搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超强耦合电路量子电动力学系统中反旋波效应对量子比特频率移动的影响

陈臻 王帅鹏 李铁夫 游建强

引用本文:
Citation:

超强耦合电路量子电动力学系统中反旋波效应对量子比特频率移动的影响

陈臻, 王帅鹏, 李铁夫, 游建强

Counter-rotating effect on frequency shift of flux qubit in ultrastrongly coupled circuit-quantum-electrodynamics system

Chen Zhen, Wang Shuai-Peng, Li Tie-Fu, You Jian-Qiang
PDF
HTML
导出引用
  • 从实验上研究了四结磁通量子比特与多模共面波导谐振腔构成的超强耦合电路量子电动力学系统. 通过传输谱测量和数值拟合, 确定量子比特与腔第一模式的耦合强度已达到0.1倍谐振腔频率, 进入了超强耦合区域; 通过色散读出方法得到了系统的能谱, 并通过增加探测场光子, 从能谱上得到了量子比特频率随探测光子的位移. 这种位移不仅包含旋波项的贡献, 也包含了反旋波项的显著贡献, 证实我们所实现的超强耦合系统是一个良好的研究量子拉比模型的实验平台, 它在量子技术的诸多方面有潜在的应用, 如量子模拟、超快量子逻辑门、纠缠态制备、量子比特保护等.
    In recent years, quantum Rabi model has aroused considerable interest because of its fundamental importance and potential applications in quantum technologies. For a conventional cavity-quantum-electrodynamic (cavity-QED) system involving the interaction between an atom and photons in a cavity, the atom-photon coupling frequency is much smaller than the transition frequency of the atom and the frequency of the cavity mode. This cavity-QED system is usually described by the Jaynes-Cummings model in which the rotating-wave approximation can be adopted by neglecting the counter-rotating coupling terms in the Hamiltonian of the system. However, by designing the unique structure of the superconducting circuit, the ultrastrong-coupling regime can be achieved in a circuit-QED system in which the counter-rotating coupling terms become as important as the rotating terms. Thus, the rotating-wave approximation cannot be used in the ultrastrongly coupled circuit-QED system. Owing to the ultrastrong coupling, this circuit-QED system is described by the standard quantum Rabi model when a superconducting qubit is coupled only to a single resonator mode. In this work, we experimentally study an ultrastrongly coupled circuit-QED system consisting of a four-junction superconducting flux qubit and a muti-mode coplanar-waveguide resonator. The transmission-spectrum measurement and numerical simulations show that the system is in the ultrastrong-coupling regime. By changing the photon number in the resonator, we observe the frequency shift of the flux qubit via the spectroscopic measurement. This frequency shift contains the contributions from not only the rotating-coupling terms but also the counter-rotating terms, which is in good agreement with the theory. The result indicates that this ultrastrongly-coupled quantum system can be used as a good platform to investigate the quantum Rabi model and has potential applications in various aspects of quantum technology, such as quantum simulation, ultrafast quantum gates, entangled-state preparation and protected qubits.
      通信作者: 李铁夫, litf@tsinghua.edu.cn ; 游建强, jqyou@zju.edu.cn
    • 基金项目: 国家级-国家重点基础研究发展计划(2016YFA0301200)
      Corresponding author: Li Tie-Fu, litf@tsinghua.edu.cn ; You Jian-Qiang, jqyou@zju.edu.cn
    [1]

    Makhlin Y, Schon G, Shnirman A 2001 Rev. Mod. Phys. 73 357Google Scholar

    [2]

    You J Q, Nori F 2005 Phys. Today 58 42Google Scholar

    [3]

    Clarke J, Wilhelm F K 2008 Nature 453 1031Google Scholar

    [4]

    Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Rev. 6 021318Google Scholar

    [5]

    You J Q, Nori F 2003 Phys. Rev. B 68 064509Google Scholar

    [6]

    Yang C P, Chu S I, Han S 2003 Phys. Rev. A 67 042311Google Scholar

    [7]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162Google Scholar

    [8]

    赵士平, 刘玉玺, 郑东宁 2018 物理学报 67 228501Google Scholar

    Zhao S P, Liu Y X, Zheng D N 2018 Acta Phys. Sin. 67 228501Google Scholar

    [9]

    Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718

    [10]

    Nakamura Y, Pashkin Yu A, Tsai J S 1999 Nature 398 786Google Scholar

    [11]

    Mooij J E, Orlando T P, Levitov L, Tian L, van der Wal C H, Lloyd S 1999 Science 285 1036Google Scholar

    [12]

    Yu Y, Han S, Chu X, Chu S I, Wang Z 2002 Science 296 889Google Scholar

    [13]

    Martinis J M, Nam S, Aumentado J, Urbina C 2002 Phys. Rev. Lett. 89 117901Google Scholar

    [14]

    You J Q, Hu X, Ashhab S, Nori F 2007 Phys. Rev. B 75 140515Google Scholar

    [15]

    Yan F, Gustavsson S, Kamal A, Birenbaum J, Sears A P, Hover D, Gudmundsen T J, Rosenberg D, Samach G, Weber S, Yoder J L, Orlando T P, Clarke J, Kerman A J, Oliver W D 2016 Nat. Commun. 7 12964Google Scholar

    [16]

    Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar

    [17]

    Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O’Malley P, Roushan P, Wenner J, White T C, Cleland A N, Martinis J M 2013 Phys. Rev. Lett. 111 080502Google Scholar

    [18]

    金贻荣, 郑东宁 2017 科学通报 62 3935Google Scholar

    Jin Y R, Zheng D N 2017 Chin. Sci. Bull. 62 3935Google Scholar

    [19]

    Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W, Guo Q, Zhang P, Xu D, Deng H, Huang K, Wang H, Zhu X, Zheng D, Fan H 2018 Phys. Rev. Lett. 120 050507Google Scholar

    [20]

    Yan Z, Zhang Y R, Gong M, Wu Y, Zheng Y, Li S, Wang C, Liang F, Lin J, Xu Y, Guo C, Sun L, Peng C Z, Xia K, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X, Pan J W 2019 Science 364 753Google Scholar

    [21]

    Song C, Xu K, Li H, Zhang Y R, Zhang X, Liu W, Guo Q, Wang Z, Ren W, Hao J, Feng H, Fan H, Zheng D, Wang D W, Wang H, Zhu S Y 2019 Science 365 574Google Scholar

    [22]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [23]

    Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hummer T, Solano E, Marx A, Gross R 2010 Nat. Phys. 6 772Google Scholar

    [24]

    Yoshihara F, Fuse T, Ashhab S, Kakuyanagi K, Saito S, Semba K 2017 Nat. Phys. 13 44

    [25]

    Forn-Díaz P, García-Ripoll J J, Peropadre B, Orgiazzi J L, Yurtalan M A, Belyansky R, Wilson C M, Lupascu A 2017 Nat. Phys. 13 39

    [26]

    Chen Z, Wang Y, Li T F, Tian L, Qiu Y Y, Inomata K, Yoshihara F, Han S, Nori F, Tsai J S, You J Q 2017 Phys. Rev. A 96 012325Google Scholar

    [27]

    Abdumalikov A A, Astafiev O, Nakamura Y, Pashkin Y A, Tsai J S 2008 Phys. Rev. B 78 180502Google Scholar

    [28]

    Zhu X B, Saito S, Kemp A, Kakuyanagi K, Karimoto S, Nakano H, Munro W J, Tokura Y, Everitt M S, Nemoto K, Kasu M, Mizuochi N, Semba K 2011 Nature 478 221Google Scholar

    [29]

    Zhu X B, Matsuzaki Y, Amsüss R, Kakuyanagi K, Shimo-Oka T, Mizuochi N, Nemoto K, Semba K, J. Munro W, Saito S 2014 Nat. Commun. 5 3524Google Scholar

    [30]

    Bertet P, Chiorescu I, Chiorescu G, Semba K, Harmans C J P M, DiVincenzo D P, Mooij J E 2005 Phys, Rev. Lett. 95 257002Google Scholar

    [31]

    Qiu Y, Xiong W, He X L, Li T F, You J Q 2016 Sci. Rep. 6 28622Google Scholar

    [32]

    Puebla R, Hwang M J, Casanova J, Plenio M B 2017 Phys. Rev. Lett. 118 073001Google Scholar

    [33]

    Wang Y M, Ballester D, Romero G, Scarani V, Solano E 2012 Phys. Scr. T 147 014031Google Scholar

    [34]

    Ashhab S, Nori F 2010 Phys. Rev. A 81 042311Google Scholar

    [35]

    Nataf P, Ciuti C 2011 Phys. Rev. Lett. 107 190402Google Scholar

  • 图 1  实验装置 (a)测量系统, 其中信号由网络分析仪和微波源发出, 经过衰减合成后进入稀释制冷机内部, 样品处在制冷机的最低温区, 测试时温度为20 mK; (b)共面波导谐振腔示意图, 磁通量子比特处于谐振腔中心, 黄色、蓝色曲线分别为第一、三模式电流分布; (c)磁通量子比特扫描电子显微镜图像

    Fig. 1.  Experimental setup: (a) Measurement system: signals from both the PNA and the PSG generator are combined and attenuated before entering the dilution refrigerator; the sample is placed in the sample chamber of the refrigerator whose working temperature is 20 mK; (b) the schematic of the coplanar-waveguide resonator, with a four-junction flux qubit located at the center of the resonator; yellow and blue curves are current distributions of the first and third modes of the resonator, respectively; (c) the scanning electron microscope images of the flux qubit.

    图 2  系统传输谱随磁通量偏置的变化 (a)腔第三模式传输谱随磁通量偏置的变化; (b)腔第一模式传输谱随磁通量偏置的变化; 图中拟合红色虚线为哈密顿量(2)式数值解的结果

    Fig. 2.  The transmission |S21| as a function of the flux bias: (a) The transmission |S21| of the third mode of the resonator as a function of the flux bias; (b) the transmission |S21| of the first mode of the resonator as a function of the flux bias. Red dashed curves are the fitting results numerically obtained from the Hamiltonian (2) equation.

    图 3  腔第一模式测量的系统能谱随外加磁通偏置的变化, 红色拟合虚线代表量子比特基态到激发态跃迁频率, 测量时腔内的平均光子数为${\bar n_1} = {\rm{4}}{\rm{.7}} \times {\rm{1}}{{\rm{0}}^{ - 3}}$

    Fig. 3.  The spectrum measured using the first mode of the resonator as a function of the flux bias. The red dashed curve is the numerical result for the qubit transition and the average photon number in the resonator is ${\bar n_1} = $4.7 × 10–3.

    图 4  量子比特频率随光子数的变化, 红色实线表示包含交流斯塔克和布洛赫-西格特效应的拟合曲线, 蓝色虚线只包含交流斯塔克效应

    Fig. 4.  The qubit transition frequency as a function of the average photon number. The red solid curve denotes the simulation results when both the ac Stark and Bloch-Siegert shifts are included. The blue dashed curve denotes the simulation results when only the Bloch-Siegert shift is included.

  • [1]

    Makhlin Y, Schon G, Shnirman A 2001 Rev. Mod. Phys. 73 357Google Scholar

    [2]

    You J Q, Nori F 2005 Phys. Today 58 42Google Scholar

    [3]

    Clarke J, Wilhelm F K 2008 Nature 453 1031Google Scholar

    [4]

    Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Rev. 6 021318Google Scholar

    [5]

    You J Q, Nori F 2003 Phys. Rev. B 68 064509Google Scholar

    [6]

    Yang C P, Chu S I, Han S 2003 Phys. Rev. A 67 042311Google Scholar

    [7]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162Google Scholar

    [8]

    赵士平, 刘玉玺, 郑东宁 2018 物理学报 67 228501Google Scholar

    Zhao S P, Liu Y X, Zheng D N 2018 Acta Phys. Sin. 67 228501Google Scholar

    [9]

    Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718

    [10]

    Nakamura Y, Pashkin Yu A, Tsai J S 1999 Nature 398 786Google Scholar

    [11]

    Mooij J E, Orlando T P, Levitov L, Tian L, van der Wal C H, Lloyd S 1999 Science 285 1036Google Scholar

    [12]

    Yu Y, Han S, Chu X, Chu S I, Wang Z 2002 Science 296 889Google Scholar

    [13]

    Martinis J M, Nam S, Aumentado J, Urbina C 2002 Phys. Rev. Lett. 89 117901Google Scholar

    [14]

    You J Q, Hu X, Ashhab S, Nori F 2007 Phys. Rev. B 75 140515Google Scholar

    [15]

    Yan F, Gustavsson S, Kamal A, Birenbaum J, Sears A P, Hover D, Gudmundsen T J, Rosenberg D, Samach G, Weber S, Yoder J L, Orlando T P, Clarke J, Kerman A J, Oliver W D 2016 Nat. Commun. 7 12964Google Scholar

    [16]

    Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar

    [17]

    Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O’Malley P, Roushan P, Wenner J, White T C, Cleland A N, Martinis J M 2013 Phys. Rev. Lett. 111 080502Google Scholar

    [18]

    金贻荣, 郑东宁 2017 科学通报 62 3935Google Scholar

    Jin Y R, Zheng D N 2017 Chin. Sci. Bull. 62 3935Google Scholar

    [19]

    Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W, Guo Q, Zhang P, Xu D, Deng H, Huang K, Wang H, Zhu X, Zheng D, Fan H 2018 Phys. Rev. Lett. 120 050507Google Scholar

    [20]

    Yan Z, Zhang Y R, Gong M, Wu Y, Zheng Y, Li S, Wang C, Liang F, Lin J, Xu Y, Guo C, Sun L, Peng C Z, Xia K, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X, Pan J W 2019 Science 364 753Google Scholar

    [21]

    Song C, Xu K, Li H, Zhang Y R, Zhang X, Liu W, Guo Q, Wang Z, Ren W, Hao J, Feng H, Fan H, Zheng D, Wang D W, Wang H, Zhu S Y 2019 Science 365 574Google Scholar

    [22]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [23]

    Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hummer T, Solano E, Marx A, Gross R 2010 Nat. Phys. 6 772Google Scholar

    [24]

    Yoshihara F, Fuse T, Ashhab S, Kakuyanagi K, Saito S, Semba K 2017 Nat. Phys. 13 44

    [25]

    Forn-Díaz P, García-Ripoll J J, Peropadre B, Orgiazzi J L, Yurtalan M A, Belyansky R, Wilson C M, Lupascu A 2017 Nat. Phys. 13 39

    [26]

    Chen Z, Wang Y, Li T F, Tian L, Qiu Y Y, Inomata K, Yoshihara F, Han S, Nori F, Tsai J S, You J Q 2017 Phys. Rev. A 96 012325Google Scholar

    [27]

    Abdumalikov A A, Astafiev O, Nakamura Y, Pashkin Y A, Tsai J S 2008 Phys. Rev. B 78 180502Google Scholar

    [28]

    Zhu X B, Saito S, Kemp A, Kakuyanagi K, Karimoto S, Nakano H, Munro W J, Tokura Y, Everitt M S, Nemoto K, Kasu M, Mizuochi N, Semba K 2011 Nature 478 221Google Scholar

    [29]

    Zhu X B, Matsuzaki Y, Amsüss R, Kakuyanagi K, Shimo-Oka T, Mizuochi N, Nemoto K, Semba K, J. Munro W, Saito S 2014 Nat. Commun. 5 3524Google Scholar

    [30]

    Bertet P, Chiorescu I, Chiorescu G, Semba K, Harmans C J P M, DiVincenzo D P, Mooij J E 2005 Phys, Rev. Lett. 95 257002Google Scholar

    [31]

    Qiu Y, Xiong W, He X L, Li T F, You J Q 2016 Sci. Rep. 6 28622Google Scholar

    [32]

    Puebla R, Hwang M J, Casanova J, Plenio M B 2017 Phys. Rev. Lett. 118 073001Google Scholar

    [33]

    Wang Y M, Ballester D, Romero G, Scarani V, Solano E 2012 Phys. Scr. T 147 014031Google Scholar

    [34]

    Ashhab S, Nori F 2010 Phys. Rev. A 81 042311Google Scholar

    [35]

    Nataf P, Ciuti C 2011 Phys. Rev. Lett. 107 190402Google Scholar

  • [1] 李岩, 任志红. 多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息. 物理学报, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [2] 谭维翰, 赵超樱, 郭奇志. N量子比特系统的纠缠判据. 物理学报, 2023, 72(1): 010301. doi: 10.7498/aps.72.20221524
    [3] 赵艳军, 谭宁, 王堉琪, 郑亚锐, 王辉, 刘伍明. 规范势下正方形格点超导量子比特电路中的量子态输运. 物理学报, 2023, 72(10): 100304. doi: 10.7498/aps.72.20222349
    [4] 徐达, 王逸璞, 李铁夫, 游建强. 微波驱动下超导量子比特与磁振子的相干耦合. 物理学报, 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [5] 廖庆洪, 邓伟灿, 文健, 周南润, 刘念华. 纳米机械谐振器耦合量子比特非厄米哈密顿量诱导的声子阻塞. 物理学报, 2019, 68(11): 114203. doi: 10.7498/aps.68.20182263
    [6] 杨建勇, 陈华俊. 基于超强耦合量子点-纳米机械振子系统的全光学质量传感. 物理学报, 2019, 68(24): 246302. doi: 10.7498/aps.68.20190607
    [7] 杨阳, 王安民, 曹连振, 赵加强, 逯怀新. 与XY双自旋链耦合的双量子比特系统的关联性与相干性. 物理学报, 2018, 67(15): 150302. doi: 10.7498/aps.67.20180812
    [8] 陈锟, 邓友金. 用量子蒙特卡罗方法研究二维超流-莫特绝缘体相变点附近的希格斯粒子. 物理学报, 2015, 64(18): 180201. doi: 10.7498/aps.64.180201
    [9] 杨阳, 王安民. 与Ising链耦合的中心双量子比特系统的量子关联. 物理学报, 2013, 62(13): 130305. doi: 10.7498/aps.62.130305
    [10] 赵娜, 刘建设, 李铁夫, 陈炜. 超导量子比特的耦合研究进展. 物理学报, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [11] 俞立先, 梁奇锋, 汪丽蓉, 朱士群. Rabi模型的光场压缩. 物理学报, 2013, 62(16): 160301. doi: 10.7498/aps.62.160301
    [12] 夏建平, 任学藻, 丛红璐, 王旭文, 贺树. 两量子比特与谐振子相耦合系统中的量子纠缠演化特性. 物理学报, 2012, 61(1): 014208. doi: 10.7498/aps.61.014208
    [13] 高宽云, 赵翠兰. 量子环中量子比特的性质. 物理学报, 2008, 57(7): 4446-4449. doi: 10.7498/aps.57.4446
    [14] 徐昆明, 沈亚菲, 姚希贤. 圆对称环域Josephson结中准磁通量子激发对外磁场的依赖关系. 物理学报, 1989, 38(6): 938-946. doi: 10.7498/aps.38.938
    [15] 丁秀香, 梁九卿. 超导电子的角动量和磁通量子化. 物理学报, 1988, 37(11): 1752-1759. doi: 10.7498/aps.37.1752
    [16] 张裕恒, 沈秀玲, 郑捷飞, 吴彦, 汪茂泉. 在一个磁通量子内dc Josephson电流的阶梯效应(Ⅱ)——大尺寸Josephson结. 物理学报, 1984, 33(8): 1075-1083. doi: 10.7498/aps.33.1075
    [17] 张裕恒. 在一个磁通量子内dc Josephson电流阶梯或振荡效应的物理本质. 物理学报, 1984, 33(2): 210-220. doi: 10.7498/aps.33.210
    [18] 张裕恒, 李玉芝, 郑捷飞. 在一个磁通量子内dc Josephson电流的阶梯效应(Ⅰ)——双结SQUID. 物理学报, 1984, 33(1): 58-68. doi: 10.7498/aps.33.58
    [19] 陈赓华, 张裕恒. 超导弱连接中的Josephson电流在一个磁通量子内的振荡(Ⅱ)——单结超导环. 物理学报, 1982, 31(7): 932-938. doi: 10.7498/aps.31.932
    [20] 张裕恒, 陈赓华. 超导弱连接中的Josephson电流在一个磁通量子内的振荡(Ⅰ)——Josephson结. 物理学报, 1982, 31(6): 749-757. doi: 10.7498/aps.31.749
计量
  • 文章访问数:  7101
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-31
  • 修回日期:  2020-04-24
  • 刊出日期:  2020-06-20

/

返回文章
返回