. Rev. A 96 043407Google Scholar

    [53]

    Li Y, Shaisultanov R, Hatsagortsyan K Z, et al. 2019 Phys. Rev. Lett 122 154801Google Scholar

    [54]

    Seipt D, Sorbo D D, Ridgers C P, Thomas A G R 2019 Phys. Rev. A 100 061402Google Scholar

    [55]

    Geng X S, Bu Z G, Wu Y T, et al. 2020 ArXiv: 1912.03625 [Physics]

    [56]

    Guo R T, Wang Y, Shaisultanov R, et al. 2020 Phys. Rev. Res 2 033483Google Scholar

    [57]

    Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003Google Scholar

    [58]

    Klimo O, Psikal J, Limpouch J, Tikhonchuk V T 2008 Phys. Rev. ST Accel. Beams 11 031301Google Scholar

    [59]

    Robinson A P L, Zepf M, Kar S, Evans R G, Bellei C 2008 New J. Phys. 10 013021Google Scholar

    [60]

    Yan X Q, Lin C, Sheng Z M, et al. 2008 Phys. Rev. Lett 100 135003Google Scholar

    [61]

    Qiao B, Zepf M, Borghesi M, Geissler M 2009 Phys. Rev. Lett. 102 145002Google Scholar

    [62]

    Shen B, Xu Z 2001 Phys. Rev. E 64 056406Google Scholar

    [63]

    Zhang X, Shen B, Li X, et al. 2007 Phys. Plasmas 14 123108Google Scholar

    [64]

    Chen M, Pukhov A, Yu T P, Sheng Z M 2009 Phys. Rev. Lett. 103 024801Google Scholar

    [65]

    Yu T P, Pukhov A, Shvets G, Chen M 2010 Phys. Rev. Lett. 105 065002Google Scholar

    [66]

    Yan X Q, Wu H C, Sheng Z M, Chen J E, Meyer-ter-Vehn J 2009 Phys. Rev. Lett. 103 135001Google Scholar

    [67]

    M Tamburini, F Pegoraro, Piazza A D, Keitel C H, Macchi A 2010 New J. Phys. 12 123005Google Scholar

    [68]

    Chen M, Pukhov A, Yu T P, Sheng Z M 2010 Plasma Phys. and Control. Fusion 53 014004

    [69]

    Tamburini M, Pegoraro F, Piazza A D, Keitel C H, Liseykina T V, Macchi A 2011 Nucl. Instrum. Methods Phys. Res., Sect. A 653 181Google Scholar

    [70]

    Duff M J, Capdessus R, Sorbo D D, Ridgers C P, King M, McKenna P 2018 Plasma Phys. and Control. Fusion 60 064006Google Scholar

    [71]

    Ji L L, Pukhov A, Kostyukov I, Shen B F, Akli K 2014 Phys. Rev. Lett. 112 145003Google Scholar

    [72]

    Gonoskov A, Bashinov A, Gonoskov I, et al. 2014 Phys. Rev. Lett 113 014801Google Scholar

    [73]

    Lehmann G, Spatschek K H 2012 Phys. Rev. E 85 056412Google Scholar

    [74]

    Gong Z, Hu R, Shou Y, Qiao B, et al. 2016 Matter and Radiat. Extremes 1 308Google Scholar

    [75]

    Gonoskov A, Marklund M 2018 Phys. Plasmas 25 093109Google Scholar

    [76]

    Bulanov S V, Esirkepov T Z, Kando M, Koga J K, Bulanov S S 2011 Phys. Rev. E 84 056605Google Scholar

    [77]

    Guo Z, Ji L, Yu Q, et al. 2019 Plasma Phys. and Control. Fusion 61 065007Google Scholar

    [78]

    Piazza A D, Hatsagortsyan K Z, Keitel C H 2010 Phys. Rev. Lett. 105 220403Google Scholar

    [79]

    Liu C, Shen B, Zhang X, et al. 2018 Phys. Plasmas 25 023107Google Scholar

    [80]

    Gong Z, Mackenroth F, Yan X Q, Arefiev A V 2019 Sci. Rep. 9 1

    [81]

    Ji L L, Pukhov A, Nerush E N, et al. 2014 Eur. Phys. J. ST 223 1069Google Scholar

    [82]

    Ji L L, Pukhov A, Nerush E N, et al. 2014 Phys. Plasmas 21 023109Google Scholar

    [83]

    Zhu X L, Yu T P, Sheng Z M, Yin Y, Turcu I C E, Pukhov A 2016 Nat. Commun. 7 1

    [84]

    Cole J M, Behm K T, Gerstmayr E, et al. 2018 Phys. Rev. X 8 011020

    [85]

    Poder K, Tamburini M, Sarri G, et al. 2018 Phys. Rev. X 8 031004

    [86]

    Blackburn T G, Ridgers C P, Kirk J G, Bell A R 2014 Phys. Rev. Lett. 112 015001Google Scholar

    [87]

    Vranic M, Martins J L, Vieira J, Fonseca R A, Silva L O 2014 Phys. Rev. Lett. 113 134801Google Scholar

    [88]

    Wistisen T N, Piazza A D, Knudsen H V, Uggerhøj U I 2018 Nat. Commun. 9 1Google Scholar

    [89]

    Ji L L, Snyder J, Shen B F 2019 Plasma Phys. and Control. Fusion 61 065019Google Scholar

    [90]

    Snyder J, Ji L L, George K M, et al. 2019 Phys. Plasmas 26 033110Google Scholar

    [91]

    Mironov A A, Meuren S, Fedotov A M 2020 Phys. Rev. D 102 053005Google Scholar

    [92]

    Ilderton A, King B, Seipt D 2019 Phys. Rev. A 99 042121Google Scholar

    [93]

    Gay T J. 2009 Adv. At. Mol. Opt. Phys. 57 157

    [94]

    Jefferson Lab Qweak, 2018 Nature 557 207Google Scholar

    [95]

    Schlimme B S, et al. 2013 Phys. Rev. Lett 111 132504Google Scholar

    [96]

    Ageev E S, et al. 2005 Phys. Lett. B 612 154Google Scholar

    [97]

    Salajegheh M, Mohammad S, Khanpour H, Atashbar T S 2018 Phys. Rev. C 97 055201Google Scholar

    [98]

    Huang H, Kewisch J, Liu C, et al. 2019 Phys. Rev. Lett 122 204803Google Scholar

    [99]

    X J Wang, H Sun, X Luo 2017 Advances in High Energy Phys. 2017 1

    [100]

    Burkardt M, Miller C A, Nowak W D 2010 Rep. Prog. Phys. 73 016201Google Scholar

    [101]

    Sokolov A A, Ternov I M 1964 Sov. Phys. Dokl. 8 1203

    [102]

    Rathmann F, Saleev A, Nikolaev N N 2014 Phys. Part. Nucl. 45 229Google Scholar

    [103]

    Pierce D T, Meier F, Zürcher P 1975 Appl. Phys. Lett. 26 670Google Scholar

    [104]

    Batelaan H, Green A S, Hitt B A, Gay T J 1999 Phys. Rev. Lett. 82 4216Google Scholar

    [105]

    Hützen A, Thomas J, Böker J, et al. 2019 High Power Laser Sci. Eng. 7 e16Google Scholar

    [106]

    Alekseev I, Allgower C, Bai M, et al. 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 499 392Google Scholar

    [107]

    Wu Y, Ji L, Geng X, et al. 2020 Phys. Rev. Appl 13 044064Google Scholar

    [108]

    Wu Y, Ji L, Geng X, et al. 2019 Phys. Rev. E 100 043202Google Scholar

    [109]

    Hartung A, Morales F, Kunitski M, et al. 2016 Nat. Photon 10 526Google Scholar

    [110]

    Trabert D, Hartung A, Eckart S, et al. 2018 Phys. Rev. Lett 120 043202Google Scholar

    [111]

    Barth I, Smirnova O 2013 Phys. Rev. A 88 013401Google Scholar

    [112]

    Rakitzis T P, Samartzis P C, Toomes R L, et al. 2003 Science 300 1936Google Scholar

    [113]

    Rakitzis T P 2004 Chem. Phys. Chem. 5 1489Google Scholar

    [114]

    Sofikitis D, Kannis C S, Boulogiannis G K, Rakitzis T P 2018 Phys. Rev. Lett. 121 083001Google Scholar

    [115]

    Sofikitis D, Rubio-Lago L, Bougas L, Alexander A J, Rakitzis T P 2008 J. Chem. Phys. 129 144302Google Scholar

    [116]

    Thomas J, Hützen A, Lehrach A, et al. 2020 Phys. Rev. ST Accel. Beams 23 064401Google Scholar

    [117]

    Vieira J, Huang C K, Mori W B, Silva L O 2011 Phys. Rev. ST Accel. Beams 14 071303Google Scholar

    [118]

    Golovanov A A, Kostyukov I Y, Thomas J, Pukhov 2017 Phys. Plasmas 24 103104Google Scholar

    [119]

    Lu W, Huang C, Zhou M, Mori W B, Katsouleas T 2006 Phys. Rev. Lett. 96 165002Google Scholar

    [120]

    Gonsalves A J, Nakamura K, Lin C, et al. 2011 Nat. Phys 7 862Google Scholar

    [121]

    Schmid K, Buck A, Sears C M S, et al. 2010 Phys. Rev. Special Topics-Accel. Beams 13 091301Google Scholar

    [122]

    Zou J P, Blanc C L, Papadopoulos D, et al. 2015 High Power Laser Sci. Eng 3 e2Google Scholar

    [123]

    Zamfir N V 2014 Eur. Phys. J. Special Topics 223 1221Google Scholar

    [124]

    Li W, Gan Z, Yu L, et al. 2018 Opt. Lett 43 5681Google Scholar

    [125]

    Gomez C H, Blake S P, Chekhlov O, et al. 2010 IOP Publishing 244 032006

    [126]

    Jin L, Wen M, Zhang X, et al. 2020 Phys. Rev. E 102 011201Google Scholar

    [127]

    Hützen A, Thomas J, Lehrach A, et al. 2020 J. Phys.: Conf. Series 1596 012013Google Scholar

    [128]

    Makdisi Y 1998 AIP Conf. Proc. 451 40

    [129]

    Roser T (Edited by A Chao and M Tigner) 2002 Handbook of Accelerator Physics and Engineering (Singapore: World Scientific)

  • [1] 宁鲁慧, 张雪, 杨明成, 郑宁, 刘鹏, 彭毅. 活性浴中惰性粒子形状对有效作用力的影响. 物理学报, 2024, 73(15): 158202. doi: 10.7498/aps.73.20240650
    [2] 张凯林, 韩胜贤, 岳生俊, 刘作业, 胡碧涛. 强激光场对原子核α衰变的影响. 物理学报, 2024, 73(6): 062101. doi: 10.7498/aps.73.20231627
    [3] 陈臻, 王帅鹏, 李铁夫, 游建强. 超强耦合电路量子电动力学系统中反旋波效应对量子比特频率移动的影响. 物理学报, 2020, 69(12): 124204. doi: 10.7498/aps.69.20200474
    [4] 魏留磊, 蔡洪波, 张文帅, 田建民, 张恩浩, 熊俊, 朱少平. 超强激光与泡沫微结构靶相互作用提高强流电子束产额模拟研究. 物理学报, 2019, 68(9): 094101. doi: 10.7498/aps.68.20182291
    [5] 蔡怀鹏, 高健, 李博原, 刘峰, 陈黎明, 远晓辉, 陈民, 盛政明, 张杰. 相对论圆偏振激光与固体靶作用产生高次谐波. 物理学报, 2018, 67(21): 214205. doi: 10.7498/aps.67.20181574
    [6] 杨思谦, 周维民, 王思明, 矫金龙, 张智猛, 曹磊峰, 谷渝秋, 张保汉. 通道靶对超强激光加速质子束的聚焦效应. 物理学报, 2017, 66(18): 184101. doi: 10.7498/aps.66.184101
    [7] 李夏至, 邹德滨, 周泓宇, 张世杰, 赵娜, 余德尧, 卓红斌. 等离子体光栅靶的表面粗糙度对高次谐波产生的影响. 物理学报, 2017, 66(24): 244209. doi: 10.7498/aps.66.244209
    [8] 尹传磊, 王伟民, 廖国前, 李梦超, 李玉同, 张杰. 超强圆偏振激光直接加速产生超高能量电子束. 物理学报, 2015, 64(14): 144102. doi: 10.7498/aps.64.144102
    [9] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [10] 王广辉, 王晓方, 董克攻. 超短超强激光导引及对电子加速的影响. 物理学报, 2012, 61(16): 165201. doi: 10.7498/aps.61.165201
    [11] 徐妙华, 李玉同, 刘峰, 张翼, 林晓宣, 王首钧, 孟立民, 王兆华, 郑君, 盛政明, 魏志义, 李英骏, 张杰. 利用激光离焦的方法优化超强激光驱动的质子加速. 物理学报, 2011, 60(4): 045204. doi: 10.7498/aps.60.045204
    [12] 陈翔, 米贤武. 量子点腔系统中抽运诱导受激辐射与非谐振腔量子电动力学特性的研究. 物理学报, 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [13] 闫春燕, 张秋菊, 罗牧华. 激光与相对论电子束相互作用中阿秒X射线脉冲的产生. 物理学报, 2011, 60(3): 035202. doi: 10.7498/aps.60.035202
    [14] 董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方. 超强飞秒激光尾波场加速产生58 MeV准单能电子束实验. 物理学报, 2010, 59(12): 8733-8738. doi: 10.7498/aps.59.8733
    [15] 闫春燕, 张秋菊. 相对传播的双脉冲激光与薄膜靶作用产生的强单色谐波. 物理学报, 2010, 59(1): 322-328. doi: 10.7498/aps.59.322
    [16] 王 智, 陈佳洱, 颜学庆, 陆元荣, 方家驯, 郭之虞. 分离作用射频四极场加速器中动力学参数与极限流强的探讨. 物理学报, 2006, 55(12): 6298-6301. doi: 10.7498/aps.55.6298
    [17] 邵磊, 霍裕昆, 王平晓, 孔青, 袁祥群, 冯量. 场极化方向对强激光加速电子效应的影响. 物理学报, 2001, 50(7): 1284-1289. doi: 10.7498/aps.50.1284
    [18] 刘建胜, 李儒新, 朱频频, 徐至展, 刘晶儒. 大尺寸团簇在超短超强激光场中的动力学行为. 物理学报, 2001, 50(6): 1121-1127. doi: 10.7498/aps.50.1121
    [19] 夏江帆, 张军, 张杰. 用激光等离子体实验对天体物理动力学过程进行模拟的可行性研究. 物理学报, 2001, 50(5): 994-1000. doi: 10.7498/aps.50.994
    [20] 孔 青, 朱立俊, 王加祥, 霍裕昆. 电子在超强激光场中的动力学特性. 物理学报, 1999, 48(4): 650-660. doi: 10.7498/aps.48.650
计量
  • 文章访问数:  9643
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-14
  • 修回日期:  2021-02-06
  • 上网日期:  2021-04-14
  • 刊出日期:  2021-04-20

/

返回文章
返回