搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波驱动下超导量子比特与磁振子的相干耦合

徐达 王逸璞 李铁夫 游建强

引用本文:
Citation:

微波驱动下超导量子比特与磁振子的相干耦合

徐达, 王逸璞, 李铁夫, 游建强

Coherent coupling in a driven qubit-magnon hybrid quantum system

Xu Da, Wang Yi-Pu, Li Tie-Fu, You Jian-Qiang
PDF
HTML
导出引用
  • 实验上展示了钇铁石榴石(YIG)晶体小球中磁振子与超导量子比特的驱动缀饰态之间的相干强耦合, 磁振子的加入使得在超导量子比特中形成了双重缀饰态. 实验中一个钇铁石榴石晶体小球与一个超导量子比特同时放置在三维谐振腔中, 分别通过磁偶极相互作用和电偶极相互作用与谐振腔中的本征场($\mathrm{TE_{102}}$模式)耦合, 并通过腔模作为媒介实现两者之间的有效相干强耦合. 给超导量子比特施加一个共振的微波驱动并改变驱动强度, 测得耦合系统能级劈裂随驱动强度的变化, 并理论上利用粒子-空穴对与玻色场耦合的模型做了计算. 在大部分的驱动强度范围内实验结果都与理论计算结果符合得较好, 表明驱动下的比特-磁振子耦合系统可以用来模拟粒子-空穴对称对与玻色场的耦合系统. 本文使用的混合量子系统为模拟玻色子与费米子的混合系统提供了一个新途径.
    We experimentally demonstrate the strong coupling between the ferromagnetic magnons in an yttrium-iron-garnet (YIG) sphere and the drive-field-induced dressed states of a superconducting qubit, which gives rise to the double dressing of the superconducting qubit. The YIG sphere and the superconducting qubit are embedded in a microwave cavity, and are coupled to the magnetic and electrical fields of the cavity $\mathrm{TE}_{102}$ mode, respectively. The effective coupling between them is mediated by the virtual cavity photons of cavity $\mathrm{TE}_{102}$ mode. Our experimental results indicate that as the power for driving the qubit increases, an additional split of the qubit-magnon polariton occurs. These supplemental splittings indicate a double-dressed state. We theoretically analyze the experimental results by using a particle-hole symmetric model. The theoretical results fit the experimental observations well in a broad range of drive-field power parameters, revealing that the driven qubit-magnon hybrid quantum system can be used to emulate a particle-hole symmetric pair coupled to a bosonic mode. Our hybrid quantum system holds great promise for quantum simulations of composite quasiparticles consisting of fermions and bosons.
      通信作者: 王逸璞, yipuwang@zju.edu.cn
    • 基金项目: 中国博士后科学基金(批准号: 2019M660137)和国家自然科学基金(批准号: 11934010, 12174329)资助的课题.
      Corresponding author: Wang Yi-Pu, yipuwang@zju.edu.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2019M660137) and the National Natural Science Foundation of China (Grant Nos. 11934010, 12174329)
    [1]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623Google Scholar

    [2]

    Kurizki G, Bertet P, Kubo Y, Mølmer K, Petrosyan D, Rabl P, Schmiedmayer J 2015 Proc. Natl. Acad. Sci. U.S.A. 112 3866Google Scholar

    [3]

    Wallquist M, Hammerer K, Rabl P, Lukin M, Zoller P 2009 Phys. Scr. T137 014001Google Scholar

    [4]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [5]

    Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2015 Science 349 405Google Scholar

    [6]

    Lachance-Quirion D, Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Nakamura Y 2017 Sci. Adv. 3 e1603150Google Scholar

    [7]

    Lachance-Quirion D, Wolski S P, Tabuchi Y, Kono S, Usami K, Nakamura Y 2020 Science 367 425Google Scholar

    [8]

    White R M 2007 Quantum Theory of Magnetism: Magnetic Properties of Materials (3rd Ed.) (Berlin: Springer) pp5–7

    [9]

    Soykal Ö O, Flatté M E 2010 Phys. Rev. Lett. 104 077202Google Scholar

    [10]

    Soykal Ö O, Flatté M E 2010 Phys. Rev. B 82 104413Google Scholar

    [11]

    Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003Google Scholar

    [12]

    Tabuchi Y, Ishino S, Ishikawa Y, Yamazaki R, Usami K, Nakamura Y 2014 Phys. Rev. Lett. 113 083603Google Scholar

    [13]

    Zhang X, Zou C L, Jiang L, Tang H X 2014 Phys. Rev. Lett. 113 156401Google Scholar

    [14]

    Goryachev M, Farr W G, Creedon D L, Fan Y, Kostylev M, Tobar M E 2014 Phys. Rev. Appl. 2 054002Google Scholar

    [15]

    Haigh J A, Langenfeld S, Lambert N J, Baumberg J J, Ramsay A J, Nunnenkamp A, Ferguson A J 2015 Phys. Rev. A 92 063845Google Scholar

    [16]

    Zhang X, Zou C L, Jiang L, Tang H X 2016 Sci. Adv. 2 e1501286Google Scholar

    [17]

    Bai L, Harder M, Chen Y P, Fan X, Xiao J Q, Hu C M 2015 Phys. Rev. Lett. 114 227201Google Scholar

    [18]

    Zhang D, Wang X M, Li T F, Luo X Q, Wu W, Nori F, You J Q 2015 npj Quantum Inf. 1 15014Google Scholar

    [19]

    Rameshti B Z, Cao Y, Bauer G E W 2015 Phys. Rev. B 91 214430Google Scholar

    [20]

    Cao Y P, Huebl H, Goennenwein S T B, Bauer G E W 2015 Phys. Rev. B 91 094423Google Scholar

    [21]

    Haigh J A, Lambert N J, Doherty A C, Ferguson A J 2015 Phys. Rev. B 91 104410Google Scholar

    [22]

    Liu T, Zhang X, Tang H X, Flatté M E 2016 Phys. Rev. B 94 060405Google Scholar

    [23]

    Wang Y P, Zhang G Q, Zhang D, Luo X Q, Xiong W, Wang S P, Li T F, Hu C M, You J Q 2016 Phys. Rev. B 94 224410Google Scholar

    [24]

    Sharma S, Blanter Y M, Bauer G E W 2017 Phys. Rev. B 96 094412Google Scholar

    [25]

    Sharma S, Blanter Y M, Bauer G E W 2018 Phys. Rev. Lett. 121 087205Google Scholar

    [26]

    Osada A, Gloppe A, Hisatomi R, Noguchi A, Yamazaki R, Nomura M, Nakamura Y, Usami K 2018 Phys. Rev. Lett. 120 133602Google Scholar

    [27]

    Liu Z X, Wang B, Xiong H, Wu Y 2018 Opt. Lett. 43 3698Google Scholar

    [28]

    Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2016 C. R. Physique 17 729Google Scholar

    [29]

    Quirion D L, Tabuchi Y, Gloppe A, Usami K, Nakamura Y 2019 Appl. Phys. Express 12 070101Google Scholar

    [30]

    Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q, Hu C M 2019 Phys. Rev. Lett. 123 127202Google Scholar

    [31]

    Lambert N J, Haigh J A, Langenfeld S, Doherty A C, Ferguson A J 2016 Phys. Rev. A 93 021803(RGoogle Scholar

    [32]

    Zhang X, Zou C L, Zhu N, Marquardt F, Jiang L, Tang H X 2015 Nat. Commun. 6 8914Google Scholar

    [33]

    Bai L, Harder M, Hyde P, Zhang Z, Hu C M, Chen Y P, Xiao J Q 2017 Phys. Rev. Lett. 118 217201Google Scholar

    [34]

    Hisatomi R, Osada A, Tabuchi Y, Ishikawa T, Noguchi A, Yamazaki R, Usami K, Nakamura Y 2016 Phys. Rev. B 93 174427Google Scholar

    [35]

    Osada A, Hisatomi R, Noguchi A, Tabuchi Y, Yamazaki R, Usami K, Sadgrove M, Yalla R, Nomura M, Nakamura Y 2016 Phys. Rev. Lett. 116 223601Google Scholar

    [36]

    Zhang X, Zhu N, Zou C L, Tang H X 2016 Phys. Rev. Lett. 117 123605Google Scholar

    [37]

    Haigh J A, Nunnenkamp A, Ramsay A J, Ferguson A J 2016 Phys. Rev. Lett. 117 133602Google Scholar

    [38]

    Braggio C, Carugno G, Guarise M, Ortolan A, Ruoso G 2017 Phys. Rev. Lett. 118 107205Google Scholar

    [39]

    Wu W J, Wang Y P, Wu J Z, Li J, You J Q 2021 Phys. Rev. A 104 023711Google Scholar

    [40]

    Sun F X, Zheng S S, Xiao Y, Gong Q H, He Q Y, Xia K 2021 Phys. Rev. Lett. 127 087203Google Scholar

    [41]

    Li J, Wang Y P, Wu W J, Zhu S Y, You J Q 2017 PRX Quantum 2 040344

    [42]

    Zhang D, Luo X Q, Wang Y P, Li T F, You J Q 2017 Nat. Commun. 8 1368Google Scholar

    [43]

    Cao Y, Yan P 2019 Phys. Rev. B 99 214415Google Scholar

    [44]

    Zhao J, Liu Y, Wu L, Duan C K, Liu Y X, Du J 2020 Phys. Rev. Appl. 13 014053Google Scholar

    [45]

    Yang Y, Wang Y P, Rao J W, Gui Y S, Yao B M, Lu W, Hu C M 2020 Phys. Rev. Lett. 125 147202Google Scholar

    [46]

    Wang Y P, Zhang G Q, Zhang D, Li T F, Hu C M, You J Q 2018 Phys. Rev. Lett. 120 057202Google Scholar

    [47]

    Hyde P, Yao B M, Gui Y S, Zhang G Q, You J Q, Hu C M 2018 Phys. Rev. B 98 174423Google Scholar

    [48]

    Bi M X, Yan X H, Zhang Y, Xiao Y 2021 Phys. Rev. B 103 104411Google Scholar

    [49]

    Shen R C, Wang Y P, Li J, Zhu S Y, Agarwal G S, You J Q 2021 Phys. Rev. Lett. 127 183202Google Scholar

    [50]

    Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601Google Scholar

    [51]

    Li J, Zhu S Y 2019 New J. Phys. 21 085001Google Scholar

    [52]

    Zhang Z, Scully M, Agarwal G S 2019 Phys. Rev. Res. 1 023021Google Scholar

    [53]

    Yuan H Y, Zhang S, Ficek Z, He Q Y, Yung M H 2020 Phys. Rev. B 101 014419Google Scholar

    [54]

    Yuan H Y, Yan P, Zheng S, He Q Y, Xia K, Yung M H 2020 Phys. Rev. Lett. 124 053602Google Scholar

    [55]

    Liu Z X, Xiong H, Wu Y 2019 Phys. Rev. B 100 134421Google Scholar

    [56]

    Li X, Wang X, Yang W X 2021 Phys. Rev. B 104 224434Google Scholar

    [57]

    Bourhill J, Kostylev N, Goryachev M, Creedon D L, Tobar M E 2016 Phys. Rev. B 93 144420Google Scholar

    [58]

    Kostylev N, Goryachev M, Tobar M E 2016 Appl. Phys. Lett. 108 062402Google Scholar

    [59]

    Harder M, Yang Y, Yao B M, Yu C H, Rao J W, Gui Y S, Stamps R L, Hu C M 2018 Phys. Rev. Lett. 121 137203Google Scholar

    [60]

    Grigoryan V L, Shen K, Xia K 2018 Phys. Rev. B 98 024406Google Scholar

    [61]

    Bhoi B, Kim B, Jang S H, Kim J, Yang J, Cho Y J, Kim S K 2019 Phys. Rev. B 99 134426Google Scholar

    [62]

    Yu W, Wang J, Yuan H Y, Xiao J 2019 Phys. Rev. Lett. 123 227201Google Scholar

    [63]

    Grigoryan V L, Xia K 2019 Phys. Rev. B 100 014415Google Scholar

    [64]

    Wang Y P, Hu C M 2020 J. Appl. Phys. 127 130901Google Scholar

    [65]

    Laucht A, Kalra R, Simmons S, Dehollain J P, Muhonen J T, Mohiyaddin F A, Freer S, Hudson F E, Itoh K M, Jamieson D N, McCallum J C, Dzurak A S, Morello A 2017 Nat. Nanotechnol. 12 61Google Scholar

    [66]

    Timoney N, Baumgart I, Johanning M, Varón A F, Plenio M B, Retzker A, Wunderlich Ch 2011 Nature 476 185Google Scholar

    [67]

    Oelsner G, Macha P, Astafiev O V, Il’ichev E, Grajcar E, Hübner U, Ivanov B I, Neilinger P, Meyer H G 2013 Phys. Rev. Lett. 110 053602Google Scholar

    [68]

    Xue Z Y, Gu F L, Hong Z P, Yang Z H, Zhang D W, Hu Y, You J Q 2017 Phys. Rev. Appl. 7 054022Google Scholar

    [69]

    Koshino K, Lin Z, Inomata K, Yamamoto T, Nakamura Y 2016 Phys. Rev. A 93 023824Google Scholar

    [70]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambrudge: Cambridge University Press) pp193–219

    [71]

    Paik H, Schuster D I, Bishop L S, Kirchmair G, Catelani G, Sears A P, Johnson B R, Reagor M J, Frunzio L, Glazman L I, Devoret M H, Schoelkopf R J 2011 Phys. Rev. Lett. 107 240501Google Scholar

    [72]

    Jin X Y, Kamal A, Sears A P, Gudmundsen T, Hover D, Miloshi J, Slattery R, Yan F, Yoder J, Orlando T P, Gustavsson S, Oliver W D 2015 Phys. Rev. Lett. 114 240501Google Scholar

    [73]

    You J Q, Hu X, Ashhab S, Nori F 2007 Phys. Rev. B 75 140515(RGoogle Scholar

    [74]

    Yan F, Gustavsson S, Kamal A, Birenbaum J, Sears A P, Hover D, Gudmundsen T J, Rosenberg D, Samach G, Weber S, Yoder J L, Orlando T P, Clarke J, Kerman A J, Oliver W D 2016 Nat. Commun. 7 12964Google Scholar

    [75]

    Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar

    [76]

    Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, OMalley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N, Martinis J M 2014 Nature 508 500Google Scholar

    [77]

    Shevchenko S N, Oelsner G, Greenberg Ya S, Macha P, Karpov D S, Grajcar M, Hübner U, Omelyanchouk A N, Il’ichev E 2014 Phys. Rev. B 89 184504Google Scholar

    [78]

    Mahan G D 2000 Many-Particle Physics (3rd Ed.) (New York: Kluwer Academic/Plenum) pp411–413

  • 图 1  量子比特与磁振子耦合系统示意图 (a) 超导量子比特与磁振子耦合系统示意图, 其中量子比特与YIG小球同时放置在三维谐振腔中. 谐振腔由无氧铜腔和铝腔两部分组成, YIG小球放置在谐振腔无氧铜材质的半腔内使得磁场可以穿透, 量子比特放置在铝的半腔内以得到更好的磁屏蔽效果. YIG小球放置在谐振腔TE102模式磁场的波腹位置以获得两者之间更大的耦合强度, 同时量子比特放置在TE102模式电场的波腹. (b) 腔TE102和TE103模式电磁场分布的示意图. 上半图为腔TE102模式的电场分布, 下半图左侧为腔TE102模式的磁场分布, 右侧为腔TE103模式的电场分布. 可以看到, YIG小球和超导量子比特芯片分别放置在腔TE102模式磁场最大值和TE102模式电场较大值位置, 考虑到需要通过TE103模式读取比特, 并没有把芯片放置在TE102模式电场最大处. (c) 谐振腔TE102的透射谱. 改变外加静磁场强度来改变YIG小球中基泰尔模磁振子的共振频率, 图中展示的是磁振子与腔TE102 模式近共振附近的谱线, 可以看到两者相干耦合产生的反交叉劈裂

    Fig. 1.  Schematic of qubit-magnon hybrid system in a rectranglar 3D microwave cavity: (a) A small YIG sphere is placed in cavity made of oxygen-free copper at the magnetic-field antinode of the cavity mode TE102. The qubit is mounted in the part of the cavity made of aluminium near the antinode of cavity TE102 mode. (b) Electrical and magnetic field distribution of cavity TE102 and TE103 mode. The upper half figure shows the electric field distribution of cavity TE102 mode, the left of lower half shows the magnetic field distribution of cavity TE102 mode, TE103 mode electric field distribution is shown on the right-hand side. As shown in figure, the YIG sphere and the qubit chip are placed near the antinodes of cavity TE103 magnetic field and TE102 electric field, respectively. (c) Transmission spectrum of the cavity when the Kittel mode of magnons in the YIG sphere is magnetically tuned to be near resonance with the cavity TE102 mode

    图 2  量子比特与磁振子的耦合 (a) 量子比特与磁振子耦合系统的能级结构, 图中只考虑了基泰尔模磁振子的单量子态和基态. 调节磁振子的谐振频率使得磁振子的能级差与比特能级差对上, 能级$ |g, 1\rangle $$ |e, 0\rangle $简并并出现劈裂, 耦合强度即真空拉比劈裂 2gqm, 进一步给比特施加微波驱动Ωd, 劈裂的两个能级进一步劈裂成四个能级. (b) 量子比特-磁振子相干耦合系统的真空拉比劈裂. 实验上改变磁振子的外加磁场把两者频率调到近共振, 对超导量子比特加驱动微波, 同时用谐振腔TE103模式读取腔的传输谱来反映比特的变化

    Fig. 2.  Coherent coupling between qubit and the magnon: (a) Energy levels of qubit-magnon system with only the vacuum and single-magnon states involved for the Kittle mode. If we adjusting the magnetic field to set magnon Kittle mode frequency resonance with the qubit, $ |g, 1\rangle $ and $ |e, 0\rangle $degenerates, the coupling between $ |g, 1\rangle $and $ |e, 0\rangle $ induces the vacuum Rabi splitting 2gqm. If we apply a microwave drive with amplitude Ωd to qubit, the degenerated levels further split into 4 levels. (b) Vacuum Rabi splitting of the qubit-magnon system measured via the transmission spectrum of the cavity by both tuning the static magnetic field and scanning the frequency of the excitation field. The porbe field is applied in resonance with the cavity TE103 mode

    图 3  量子比特-磁振子耦合系统能级劈裂随外加微波场驱动强度的变化, 其中$ \delta_{\rm{q}}=\delta_{\rm{m}}=0 $. 使用驱动微波去激发比特, 同时用一个与读取腔${\rm{TE}}_{103}$共振的微波进行色散读取. 驱动微波的功率分别是(a) $0.04\;{\text{μW}}$, (b) $0.06\;{\text{μW}}$, (c) $0.1\;{\text{μW}}$, (d) $0.16\;{\text{μW}}$, (e) $0.4\;{\text{μW}}$, (f) $0.63\;{\text{μW}}$, (g) $1\;{\text{μW}}$, (h) $1.6\;{\text{μW}}$

    Fig. 3.  Dispersive readout of the hybridized normal modes of the driven qubit-magnon system. An excitation field is tuned to excite the hybridized normal modes and a probe field is applied in resonance with the cavity mode ${\rm{TE}}_{103}$. The power of the microwave field to drive the superconducting qubit is tuned to be (a) $0.04\;{\text{μW}}$, (b) $0.06\;{\text{μW}}$, (c) $0.1\;{\text{μW}}$, (d) $0.16\;{\text{μW}}$, (e) $0.4\;{\text{μW}}$, (f) $0.63\;{\text{μW}}$, (g) $1\;{\text{μW}}$, (h) $1.6\;{\text{μW}}$, respectively

    图 4  量子比特-磁振子耦合系统频率劈裂随外加微波场驱动强度变化的拟合. 上半图数据(绿色圆点和绿线)是耦合模式1和模式4 (见正文)之间能级差随驱动功率$ P_{\rm{d }}$的变化. 下半图数据(橙色圆点和橙线)是耦合模式3和模式2能级差随驱动功率$ P_{\rm{d}} $的变化. 使用(5)式进行拟合, 其中$ |\tilde{g}_{{\rm{qm}}}|=|g_{{\rm{qm}}}| $, $ n_{\rm{m}}=0 $, 以及$\varOmega_{\rm{d}}=k\sqrt{P_{\rm{d}}}$, 这里$k= $$103{\text{ MHz/}{\text{μW}}^{1/2}}$

    Fig. 4.  Fitting the experimental data of the frequency splitting between hybridized normal modes 1 and 4 (3 and 2) versus the drive power $ P_{\rm{d}} $. To fit the data, we use Eq. (5), where $ |\tilde{g}_{{\rm{qm}}}|=|g_{{\rm{qm}}}| $, $ n_{\rm{m}}=0 $, and $\varOmega_{\rm{d}}=k\sqrt{P_{\rm{d}}}$ with $k=103{\text{ MHz/}{\text{μW}}^{1/2}}$

  • [1]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623Google Scholar

    [2]

    Kurizki G, Bertet P, Kubo Y, Mølmer K, Petrosyan D, Rabl P, Schmiedmayer J 2015 Proc. Natl. Acad. Sci. U.S.A. 112 3866Google Scholar

    [3]

    Wallquist M, Hammerer K, Rabl P, Lukin M, Zoller P 2009 Phys. Scr. T137 014001Google Scholar

    [4]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [5]

    Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2015 Science 349 405Google Scholar

    [6]

    Lachance-Quirion D, Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Nakamura Y 2017 Sci. Adv. 3 e1603150Google Scholar

    [7]

    Lachance-Quirion D, Wolski S P, Tabuchi Y, Kono S, Usami K, Nakamura Y 2020 Science 367 425Google Scholar

    [8]

    White R M 2007 Quantum Theory of Magnetism: Magnetic Properties of Materials (3rd Ed.) (Berlin: Springer) pp5–7

    [9]

    Soykal Ö O, Flatté M E 2010 Phys. Rev. Lett. 104 077202Google Scholar

    [10]

    Soykal Ö O, Flatté M E 2010 Phys. Rev. B 82 104413Google Scholar

    [11]

    Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003Google Scholar

    [12]

    Tabuchi Y, Ishino S, Ishikawa Y, Yamazaki R, Usami K, Nakamura Y 2014 Phys. Rev. Lett. 113 083603Google Scholar

    [13]

    Zhang X, Zou C L, Jiang L, Tang H X 2014 Phys. Rev. Lett. 113 156401Google Scholar

    [14]

    Goryachev M, Farr W G, Creedon D L, Fan Y, Kostylev M, Tobar M E 2014 Phys. Rev. Appl. 2 054002Google Scholar

    [15]

    Haigh J A, Langenfeld S, Lambert N J, Baumberg J J, Ramsay A J, Nunnenkamp A, Ferguson A J 2015 Phys. Rev. A 92 063845Google Scholar

    [16]

    Zhang X, Zou C L, Jiang L, Tang H X 2016 Sci. Adv. 2 e1501286Google Scholar

    [17]

    Bai L, Harder M, Chen Y P, Fan X, Xiao J Q, Hu C M 2015 Phys. Rev. Lett. 114 227201Google Scholar

    [18]

    Zhang D, Wang X M, Li T F, Luo X Q, Wu W, Nori F, You J Q 2015 npj Quantum Inf. 1 15014Google Scholar

    [19]

    Rameshti B Z, Cao Y, Bauer G E W 2015 Phys. Rev. B 91 214430Google Scholar

    [20]

    Cao Y P, Huebl H, Goennenwein S T B, Bauer G E W 2015 Phys. Rev. B 91 094423Google Scholar

    [21]

    Haigh J A, Lambert N J, Doherty A C, Ferguson A J 2015 Phys. Rev. B 91 104410Google Scholar

    [22]

    Liu T, Zhang X, Tang H X, Flatté M E 2016 Phys. Rev. B 94 060405Google Scholar

    [23]

    Wang Y P, Zhang G Q, Zhang D, Luo X Q, Xiong W, Wang S P, Li T F, Hu C M, You J Q 2016 Phys. Rev. B 94 224410Google Scholar

    [24]

    Sharma S, Blanter Y M, Bauer G E W 2017 Phys. Rev. B 96 094412Google Scholar

    [25]

    Sharma S, Blanter Y M, Bauer G E W 2018 Phys. Rev. Lett. 121 087205Google Scholar

    [26]

    Osada A, Gloppe A, Hisatomi R, Noguchi A, Yamazaki R, Nomura M, Nakamura Y, Usami K 2018 Phys. Rev. Lett. 120 133602Google Scholar

    [27]

    Liu Z X, Wang B, Xiong H, Wu Y 2018 Opt. Lett. 43 3698Google Scholar

    [28]

    Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2016 C. R. Physique 17 729Google Scholar

    [29]

    Quirion D L, Tabuchi Y, Gloppe A, Usami K, Nakamura Y 2019 Appl. Phys. Express 12 070101Google Scholar

    [30]

    Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q, Hu C M 2019 Phys. Rev. Lett. 123 127202Google Scholar

    [31]

    Lambert N J, Haigh J A, Langenfeld S, Doherty A C, Ferguson A J 2016 Phys. Rev. A 93 021803(RGoogle Scholar

    [32]

    Zhang X, Zou C L, Zhu N, Marquardt F, Jiang L, Tang H X 2015 Nat. Commun. 6 8914Google Scholar

    [33]

    Bai L, Harder M, Hyde P, Zhang Z, Hu C M, Chen Y P, Xiao J Q 2017 Phys. Rev. Lett. 118 217201Google Scholar

    [34]

    Hisatomi R, Osada A, Tabuchi Y, Ishikawa T, Noguchi A, Yamazaki R, Usami K, Nakamura Y 2016 Phys. Rev. B 93 174427Google Scholar

    [35]

    Osada A, Hisatomi R, Noguchi A, Tabuchi Y, Yamazaki R, Usami K, Sadgrove M, Yalla R, Nomura M, Nakamura Y 2016 Phys. Rev. Lett. 116 223601Google Scholar

    [36]

    Zhang X, Zhu N, Zou C L, Tang H X 2016 Phys. Rev. Lett. 117 123605Google Scholar

    [37]

    Haigh J A, Nunnenkamp A, Ramsay A J, Ferguson A J 2016 Phys. Rev. Lett. 117 133602Google Scholar

    [38]

    Braggio C, Carugno G, Guarise M, Ortolan A, Ruoso G 2017 Phys. Rev. Lett. 118 107205Google Scholar

    [39]

    Wu W J, Wang Y P, Wu J Z, Li J, You J Q 2021 Phys. Rev. A 104 023711Google Scholar

    [40]

    Sun F X, Zheng S S, Xiao Y, Gong Q H, He Q Y, Xia K 2021 Phys. Rev. Lett. 127 087203Google Scholar

    [41]

    Li J, Wang Y P, Wu W J, Zhu S Y, You J Q 2017 PRX Quantum 2 040344

    [42]

    Zhang D, Luo X Q, Wang Y P, Li T F, You J Q 2017 Nat. Commun. 8 1368Google Scholar

    [43]

    Cao Y, Yan P 2019 Phys. Rev. B 99 214415Google Scholar

    [44]

    Zhao J, Liu Y, Wu L, Duan C K, Liu Y X, Du J 2020 Phys. Rev. Appl. 13 014053Google Scholar

    [45]

    Yang Y, Wang Y P, Rao J W, Gui Y S, Yao B M, Lu W, Hu C M 2020 Phys. Rev. Lett. 125 147202Google Scholar

    [46]

    Wang Y P, Zhang G Q, Zhang D, Li T F, Hu C M, You J Q 2018 Phys. Rev. Lett. 120 057202Google Scholar

    [47]

    Hyde P, Yao B M, Gui Y S, Zhang G Q, You J Q, Hu C M 2018 Phys. Rev. B 98 174423Google Scholar

    [48]

    Bi M X, Yan X H, Zhang Y, Xiao Y 2021 Phys. Rev. B 103 104411Google Scholar

    [49]

    Shen R C, Wang Y P, Li J, Zhu S Y, Agarwal G S, You J Q 2021 Phys. Rev. Lett. 127 183202Google Scholar

    [50]

    Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601Google Scholar

    [51]

    Li J, Zhu S Y 2019 New J. Phys. 21 085001Google Scholar

    [52]

    Zhang Z, Scully M, Agarwal G S 2019 Phys. Rev. Res. 1 023021Google Scholar

    [53]

    Yuan H Y, Zhang S, Ficek Z, He Q Y, Yung M H 2020 Phys. Rev. B 101 014419Google Scholar

    [54]

    Yuan H Y, Yan P, Zheng S, He Q Y, Xia K, Yung M H 2020 Phys. Rev. Lett. 124 053602Google Scholar

    [55]

    Liu Z X, Xiong H, Wu Y 2019 Phys. Rev. B 100 134421Google Scholar

    [56]

    Li X, Wang X, Yang W X 2021 Phys. Rev. B 104 224434Google Scholar

    [57]

    Bourhill J, Kostylev N, Goryachev M, Creedon D L, Tobar M E 2016 Phys. Rev. B 93 144420Google Scholar

    [58]

    Kostylev N, Goryachev M, Tobar M E 2016 Appl. Phys. Lett. 108 062402Google Scholar

    [59]

    Harder M, Yang Y, Yao B M, Yu C H, Rao J W, Gui Y S, Stamps R L, Hu C M 2018 Phys. Rev. Lett. 121 137203Google Scholar

    [60]

    Grigoryan V L, Shen K, Xia K 2018 Phys. Rev. B 98 024406Google Scholar

    [61]

    Bhoi B, Kim B, Jang S H, Kim J, Yang J, Cho Y J, Kim S K 2019 Phys. Rev. B 99 134426Google Scholar

    [62]

    Yu W, Wang J, Yuan H Y, Xiao J 2019 Phys. Rev. Lett. 123 227201Google Scholar

    [63]

    Grigoryan V L, Xia K 2019 Phys. Rev. B 100 014415Google Scholar

    [64]

    Wang Y P, Hu C M 2020 J. Appl. Phys. 127 130901Google Scholar

    [65]

    Laucht A, Kalra R, Simmons S, Dehollain J P, Muhonen J T, Mohiyaddin F A, Freer S, Hudson F E, Itoh K M, Jamieson D N, McCallum J C, Dzurak A S, Morello A 2017 Nat. Nanotechnol. 12 61Google Scholar

    [66]

    Timoney N, Baumgart I, Johanning M, Varón A F, Plenio M B, Retzker A, Wunderlich Ch 2011 Nature 476 185Google Scholar

    [67]

    Oelsner G, Macha P, Astafiev O V, Il’ichev E, Grajcar E, Hübner U, Ivanov B I, Neilinger P, Meyer H G 2013 Phys. Rev. Lett. 110 053602Google Scholar

    [68]

    Xue Z Y, Gu F L, Hong Z P, Yang Z H, Zhang D W, Hu Y, You J Q 2017 Phys. Rev. Appl. 7 054022Google Scholar

    [69]

    Koshino K, Lin Z, Inomata K, Yamamoto T, Nakamura Y 2016 Phys. Rev. A 93 023824Google Scholar

    [70]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambrudge: Cambridge University Press) pp193–219

    [71]

    Paik H, Schuster D I, Bishop L S, Kirchmair G, Catelani G, Sears A P, Johnson B R, Reagor M J, Frunzio L, Glazman L I, Devoret M H, Schoelkopf R J 2011 Phys. Rev. Lett. 107 240501Google Scholar

    [72]

    Jin X Y, Kamal A, Sears A P, Gudmundsen T, Hover D, Miloshi J, Slattery R, Yan F, Yoder J, Orlando T P, Gustavsson S, Oliver W D 2015 Phys. Rev. Lett. 114 240501Google Scholar

    [73]

    You J Q, Hu X, Ashhab S, Nori F 2007 Phys. Rev. B 75 140515(RGoogle Scholar

    [74]

    Yan F, Gustavsson S, Kamal A, Birenbaum J, Sears A P, Hover D, Gudmundsen T J, Rosenberg D, Samach G, Weber S, Yoder J L, Orlando T P, Clarke J, Kerman A J, Oliver W D 2016 Nat. Commun. 7 12964Google Scholar

    [75]

    Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar

    [76]

    Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, OMalley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N, Martinis J M 2014 Nature 508 500Google Scholar

    [77]

    Shevchenko S N, Oelsner G, Greenberg Ya S, Macha P, Karpov D S, Grajcar M, Hübner U, Omelyanchouk A N, Il’ichev E 2014 Phys. Rev. B 89 184504Google Scholar

    [78]

    Mahan G D 2000 Many-Particle Physics (3rd Ed.) (New York: Kluwer Academic/Plenum) pp411–413

  • [1] 吕庆先, 李赛, 涂海涛, 廖开宇, 梁振涛, 颜辉, 朱诗亮. 超导-冷原子复合系统的研究进展. 物理学报, 2023, 72(20): 200306. doi: 10.7498/aps.72.20230985
    [2] 成恩宏, 郎利君. 非互易Aubry-André 模型的经典电路模拟. 物理学报, 2022, 71(16): 160301. doi: 10.7498/aps.71.20220219
    [3] 李柱柏, 魏磊, 张震, 段东伟, 赵倩. 磁振子宏观效应以及热扰动场对反磁化的影响. 物理学报, 2022, 71(12): 127502. doi: 10.7498/aps.71.20220168
    [4] 高雪儿, 李代莉, 刘志航, 郑超. 非厄米系统的量子模拟新进展. 物理学报, 2022, 71(24): 240303. doi: 10.7498/aps.71.20221825
    [5] 王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿. 量子计算与量子模拟中离子阱结构研究进展. 物理学报, 2022, 71(13): 133701. doi: 10.7498/aps.71.20220224
    [6] 陈阳, 张天炀, 郭光灿, 任希锋. 基于集成光芯片的量子模拟研究进展. 物理学报, 2022, 71(24): 244207. doi: 10.7498/aps.71.20221938
    [7] 宿非凡, 杨钊华, 赵寿宽, 严海生, 田野, 赵士平. 铌基超导量子比特及辅助器件的制备. 物理学报, 2022, 71(5): 050303. doi: 10.7498/aps.71.20211865
    [8] 罗雨晨, 李晓鹏. 相互作用费米子的量子模拟. 物理学报, 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [9] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [10] 朱燕清, 张丹伟, 朱诗亮. 用光晶格模拟狄拉克、外尔和麦克斯韦方程. 物理学报, 2019, 68(4): 046701. doi: 10.7498/aps.68.20181929
    [11] 赵兴东, 张莹莹, 刘伍明. 光晶格中超冷原子系统的磁激发. 物理学报, 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [12] 于宛让, 计新. 基于超绝热捷径技术快速制备超导三量子比特Greenberger-Horne-Zeilinger态. 物理学报, 2019, 68(3): 030302. doi: 10.7498/aps.68.20181922
    [13] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁. 核磁共振量子信息处理研究的新进展. 物理学报, 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [14] 喻祥敏, 谭新生, 于海峰, 于扬. 利用超导量子电路模拟拓扑量子材料. 物理学报, 2018, 67(22): 220302. doi: 10.7498/aps.67.20181857
    [15] 范桁. 量子计算与量子模拟. 物理学报, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [16] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究. 物理学报, 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [17] 赵旭, 赵兴东, 景辉. 利用光晶格自旋链中磁振子的激发模拟有限温度下光子的动力学 Casimir 效应. 物理学报, 2013, 62(6): 060302. doi: 10.7498/aps.62.060302
    [18] 赵娜, 刘建设, 李铁夫, 陈炜. 超导量子比特的耦合研究进展. 物理学报, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [19] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展. 物理学报, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [20] 史庆藩, 李粮生, 张 梅. “禁忌”3-磁振子相互作用哈密顿项的有效性分析. 物理学报, 2004, 53(11): 3916-3919. doi: 10.7498/aps.53.3916
计量
  • 文章访问数:  3451
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-10
  • 修回日期:  2022-03-25
  • 上网日期:  2022-07-19
  • 刊出日期:  2022-08-05

/

返回文章
返回