搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子计算与量子模拟中离子阱结构研究进展

王晨旭 贺冉 李睿睿 陈炎 房鼎 崔金明 黄运锋 李传锋 郭光灿

引用本文:
Citation:

量子计算与量子模拟中离子阱结构研究进展

王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿

Advances in the study of ion trap structures in quantum computation and simulation

Wang Chen-Xu, He Ran, Li Rui-Rui, Chen Yan, Fang Ding, Cui Jin-Ming, Huang Yun-Feng, Li Chuan-Feng, Guo Guang-Can
PDF
HTML
导出引用
  • 离子阱系统是实现量子计算和量子模拟的主要体系之一. 世界范围内的各个离子阱研究小组共同推动着离子阱结构的丰富化发展, 开发出一系列高性能的三维离子阱、二维离子芯片、以及具有集成器件的离子阱系统. 离子阱的结构逐渐向小型化、高通光性和集成化方向发展, 并表现出卓越的量子操控能力—对多离子的囚禁能力和精确控制能力越来越高. 本综述将总结过去的十几年里离子阱在结构上的演化历程, 以及离子阱在量子计算与量子模拟实验研究中的最新进展. 通过分析具有代表性的离子阱结构, 总结离子阱系统在加工工艺、鲁棒性和多功能性等方面取得的进步, 并对基于离子阱系统的可扩展量子计算与模拟作出展望.
    Ion trap system is one of the main quantum systems to realize quantum computation and simulation. Various ion trap research groups worldwide jointly drive the continuous enrichment of ion trap structures, and develop a series of high-performance three-dimensional ion trap, two-dimensional ion trap chip, and ion traps with integrated components. The structure of ion trap is gradually developing towards miniaturization, high-optical-access and integration, and is demonstrating its outstanding ability in quantum control. Ion traps are able to trap increasingly more ions and precisely manipulate the quantum state of the system. In this review, we will summarize the evolution history of the ion trap structures in the past few decades, as well as the latest advances of trapped-ion-based quantum computation and simulation. Here we present a selection of representative examples of trap structures. We will summarize the progresses in the processing technology, robustness and versatility of ion traps, and make prospects for the realization of scalable quantum computation and simulation based on ion trap system.
      通信作者: 贺冉, heran@ustc.edu.cn ; 崔金明, jmcui@ustc.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 11734015, 11774335, 11821404)资助的课题
      Corresponding author: He Ran, heran@ustc.edu.cn ; Cui Jin-Ming, jmcui@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11734015, 11774335, 11821404)
    [1]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [2]

    Shor P W 1994 Proceedings of the 35th Annual IEEE Symposium on Foundation of Computer Science 124 134

    [3]

    Nielsen M A, Chuang I 2002 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p19

    [4]

    Paul W and Steinwedel H 1953 Z Naturforsch A. 8 448Google Scholar

    [5]

    Dehmelt H G 1968 Adv. At. Mol. Phys. 3 53

    [6]

    Quantum Optics and Spectroscopy group of University of Innsbruck Ion trapping groups worldwide https://quantum optics.at/en/links/ion-trapping-worldwide.html 2022-01-25

    [7]

    Schwartz J C, Senko M W, Syka J 2002 J. Am. Soc. Mass. Spectrom. 13 659Google Scholar

    [8]

    Bollinger J J, Heinzen D J, Itano W M, Gilbert S L, Wineland D J 1990 Conference on Precision Electromagnetic Measurements Ottawa, ON, Canada, June 11–14 1990 p264

    [9]

    Fisk P T H, Sellars M J, Lawn M A, Coles G 1997 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44 344Google Scholar

    [10]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808Google Scholar

    [11]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001Google Scholar

    [12]

    Keller J, Burgermeister T, Kalincev D, Kiethe J, Mehlstubler T E 2016 J. Phys. Conf. Ser. 723 p012027

    [13]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630Google Scholar

    [14]

    Keller M, Lange B, Hayasaka K, Lange W, Walther H 2003 J. Phys. B: At. Mol. Opt. Phys. 36 613Google Scholar

    [15]

    Kreuter A, Becher C, Lancaster G P T, Mundt A B, Russo C, Häffner H, Roos C, Eschner J, Schmidt-Kaler F, and Blatt R 2004 Phys. Rev. Lett. 92 203002Google Scholar

    [16]

    Barros H G, Stute A, Northup T E, Russo C, Schmidt P O, Blatt R 2009 New J. Phys. 11 103004Google Scholar

    [17]

    Takahashi H, Wilson A, Riley-Watson A, Oruevi F, Seymour-Smith N, Keller M, Lange W 2013 New J. Phys. 15 053011Google Scholar

    [18]

    Odom B, Hanneke D, D’Urso B, Gabrielse G 2006 Phys. Rev. Lett. 97 030801Google Scholar

    [19]

    Porras D, Cirac J I 2004 Phys. Rev. Lett. 92 207901Google Scholar

    [20]

    Porras D, Cirac J I 2006 Phys. Rev. Lett. 96 250501Google Scholar

    [21]

    Islam R, Senko C, Campbell W C, Korenblit S, Smith J, Lee A, Edwards E E, Wang C C, Freericks J K, Monroe C 2013 Science 340 583Google Scholar

    [22]

    Mller M, Schindler P, Nigg D, Monz T, Barreiro J, Martinez E, Hennrich M, Diehl S, Zoller P, Blatt R 2013 Nat. Phys. 9 361Google Scholar

    [23]

    Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X, Monroe C 2017 Nature 551 601Google Scholar

    [24]

    Neyenhuis B, Zhang J, Hess P W, Smith J, Lee A C, Richerme P, Gong Z X, Gorshkov A V, Monroe C 2017 Sci. Adv. 3 e1700672

    [25]

    Cirac J I, Zoller P 1995 Phys. Rev. Lett. 74 4091Google Scholar

    [26]

    Milburn G J, Schneider S, James D F V 2000 Fortschr. Phys. 48 801Google Scholar

    [27]

    Sørensen A, Mølmer K 2000 Phys. Rev. A 62 022311Google Scholar

    [28]

    Duan L M 2004 Phys. Rev. Lett. 93 100502Google Scholar

    [29]

    Wineland D J, Monroe C, Itano W M, Leibfried D, King B E, Meekhof D M 1998 J. Res. Nat. Inst. Stand. Technol. 103 259Google Scholar

    [30]

    Debnath S, Linke N M, Figgatt C, Landsman K A, Wright K, Monroe C 2016 Nature 536 63Google Scholar

    [31]

    Monroe C, Raussendorf R, Ruthven A, Brown K R, Maunz P, Duan L M, Kim J 2014 Phys. Rev. A 89 022317Google Scholar

    [32]

    NIST Penning Traps 2022 https://www.nist.gov/pml/time-and-frequency-division/ion-storage/penning-traps[2022-1-25]

    [33]

    Dilling J, Blaum K, Brodeur M, Eliseev S 2018 Annu. Rev. Nucl. Part. Sci. 68 45

    [34]

    Wineland D J, Drullinger R E, Walls F L 1978 Phys. Rev. Lett. 40 1639Google Scholar

    [35]

    Diedrich F, Bergquist J C, Itano W M, Wineland D J 1989 Phys. Rev. Lett. 62 403Google Scholar

    [36]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281Google Scholar

    [37]

    Harty T P, Allcock D, Ballance C J, Guidoni L, Janacek H A, Linke N M, Stacey D N, Lucas D M 2014 Phys. Rev. Lett 113 220501Google Scholar

    [38]

    Ballance C J, Harty T P, Linke N M, Sepiol M A, Lucas D M 2016 Phys. Rev. Lett. 117 060504Google Scholar

    [39]

    Gaebler J P, Tan T R, Lin Y, Wan Y, Bowler R, Keith A C, Glancy S, Coakley K, Knill E, Leibfried D, Wineland D J 2016 Phys. Rev. Lett. 117 060505Google Scholar

    [40]

    Clark C R, Tinkey H N, Sawyer B C, Meier A M, Burkhardt K A, Seck C M, Shappert C M, Guise N D, Volin C E, Fallek S D, Hayden H T, Rellergert W G, Brown K R 2021 Phys. Rev. Lett. 127 130505Google Scholar

    [41]

    Srinivas R, Burd S, Knaack H, Sutherland R, Kwiatkowski A, Glancy S, Knill E, Wineland D, Leibfried D, Wilson A, Allcock D, Slichter D 2021 Nature 597 209Google Scholar

    [42]

    Wang P, Luan C-Y, Qiao M, Um M, Junhua Z, Wang Y, Yuan X, Gu M, Zhang J, Kim K 2021 Nat. Commun. 12 1

    [43]

    Pogorelov I, Feldker T, Marciniak C D, Postler L, Jacob G, Krieglsteiner O, Podlesnic V, Meth M, Negnevitsky V, Stadler M, Höfer B, Wächter C, Lakhmanskiy K, Blatt R, Schindler P, Monz T 2021 PRX Quantum 2 020343Google Scholar

    [44]

    Wright K, Beck K, Debnath S, Amini J, Nam Y, Grzesiak N, Chen J-S, Pisenti N, Chmielewski M, Collins C, Hudek K, Mizrahi J, Wong-Campos J, Allen S, Apisdorf J, Solomon P, Williams M, Ducore A, Blinov A, Kim J 2019 Nat. Commun. 10 5464Google Scholar

    [45]

    Knill E, Laflamme R 1997 Phys. Rev. A 55 900Google Scholar

    [46]

    Aharonov D, Ben-Or M 2008 SIAM J. Comput. 38 1207Google Scholar

    [47]

    Bravyi S, Kitaev A 2005 Phys. Rev. A 71 022316Google Scholar

    [48]

    Egan L, Debroy D, Noel C, Risinger A, Zhu D, Biswas D, Newman M, Li M, Brown K, Cetina M, Monroe C 2021 Nature 598 281Google Scholar

    [49]

    Ryan-Anderson C, Bohnet J G, Lee K, Gresh D, Hankin A, Gaebler J P, Francois D, Chernoguzov A, Lucchetti D, Brown N C, Gatterman T M, Halit S K, Gilmore K, Gerber J A, Neyenhuis B, Hayes D, Stutz R P 2021 Phys. Rev. X 11 041058Google Scholar

    [50]

    Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153Google Scholar

    [51]

    Blatt R, Roos C F 2012 Nat. Phys. 8 277Google Scholar

    [52]

    Lanyon B P, Hempel C, Nigg D, Muller M, Gerritsma R, Zahringer F, Schindler P, Barreiro J T, Rambach M, Kirchmair G, Hennrich M, Zoller P, Blatt R, Roos C F 2011 Science 334 57Google Scholar

    [53]

    Härter A, Denschlag J H 2014 Contemp. Phys. 55 33Google Scholar

    [54]

    Puri P, Mills M, Schneider C, Simbotin I, Montgomery J A Jr, Cote R, Suits A G, Hudson E R 2017 Science 357 1370

    [55]

    Tomza M, Jachymski K, Gerritsma R, Negretti A, Calarco T, Idziaszek Z, Julienne P S 2019 Rev. Mod. Phys. 91 035001Google Scholar

    [56]

    Grier A T, Cetina M, Oruevi F, Vuleti V 2009 Phys. Rev. Lett. 102 223201Google Scholar

    [57]

    Zipkes C, Palzer S, Sias C, Khl M 2010 Nature 464 388Google Scholar

    [58]

    Schmid S, Hrter A, Denschlag J H 2010 Phys. Rev. Lett. 105 133202Google Scholar

    [59]

    Puri P, Mills M, Simbotin I, Montgomery J A, Ct R, Schneider C, Suits A G, Hudson E R 2019 Nat. Chem. 11 615Google Scholar

    [60]

    Prestage J D, Dick G J, Maleki L 1989 J. Appl. Phys. 66 1013Google Scholar

    [61]

    Gulde S 2003 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)

    [62]

    Mizrahi J 2013 Ph. D. Dissertation (Maryland: University of Maryland)

    [63]

    Maunz P L W 2016 High Optical Access Trap 2.0

    [64]

    Niffenegger R J, Stuart J, Sorace-Agaskar C, Kharas D, Bramhavar S, Bruzewicz C D, Loh W, McConnell R, Reens D, West G N, Sage J M, Chiaverini J 2020 Nature 586 538

    [65]

    Pino J M, Dreiling J M, Figgatt C, Gaebler J P, Neyenhuis B 2021 Nature 592 209Google Scholar

    [66]

    Labaziewicz J, Ge Y, Antohi P, Leibrandt D, Brown K R, Chuang I L 2008 Phys. Rev. Lett. 100 013001Google Scholar

    [67]

    Pagano G, Hess P W, Kaplan H B, Tan W L, Richerme P, Becker P, Kyprianidis A, Zhang J, Birckelbaw E, Hernandez M R, Wu Y, Monroe C 2018 Quantum Sci. Technol. 4 014004Google Scholar

    [68]

    Xie Y, Cui J, D’Onofrio M, Rasmusson A J, Howell S W, Richerme P 2021 Quantum Science and Technology 6 044009Google Scholar

    [69]

    Sterling R C 2014 Nat. Commun. 5 3637

    [70]

    Wang Y, Qiao M, Cai Z, Zhang K, Jin N, Wang P, Chen W, Luan C, Du B, Wang H, Song Y, Yum D, Kim K 2020 Adv. Quantum Technol. 3 2000068Google Scholar

    [71]

    D’Onofrio M, Xie Y, Rasmusson A J, Wolanski E, Cui J, Richerme P 2021 Phys. Rev. Lett. 127 020503Google Scholar

    [72]

    Kaufmann H, Ulm S, Jacob G, Poschinger U, Landa H, Retzker A, Plenio M B, Schmidt-Kaler F 2012 Phys. Rev. Lett. 109 263003Google Scholar

    [73]

    Britton J, Sawyer B, Keith A, Wang C C, Freericks J, Uys H, Biercuk M, Bollinger J 2012 Nature 484 489Google Scholar

    [74]

    Grttner M, Bohnet J, Safavi-Naini A, Wall M, Bollinger J, Rey A 2017 Nat. Phys. 13 781Google Scholar

    [75]

    Jordan E, Gilmore K A, Shankar A, Safavi-Naini A, Bohnet J G, Holland M J, Bollinger J J 2019 Phys. Rev. Lett. 122 053603Google Scholar

    [76]

    Goodwin J F, Stutter G, Thompson R C, Segal D M 2016 Phys. Rev. Lett. 116 143002Google Scholar

    [77]

    Kielpinski D, Monroe C R, Wineland D J 2002 Nature 417 709Google Scholar

    [78]

    Blakestad R B 2010 Ph. D. Dissertation (Colorado: University of Colorado)

    [79]

    Barrett M, Chiaverini J, Schätz T, Britton J, Itano W, Jost J, Knill E, Langer C, Leibfried D, Ozeri R, Wineland D 2004 Nature 429 737Google Scholar

    [80]

    Blakestad R B, Ospelkaus C, VanDevender A P, Amini J M, Britton J, Leibfried D, Wineland D J 2009 Phys. Rev. Lett. 102 153002Google Scholar

    [81]

    Mehta K K 2017 Ph. D. Dissertation (Massachusetts: Massachusetts Institute of Technology)

    [82]

    Mehta K K, Zhang C, Malinowski M, Nguyen T L, Stadler M, Home J P 2020 Nature 586 533Google Scholar

    [83]

    Ivory M, Setzer W J, Karl N, McGuinness H, DeRose C, Blain M, Stick D, Gehl M, Parazzoli L P 2021 Phys. Rev. X 11 041033Google Scholar

    [84]

    Setzer W, Ivory M, Slobodyan O, Wall J, Parazzoli L, Stick D, Gehl M, Blain M, Kay R, McGuinness H 2021 Appl. Phys. Lett. 119 154002Google Scholar

    [85]

    Maunz P, Moehring D, Madsen M, Jr R, Younge K, Monroe C 2017 Nat. Phys. 3 538Google Scholar

    [86]

    Blinov B, Moehring D, Duan L, Monroe C 2004 Nature 428 153Google Scholar

    [87]

    Hucul D, Inlek I, Vittorini G, Crocker C, Debnath S, Clark S, Monroe C 2014 Nat. Phys. 11 37Google Scholar

    [88]

    Stute A, Casabone B, Schindler P, Monz T, Schmidt P, Brandstätter B, Northup T, Blatt R 2012 Nature 485 482Google Scholar

    [89]

    Schupp J, Krcmarsky V, Krutyanskiy V, Meraner M, Northup T E, Lanyon B P 2021 PRX Quantum 2 020331Google Scholar

    [90]

    Siverns J D, Quraishi Q 2017 Quantum Inf. Process. 16 314Google Scholar

    [91]

    Kobel P, Breyer M, Köhl M 2021 npj Quantum Inf. 7 6Google Scholar

    [92]

    Walker T, Miyanishi K, Ikuta R, Takahashi H, Vartabi Kashanian S, Tsujimoto Y, Hayasaka K, Yamamoto T, Imoto N, Keller M 2018 Phys. Rev. Lett. 120 203601Google Scholar

    [93]

    Krutyanskiy V, Meraner M, Schupp J, Krcmarsky V, Hainzer H, Lanyon B 2019 npj Quantum Inf. 5 72Google Scholar

    [94]

    Ong F R, Schppert K, Jobez P, Teller M, Ames B, Fioretto D A, Friebe K, Lee M, Colombe Y, Blatt R, Northup T E 2020 New J. Phys. 22 063018Google Scholar

    [95]

    Romaszko Z D, Hong S, Siegele M, Puddy R K, Lebrun-Gallagher F R, Weidt S, Hensinger W K 2020 Nat. Rev. Phys. 2 285Google Scholar

    [96]

    James D F V 199 Technical report, Report number = Quantum Dynamics of Cold Trapped Ions with Application to Quantum Computation

    [97]

    Deng K, Sun Y L, Yuan W H, Xu Z T, Zhang J, Lu Z H, Luo J 2014 Rev. Sci. Instrum. 85 104706Google Scholar

    [98]

    Siverns J D, Simkins L R, Weidt S, and Hensinger W K 2012 Appl. Phys. B 107 921Google Scholar

    [99]

    Michael C 2009 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)

    [100]

    Brownnutt M, Kumph M, Rabl P, Blatt R 2015 Rev. Mod. Phys. 87 1419Google Scholar

    [101]

    Boldin I A, Kraft A, Wunderlich C 2018 Phys. Rev. Lett. 120 023201Google Scholar

    [102]

    Sedlacek J A, Greene A, Stuart J, McConnell R, Bruzewicz C D, Sage J M, Chiaverini J 2018 Phys. Rev. A 97 020302Google Scholar

    [103]

    Hite D A, Colombe Y, Wilson A C, Brown K R, Warring U, Jördens R, Jost J D, McKay K S, Pappas D P, Leibfried D, Wineland D J 2012 Phys. Rev. Lett. 109 103001Google Scholar

    [104]

    Deslauriers L, Olmschenk S, Stick D, Hensinger W K, Sterk J, Monroe C 2006 Phys. Rev. Lett. 97 103007Google Scholar

    [105]

    Klemens S 2020 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)

    [106]

    Michael G 2017 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)

    [107]

    Johnson K G, Wong-Campos J D, Restelli A, Landsman K A, Neyenhuis B, Mizrahi J, Monroe C 2016 Rev. Sci. Instrum. 87 053110Google Scholar

    [108]

    Daniilidis N, Narayanan S, Mller S A, Clark R, Lee T E, Leek P J, Wallraff A, Schulz S, SchmidtKaler F, Hffner H 2011 New J. Phys. 13 013032Google Scholar

    [109]

    He R, Cui J M, Li R R, Qian Z H, Chen Y, Ai M Z, Huang Y F, Li C F, Guo G C 2021 Rev. Sci. Instrum. 92 073201Google Scholar

    [110]

    Akerman N, Glickman Y, Kotler S, Keselman A, Ozeri R 2011 Nature 473 61Google Scholar

    [111]

    Hanns-Christoph N 1998 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)

    [112]

    Berkeland D J 2002 Rev. Sci. Instrum. 73 2856Google Scholar

    [113]

    Herskind P F, Dantan A, Albert M, Marler J P, Drewsen M 2009 J. Phys. B: At. Mol. Opt. Phys. 42 154008Google Scholar

    [114]

    Cornelius H 2014 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)

    [115]

    AQThttps://www.aqt.eu/qc-modules/ 2022-01-25

    [116]

    David H 2015 Ph. D. Dissertation (Maryland: University of Maryland)

    [117]

    Shantanu D 2016 Ph. D. Dissertation(Maryland: University of Maryland)

    [118]

    Gerber S, Rotter D, Hennrich M, Blatt R, Rohde F, Schuck C, Almendros M, Gehr R, Dubin F, Eschner J 2009 New J. Phys. 11 013032Google Scholar

    [119]

    Shu G, Dietrich M R, Kurz N, Blinov B B 2009 J. Phys. B: At. Mol. Opt. Phys. 42 154005Google Scholar

    [120]

    Maiwald R, Leibfried D, Britton J, Bergquist J C, Leuchs G, Wineland D J 2009 Nat. Phys. 5 551Google Scholar

    [121]

    Maiwald R, Golla A, Fischer M, Bader M, Heugel S, Chalopin B, Sondermann M, Leuchs G 2012 Phys. Rev. A 86 043431Google Scholar

    [122]

    Streed E W, Norton B G, Jechow A, Weinhold T J, and Kielpinski D 2011 Phys. Rev. Lett. 106 010502Google Scholar

    [123]

    Ghadimi M, Blms V, Norton B G, Fisher P M, Connell S C, Amini J M, Volin C, Hayden H, Pai C S, Kielpinski D, Lobino M, Streed E W 2017 npj Quantum Inf. 3 1Google Scholar

    [124]

    Monroe C, Swann W, Robinson H, Wieman C 1990 Phys. Rev. Lett. 65 1571Google Scholar

    [125]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [126]

    Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink A, Senko C, Vuletic V, Greiner M, Lukin M D 2016 Science 354 1024Google Scholar

    [127]

    Collopy A L, Ding S, Wu Y, Finneran I A, Anderegg L, Augenbraun B L, Doyle J M, Ye J 2018 Phys. Rev. Lett. 121 213201Google Scholar

    [128]

    Muldoon C, Brandt L, Dong J, Stuart D, Brainis E, Himsworth M, Kuhn A 2012 New J. Phys. 14 073051Google Scholar

    [129]

    Kaufman A M, Lester B J, Regal C A 2012 Phys. Rev. X 2 041014Google Scholar

    [130]

    Stuart D, Kuhn A 2018 New J. Phys. 20 023013Google Scholar

    [131]

    Schlosser N, Reymond G, Protsenko I, Grangier P 2001 Nature 411 1024Google Scholar

    [132]

    Kaufman A M, Lester B J, Reynolds C M, Wall M L, Foss-Feig M, Hazzard K R, Rey A M, Regal C A 2014 Science 345 306Google Scholar

    [133]

    Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletié V, Lukin M D 2017 Nature 551 579Google Scholar

    [134]

    Pagano G, Scazza F, Foss-Feig M 2019 Adv. Quantum Technol. 2 1800067Google Scholar

    [135]

    Enderlein M, Huber T, Schneider C, Schaetz T 2012 Phys. Rev. Lett. 109 233004Google Scholar

    [136]

    Lambrecht A, Schmidt J, Weckesser P, Debatin M, Karpa L, Schaetz T 2017 Nat. Photonics 11 704Google Scholar

    [137]

    Cormick C, Schaetz T, Morigi G 2011 New J. Phys. 13 043019Google Scholar

    [138]

    Huber T, Lambrecht A, Schmidt J, Karpa L, Schaetz T 2014 Nat. Commun. 5 5587Google Scholar

    [139]

    Shen Y C, Lin G D 2020 New J. Phys. 22 053032Google Scholar

    [140]

    Olsacher T, Postler L, Schindler P, Monz T, Zoller P, Sieberer L M 2020 PRX Quantum 1 020316Google Scholar

    [141]

    Espinoza J D A, Mazzanti M, Fouka K, Schssler R X, Wu Z, Corboz P, Gerritsma R, Naini A S 2021 Phys. Rev. A 104 013302.

    [142]

    Teoh Y H, Sajjan M, Sun Z, Rajabi F, Islam R 2021 Phys. Rev. A 104 022420.

    [143]

    Takahashi H, Kassa E, Christoforou C, Keller M 2017 Phys. Rev. A 96 023824Google Scholar

    [144]

    Dantan A, Herskind P, Marler J, Albert M, Drewsen M 2009 Nat. Phys. 5 494Google Scholar

    [145]

    Cetina M, Bylinskii A, Karpa L, Gangloff D, Beck K M, Ge Y, Scholz M, Grier A T, Chuang I, Vuleti V 2013 New J. Phys. 15 053001Google Scholar

    [146]

    Keller M, Lange B, Hayasaka K, Lange W, Walther H 2003 Appl. Phys. B 76 125Google Scholar

    [147]

    Keller M, Lange B, Hayasaka K, Lange W, Walther H 2004 Nature 431 1075Google Scholar

    [148]

    Leibrandt D R, Labaziewicz J, Vuleti’V, Chuang I L 2009 Phys. Rev. Lett. 103 103001Google Scholar

    [149]

    Mundt A B, Kreuter A, Becher C, Leibfried D, Eschner J, Schmidt-Kaler F, Blatt R 2002 Phys. Rev. Lett. 89 103001Google Scholar

    [150]

    Takahashi H, Kassa E, Christoforou C, Keller M 2020 Phys. Rev. Lett. 124 013602Google Scholar

    [151]

    Kato S, Aoki T 2015 Phys. Rev. Lett. 115 093603Google Scholar

    [152]

    Kassa E, Takahashi H, Christoforou C, Keller M 2017 Phys. Rev. A. 96 023824

    [153]

    Guthöhrlein G, Keller M, Hayasaka K, Lange W, Walther H 2001 Nature 414 49Google Scholar

    [154]

    Russo C, Barros H, Stute A, Dubin F, Phillips E, Monz T, Northup T, Becher C, Salzburger T, Ritsch H, Schmidt P, Blatt R 2009 Appl. Phys. B 95 205Google Scholar

    [155]

    Sterk J D, Luo L, Manning T A, Maunz P, Monroe C 2012 Phys. Rev. A 85 062308Google Scholar

    [156]

    Nguyen C H, Utama A N, Lewty N, Kurtsiefer C 2018 Phys. Rev. A 98 063833Google Scholar

    [157]

    Steiner M, Meyer H M, Deutsch C, Reichel J, Khl M 2013 Phys. Rev. Lett. 110 043003Google Scholar

    [158]

    Steiner M, Meyer H M, Reichel J, Köhl M 2014 Phys. Rev. Lett. 113 263003Google Scholar

    [159]

    Ballance T G, Meyer H M, Kobel P, Ott K, Reichel J, Köhl M 2017 Phys. Rev. A 95 033812Google Scholar

    [160]

    Huber G, Deuschle T, Schnitzler W, Reichle R, Singer K, Schmidt-Kaler F 2008 New J. Phys. 10 013004Google Scholar

    [161]

    Kaufmann H, Ruster T, Schmiegelow C T, Schmidt-Kaler F, Poschinger U G 2014 New J. Phys. 16 073012Google Scholar

    [162]

    Flhmann C, Nguyen T L, Marinelli M, Negnevitsky V, Mehta K, Home J P 2019 Nature 566 513Google Scholar

    [163]

    Negnevitsky V, Marinelli M, Mehta K K, Lo H Y, Flühmann C, Home J P 2018 Nature 563 527Google Scholar

    [164]

    Daniel K 2015 Ph. D. Dissertation (Zurich: ETH Zurich)

    [165]

    Hensinger W K, Olmschenk S, Stick D, Hucul D, Yeo M, Acton M, Deslauriers L, Monroe C, Rabchuk J 2006 Appl. Phys. Lett. 88 034101Google Scholar

    [166]

    Decaroli C, Matt R, Oswald R, Axline C, Ernzer M, Flannery J, Ragg S, Home J P 2021 Quantum Science and Technology 6 044001Google Scholar

    [167]

    Ragg S, Decaroli C, Lutz T, Home J P 2019 Rev. Sci. Instrum. 90 103203Google Scholar

    [168]

    Seidelin S, Chiaverini J, Reichle R, Bollinger J J, Leibfried D, Britton J, Wesenberg J H, Blakestad R B, Epstein R J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Shiga N, Wineland D J 2006 Phys. Rev. Lett. 96 253003Google Scholar

    [169]

    Cho D I, Hong S, Lee M, Kim T 2015 Micro and Nano Systems Letters 3 2Google Scholar

    [170]

    Britton J, Leibfried D, Beall J, Blakestad R B, Bollinger J J, Chiaverini J, Epstein R J, Jost J D, Kielpinski D, Langer C, Ozeri R, Reichle R, Seidelin S, Shiga N, Wesenberg J H, Wineland D J 2006 arXiv e-prints, quant.

    [171]

    Wilpers G, See P, Gill P, Sinclair A 2012 Nat. Nanotechnol. 7 572Google Scholar

    [172]

    Brown K R, Kim J, Monroe C 2016 npj Quantum Inf. 2 16034Google Scholar

    [173]

    Moehring D L, Highstrete C, Stick D, Fortier K M, Haltli R, Tigges C, Blain M G 2011 New J. Phys. 13 075018Google Scholar

    [174]

    Amini J M, Uys H, Wesenberg J H, Seidelin S, Britton J, Bollinger J J, Leibfried D, Ospelkaus C, VanDevender A P, Wineland D J 2010 New J. Phys. 12 033031Google Scholar

    [175]

    Shu G, Vittorini G, Buikema A, Nichols C S, Volin C, Stick D, Brown K R 2014 Phys. Rev. A 89 062308Google Scholar

    [176]

    Bowler R, Gaebler J, Lin Y, Tan T R, Hanneke D, Jost J D, Home J P, Leibfried D, Wineland D J 2012 Phys. Rev. Lett. 109 080502Google Scholar

    [177]

    Kaushal V, Lekitsch B, Stahl A, Hilder J, Pijn D, Schmiegelow C, Bermudez A, Mller M, SchmidtKaler F, Poschinger U 2020 AVS Quantum Sci. 2 014101Google Scholar

    [178]

    Barrett M D, DeMarco B, Schaetz T, Meyer V, Leibfried D, Britton J, Chiaverini J, Itano W M, Jelenkovi ′B, Jost J D, Langer C, Rosenband T, Wineland D J 2003 Phys. Rev. A 68 042302Google Scholar

    [179]

    Todaro S L, Verma V B, McCormick K C, Allcock D T C, Mirin R P, Wineland D J, Nam S W, Wilson A C, Leibfried D, Slichter D H 2021 Phys. Rev. Lett. 126 010501Google Scholar

    [180]

    Sorace-Agaskar C, Kharas D, Yegnanarayanan S, Maxson R, West G N, Loh W, Bramhavar S, Ram R J, Chiaverini J, Sage J 2019 IEEE J. Sel. Top. Quantum Electron. 25 1

    [181]

    Khromova A, Piltz C, Scharfenberger B, Gloger T F, Johanning M, Varón A F, Wunderlich C 2012 Phys. Rev. Lett. 108 220502Google Scholar

    [182]

    Weidt S, Randall J, Webster S C, Lake K, Webb A E, Cohen I, Navickas T, Lekitsch B, Retzker A, Hensinger W K 2016 Phys. Rev. Lett. 117 220501Google Scholar

    [183]

    Harty T P, Sepiol M A, Allcock D T C, Ballance C J, Tarlton J E, Lucas D M 2016 Phys. Rev. Lett. 117 140501Google Scholar

    [184]

    Zarantonello G, Hahn H, Morgner J, Schulte M, Bautista-Salvador A, Werner R F, Hammerer K, Ospelkaus C 2019 Phys. Rev. Lett. 123 260503Google Scholar

  • 图 1  双曲面离子阱示意图[95]

    Fig. 1.  Schematic of a Paul trap with hyperbolic shaped electrodes[95]

    图 2  四极杆离子阱 (a)不分段的四极杆阱需要端帽电极提供轴向束缚[110]; (b)分段的四极杆阱使用分段电极提供轴向束缚[112]

    Fig. 2.  Four-rod trap: (a) Unsegmented four-rod trap requires end cap electrodes to provide axial confinement [110]; (b) segmented four-rod trap uses the segmented electrodes to provide axial confinement[112]

    图 3  Innsbruck式的刀片阱[61] (a)组装后的离子阱实物图; (b)离子阱尺寸和结构图

    Fig. 3.  Innsbruck style blade ion trap: (a) Photograph of an assembled blade trap; (b) dimensions and structure of the trap

    图 4  Maryland型刀片阱[62] (a)分段刀片阱结构图. 分段刀片结构不仅可以提供轴向束缚, 还能够实现非简谐电势, 实现更均匀的离子间距. (b) 在另一个刀片阱中, 将DC最外侧电极的长度从250 μm增加至10 mm, 减小RF在轴向的电场分量[116,117]

    Fig. 4.  Maryland style blade ion trap[62]: (a) Structure of segmented blade ion trap. The segmented blade not only can provide axial confinement, but also generate non-quadratic axial potential to achieve uniform ion distance; (b) in another blade ion trap, the out-most segment is increased to 10 mm from 250 μm in order to reduce the residual RF electric field along the axial direction[116,117]

    图 5  中国科学技术大学的刀片阱[109] (a)放置于玻璃真空腔中的刀片阱, 在其四周允许同时使用两个NA最大为0.32的物镜和两个NA为0.66的物镜; (b)刀片阱的结构. 该刀片材料为熔融石英, 表面具有8 μm金层, DC电极表面使用激光加工成为五段

    Fig. 5.  The blade ion trap used in University of Science and Technology of China [109]: (a) A blade ion trap is placed in a glass vacuum cell. Two objectives with a maximum NA of 0.32 and another two objectives with a maximum NA of 0.66 are allowed to be used simultaneously. (b) The structure of the blade ion trap. The blades are made from fused silica and coated with a 8 μm gold layer. The surface gold of the DC electrodes is segmented into five using laser cutting

    图 6  光学腔阱 (a) Innsbruck大学的光学腔阱[93]. 离子发出的854 nm光子有50%的概率被光学腔收集, 并被波导转换为通信波长1550 nm的光子. (b) Sussex大学的光学腔阱. 该装置首次实现了离子与腔模的强耦合[143]. (c) Aarhus大学的离子阱. 一束径向泵浦光(RP)用于Doppler冷却循环, 发光的离子可以在CCD上成像, 光学腔镜(CM)沿轴向放置, 压电平移台(PZT)将腔镜(CM)锁定到与轴向RP光共振. (d)当使用径向RP光时, 整个离子阱中的大约$6, 400 \pm 200$个离子全部发亮. (e)关闭径向的RP光, 只有光学腔中通过RP光时, 处于腔内的$536\pm18$个离子可以正常发光, 而在腔外的离子进入暗态[144]

    Fig. 6.  Ion traps with integrated optical cavities: (a) Integrated optical cavity trap in University of Innsbruck [93]. 50% of the 854-nm photons emitted from the ion can be collected by the cavity, and are converted to a communication wavelength of 1550 nm. (b) Integrated optical cavity trap in Sussex University. This trap demonstrated the first strong coupling between the ions and the cavity mode. (c) Ion trap in Aarhus University. The cavity mirror (CM) is along the axial direction, A pumping beam in the radial direction is used to pump the ions back into the Doppler cooling cycle. These ions can be imaged on the CCD. A Piezo-electric Transducer (PZT) is used to actively lock the optical cavity in resonance with the RP laser. (d) When the radial RP laser is on, the entire crystal of approximately $6, 400\pm200$ ions are all bright. (d) When the radial RP is off, only the $536\pm18$ ions in the cavity are bright. The ions outside the cavity are in dark state [144].

    图 7  苏黎世联邦理工大学的三维芯片阱[164]

    Fig. 7.  Three dimensional (3D) microfabricated ion Trap chip in ETH Zurich [164].

    图 8  苏黎世联邦理工大学的三维结电极芯片阱[166]. 该离子阱由五层芯片堆叠而成, 具备两个X型结电极结构

    Fig. 8.  Three-dimensional junction trap in ETH Zurich [166]. The ion trap consists of five wafers and has two X-shaped junctions.

    图 9  IonQ公司的离子阱芯片HOA [63,172] (a) HOA离子阱芯片的照片; (b)该表面阱的Y型结电极, 电极的形状已经被优化, 使得沿着轴线的射频电场分量最小, 红线表示离子在不同区域间穿梭的路径; (c)离子阱的内部结构, 该离子阱具有四个金属层, 顶部电极层(M4), 较低的金属布线层(M1, M2和M3); (d)多离子操控的光路图

    Fig. 9.  High-Optical-Access trap from IonQ Inc[63]: (a) Photo of HOA ion trap. It can be clearly seen that the linear trap is located on a higher platform, and has a long and narrow through hole along the axis, and two Y-junction electrode structures. The trap has 94 control DC electrodes. (b) Y-junction of this surface trapl. The shape of the electrodes has been optimized to minimize the RF electric field component along the axis. The red line shows the path the ions transporting between different regions. (c) Inner structure of the ion trap. This ion trap has four metal layers, the top electrode layer (M4), and the lower metal layers (M1, M2 and M3). (d) Optical diagram of the 11-qubit system[44]

    图 10  Honeywell公司的Model H1离子阱[65] (a)云操作运行结构; (b)离子阱的结构, 该离子阱由16个不同区域组成, 分别为五个门操作区(蓝色)、两个专门用于存储离子的扩展门操作区(橙色)、八个辅助区(黄色)和一个装载区(紫色); (c)基于移动离子实现两个非近邻离子两比特门操作的量子电路, 以及其在该离子阱系统中对应的操作流程

    Fig. 10.  Honeywell's Model H1 ion trap [65]: (a) Structure of cloud operation ionn trap system. (b) The structure of the trap. The trap consists of 16 distinct zones, consisting of five gate zones (blue), two extended gate zones dedicated to ion storage (orange), eight auxiliary zones (yellow), and one loading zone (violet). (c) A quantum circuit for realizing a two-qubit gate operation between two ions that are not adjacent, and its corresponding operation flow in the ion trap system

    图 11  麻省理工大学(MIT)集成波导离子阱结构示意图[64] (a)集成在$ \mathrm{SiO_{2}} $内的光波导和输出光栅耦合器将激光聚焦到离子上; (b)激光从光纤通过边缘耦合进入芯片中的波导; (c)光纤经过光纤真空馈通进入低温真空环境, 芯片放置于7 K冷头上; (d)$ \mathrm{^{88}Sr} $原子和$ \mathrm{^{88}Sr^{+}} $离子的能级图; (e)离子阱中心区域的扫描电子显微镜(SEM)图像, 显示了电极上的方形通光窗口以及周围的RF电极和DC电极分布, 插图: 扫描电镜显示的光栅耦合器, 可以实现光束横向聚焦; (f)集成波导离子阱芯片封装, 插图为1 $ \mathrm{cm^{2}} $左右的离子阱芯片

    Fig. 11.  Ion trap integrated with waveguides used by Massachusetts institute of technology (MIT) [64]: (a) Lasers are propagating in the Optical waveguide and focused to the ion by the grating coupler in $ \mathrm{SiO_{2}} $ substrate. (b) Lasers are coupled from the optical fiber to the on-chip waveguide using the edge coupling method. (c) Optical fibers are fed through the cryostat system using the fiber feedthrough.The ion trap chip is located on the cold head at 7 K. (d) $ \mathrm{^{88}Sr} $ and $ \mathrm{^{88}Sr^{+}} $ ion energy level diagram. (e) The scanning electron microscope (SEM) image of the central region of the ion trap shows the square light-passing window on the electrode and the distribution of RF electrode and DC electrode around it. Inset: A scanning electron microscope shows a grating coupler that enables transverse focusing of a beam. (f) Photonic ion-trap chip packaged. Inset is an ion trap chip around 1 $ \mathrm{cm^{2}} $.

    图 12  NIST的集成载流导线离子阱芯片[41]. 图中RF电极(紫色)和DC电极(灰色)用于囚禁离子两个$ \mathrm{^{25}Mg^{+}} $离子, 距表面30 μm. 频率达MHz的射频电流被加载到绿色(编号1到3)的载流电极上, 在离子附近产生垂直于轴的射频磁场和射频磁场梯度. 利用该梯度产生的力, 可以使用微波实现两离子纠缠门. 左上方的小图中, 两个离子偏移轴线而受到不同的射频磁场, 由于AC zeeman移频效应而具有不同的能级, 可以实现离子的独立寻址

    Fig. 12.  NIST’s integrated current-carrying wire(CCW) ion trap chip[41]. RF electrodes (purple) and DC electrodes (gray) are used to trap two $ \mathrm{^{25}Mg^{+}} $ ions, 30 μm from the surface. RF currents at frequencies up to MHz are loaded onto green (numbered 1 to 3) current-carrying electrodes, generating RF magnetic fields and RF magnetic gradients perpendicular to the axis near the ions. Using the forces generated by this gradient, a two-ion entanglement gate can be realized using microwaves. In the small figure on the upper left, two ions with different RF magnetic fields due to their offset axes have different energy levels due to the AC Zeeman frequency shift effect and can achieve independent ion addressing.

    表 1  部分光学腔实验的参数, 来自文献[105]

    Table 1.  Structural parameters of capillary of different kind of fluid

    参考文献 课题组 腔长/μm 凹面半径/μm 模式波长 /nm 束腰/μm 精细度
    [153] Walther 6000 10000 Ca-397 24 3000
    [149] Blatt 21000 25000 Ca-729 54 35000
    [146, 147] Walther 8000 10000 Ca-866 37 49000
    [16, 154] Blatt 19980 10000 Ca-866 13 70000
    [148] Chuang 50000 50000 Sr-422 57.9 25600
    [145] Vuletic 22000 25000 Yb-369 38 12500
    [155] Monroe 2126 25000 Yb-369 25 3790$\rightarrow $1490
    [93] Blatt 19900 9980 Ca-866 12.3 54000
    [156] Kurtsiefer 11000 5500 Rb-780 2.4 603
    [157] Köhl 230 390 Yb-935 7 1000
    [158] Köhl 150 300 Yb-935 6.1 20000
    [159] Köhl 150 200 Yb-935 3.1 1140$\rightarrow $207
    [143] Keller 367 560 Ca-866 8.5 48000
    下载: 导出CSV
  • [1]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [2]

    Shor P W 1994 Proceedings of the 35th Annual IEEE Symposium on Foundation of Computer Science 124 134

    [3]

    Nielsen M A, Chuang I 2002 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p19

    [4]

    Paul W and Steinwedel H 1953 Z Naturforsch A. 8 448Google Scholar

    [5]

    Dehmelt H G 1968 Adv. At. Mol. Phys. 3 53

    [6]

    Quantum Optics and Spectroscopy group of University of Innsbruck Ion trapping groups worldwide https://quantum optics.at/en/links/ion-trapping-worldwide.html 2022-01-25

    [7]

    Schwartz J C, Senko M W, Syka J 2002 J. Am. Soc. Mass. Spectrom. 13 659Google Scholar

    [8]

    Bollinger J J, Heinzen D J, Itano W M, Gilbert S L, Wineland D J 1990 Conference on Precision Electromagnetic Measurements Ottawa, ON, Canada, June 11–14 1990 p264

    [9]

    Fisk P T H, Sellars M J, Lawn M A, Coles G 1997 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44 344Google Scholar

    [10]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808Google Scholar

    [11]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001Google Scholar

    [12]

    Keller J, Burgermeister T, Kalincev D, Kiethe J, Mehlstubler T E 2016 J. Phys. Conf. Ser. 723 p012027

    [13]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630Google Scholar

    [14]

    Keller M, Lange B, Hayasaka K, Lange W, Walther H 2003 J. Phys. B: At. Mol. Opt. Phys. 36 613Google Scholar

    [15]

    Kreuter A, Becher C, Lancaster G P T, Mundt A B, Russo C, Häffner H, Roos C, Eschner J, Schmidt-Kaler F, and Blatt R 2004 Phys. Rev. Lett. 92 203002Google Scholar

    [16]

    Barros H G, Stute A, Northup T E, Russo C, Schmidt P O, Blatt R 2009 New J. Phys. 11 103004Google Scholar

    [17]

    Takahashi H, Wilson A, Riley-Watson A, Oruevi F, Seymour-Smith N, Keller M, Lange W 2013 New J. Phys. 15 053011Google Scholar

    [18]

    Odom B, Hanneke D, D’Urso B, Gabrielse G 2006 Phys. Rev. Lett. 97 030801Google Scholar

    [19]

    Porras D, Cirac J I 2004 Phys. Rev. Lett. 92 207901Google Scholar

    [20]

    Porras D, Cirac J I 2006 Phys. Rev. Lett. 96 250501Google Scholar

    [21]

    Islam R, Senko C, Campbell W C, Korenblit S, Smith J, Lee A, Edwards E E, Wang C C, Freericks J K, Monroe C 2013 Science 340 583Google Scholar

    [22]

    Mller M, Schindler P, Nigg D, Monz T, Barreiro J, Martinez E, Hennrich M, Diehl S, Zoller P, Blatt R 2013 Nat. Phys. 9 361Google Scholar

    [23]

    Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X, Monroe C 2017 Nature 551 601Google Scholar

    [24]

    Neyenhuis B, Zhang J, Hess P W, Smith J, Lee A C, Richerme P, Gong Z X, Gorshkov A V, Monroe C 2017 Sci. Adv. 3 e1700672

    [25]

    Cirac J I, Zoller P 1995 Phys. Rev. Lett. 74 4091Google Scholar

    [26]

    Milburn G J, Schneider S, James D F V 2000 Fortschr. Phys. 48 801Google Scholar

    [27]

    Sørensen A, Mølmer K 2000 Phys. Rev. A 62 022311Google Scholar

    [28]

    Duan L M 2004 Phys. Rev. Lett. 93 100502Google Scholar

    [29]

    Wineland D J, Monroe C, Itano W M, Leibfried D, King B E, Meekhof D M 1998 J. Res. Nat. Inst. Stand. Technol. 103 259Google Scholar

    [30]

    Debnath S, Linke N M, Figgatt C, Landsman K A, Wright K, Monroe C 2016 Nature 536 63Google Scholar

    [31]

    Monroe C, Raussendorf R, Ruthven A, Brown K R, Maunz P, Duan L M, Kim J 2014 Phys. Rev. A 89 022317Google Scholar

    [32]

    NIST Penning Traps 2022 https://www.nist.gov/pml/time-and-frequency-division/ion-storage/penning-traps[2022-1-25]

    [33]

    Dilling J, Blaum K, Brodeur M, Eliseev S 2018 Annu. Rev. Nucl. Part. Sci. 68 45

    [34]

    Wineland D J, Drullinger R E, Walls F L 1978 Phys. Rev. Lett. 40 1639Google Scholar

    [35]

    Diedrich F, Bergquist J C, Itano W M, Wineland D J 1989 Phys. Rev. Lett. 62 403Google Scholar

    [36]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281Google Scholar

    [37]

    Harty T P, Allcock D, Ballance C J, Guidoni L, Janacek H A, Linke N M, Stacey D N, Lucas D M 2014 Phys. Rev. Lett 113 220501Google Scholar

    [38]

    Ballance C J, Harty T P, Linke N M, Sepiol M A, Lucas D M 2016 Phys. Rev. Lett. 117 060504Google Scholar

    [39]

    Gaebler J P, Tan T R, Lin Y, Wan Y, Bowler R, Keith A C, Glancy S, Coakley K, Knill E, Leibfried D, Wineland D J 2016 Phys. Rev. Lett. 117 060505Google Scholar

    [40]

    Clark C R, Tinkey H N, Sawyer B C, Meier A M, Burkhardt K A, Seck C M, Shappert C M, Guise N D, Volin C E, Fallek S D, Hayden H T, Rellergert W G, Brown K R 2021 Phys. Rev. Lett. 127 130505Google Scholar

    [41]

    Srinivas R, Burd S, Knaack H, Sutherland R, Kwiatkowski A, Glancy S, Knill E, Wineland D, Leibfried D, Wilson A, Allcock D, Slichter D 2021 Nature 597 209Google Scholar

    [42]

    Wang P, Luan C-Y, Qiao M, Um M, Junhua Z, Wang Y, Yuan X, Gu M, Zhang J, Kim K 2021 Nat. Commun. 12 1

    [43]

    Pogorelov I, Feldker T, Marciniak C D, Postler L, Jacob G, Krieglsteiner O, Podlesnic V, Meth M, Negnevitsky V, Stadler M, Höfer B, Wächter C, Lakhmanskiy K, Blatt R, Schindler P, Monz T 2021 PRX Quantum 2 020343Google Scholar

    [44]

    Wright K, Beck K, Debnath S, Amini J, Nam Y, Grzesiak N, Chen J-S, Pisenti N, Chmielewski M, Collins C, Hudek K, Mizrahi J, Wong-Campos J, Allen S, Apisdorf J, Solomon P, Williams M, Ducore A, Blinov A, Kim J 2019 Nat. Commun. 10 5464Google Scholar

    [45]

    Knill E, Laflamme R 1997 Phys. Rev. A 55 900Google Scholar

    [46]

    Aharonov D, Ben-Or M 2008 SIAM J. Comput. 38 1207Google Scholar

    [47]

    Bravyi S, Kitaev A 2005 Phys. Rev. A 71 022316Google Scholar

    [48]

    Egan L, Debroy D, Noel C, Risinger A, Zhu D, Biswas D, Newman M, Li M, Brown K, Cetina M, Monroe C 2021 Nature 598 281Google Scholar

    [49]

    Ryan-Anderson C, Bohnet J G, Lee K, Gresh D, Hankin A, Gaebler J P, Francois D, Chernoguzov A, Lucchetti D, Brown N C, Gatterman T M, Halit S K, Gilmore K, Gerber J A, Neyenhuis B, Hayes D, Stutz R P 2021 Phys. Rev. X 11 041058Google Scholar

    [50]

    Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153Google Scholar

    [51]

    Blatt R, Roos C F 2012 Nat. Phys. 8 277Google Scholar

    [52]

    Lanyon B P, Hempel C, Nigg D, Muller M, Gerritsma R, Zahringer F, Schindler P, Barreiro J T, Rambach M, Kirchmair G, Hennrich M, Zoller P, Blatt R, Roos C F 2011 Science 334 57Google Scholar

    [53]

    Härter A, Denschlag J H 2014 Contemp. Phys. 55 33Google Scholar

    [54]

    Puri P, Mills M, Schneider C, Simbotin I, Montgomery J A Jr, Cote R, Suits A G, Hudson E R 2017 Science 357 1370

    [55]

    Tomza M, Jachymski K, Gerritsma R, Negretti A, Calarco T, Idziaszek Z, Julienne P S 2019 Rev. Mod. Phys. 91 035001Google Scholar

    [56]

    Grier A T, Cetina M, Oruevi F, Vuleti V 2009 Phys. Rev. Lett. 102 223201Google Scholar

    [57]

    Zipkes C, Palzer S, Sias C, Khl M 2010 Nature 464 388Google Scholar

    [58]

    Schmid S, Hrter A, Denschlag J H 2010 Phys. Rev. Lett. 105 133202Google Scholar

    [59]

    Puri P, Mills M, Simbotin I, Montgomery J A, Ct R, Schneider C, Suits A G, Hudson E R 2019 Nat. Chem. 11 615Google Scholar

    [60]

    Prestage J D, Dick G J, Maleki L 1989 J. Appl. Phys. 66 1013Google Scholar

    [61]

    Gulde S 2003 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)

    [62]

    Mizrahi J 2013 Ph. D. Dissertation (Maryland: University of Maryland)

    [63]

    Maunz P L W 2016 High Optical Access Trap 2.0

    [64]

    Niffenegger R J, Stuart J, Sorace-Agaskar C, Kharas D, Bramhavar S, Bruzewicz C D, Loh W, McConnell R, Reens D, West G N, Sage J M, Chiaverini J 2020 Nature 586 538

    [65]

    Pino J M, Dreiling J M, Figgatt C, Gaebler J P, Neyenhuis B 2021 Nature 592 209Google Scholar

    [66]

    Labaziewicz J, Ge Y, Antohi P, Leibrandt D, Brown K R, Chuang I L 2008 Phys. Rev. Lett. 100 013001Google Scholar

    [67]

    Pagano G, Hess P W, Kaplan H B, Tan W L, Richerme P, Becker P, Kyprianidis A, Zhang J, Birckelbaw E, Hernandez M R, Wu Y, Monroe C 2018 Quantum Sci. Technol. 4 014004Google Scholar

    [68]

    Xie Y, Cui J, D’Onofrio M, Rasmusson A J, Howell S W, Richerme P 2021 Quantum Science and Technology 6 044009Google Scholar

    [69]

    Sterling R C 2014 Nat. Commun. 5 3637

    [70]

    Wang Y, Qiao M, Cai Z, Zhang K, Jin N, Wang P, Chen W, Luan C, Du B, Wang H, Song Y, Yum D, Kim K 2020 Adv. Quantum Technol. 3 2000068Google Scholar

    [71]

    D’Onofrio M, Xie Y, Rasmusson A J, Wolanski E, Cui J, Richerme P 2021 Phys. Rev. Lett. 127 020503Google Scholar

    [72]

    Kaufmann H, Ulm S, Jacob G, Poschinger U, Landa H, Retzker A, Plenio M B, Schmidt-Kaler F 2012 Phys. Rev. Lett. 109 263003Google Scholar

    [73]

    Britton J, Sawyer B, Keith A, Wang C C, Freericks J, Uys H, Biercuk M, Bollinger J 2012 Nature 484 489Google Scholar

    [74]

    Grttner M, Bohnet J, Safavi-Naini A, Wall M, Bollinger J, Rey A 2017 Nat. Phys. 13 781Google Scholar

    [75]

    Jordan E, Gilmore K A, Shankar A, Safavi-Naini A, Bohnet J G, Holland M J, Bollinger J J 2019 Phys. Rev. Lett. 122 053603Google Scholar

    [76]

    Goodwin J F, Stutter G, Thompson R C, Segal D M 2016 Phys. Rev. Lett. 116 143002Google Scholar

    [77]

    Kielpinski D, Monroe C R, Wineland D J 2002 Nature 417 709Google Scholar

    [78]

    Blakestad R B 2010 Ph. D. Dissertation (Colorado: University of Colorado)

    [79]

    Barrett M, Chiaverini J, Schätz T, Britton J, Itano W, Jost J, Knill E, Langer C, Leibfried D, Ozeri R, Wineland D 2004 Nature 429 737Google Scholar

    [80]

    Blakestad R B, Ospelkaus C, VanDevender A P, Amini J M, Britton J, Leibfried D, Wineland D J 2009 Phys. Rev. Lett. 102 153002Google Scholar

    [81]

    Mehta K K 2017 Ph. D. Dissertation (Massachusetts: Massachusetts Institute of Technology)

    [82]

    Mehta K K, Zhang C, Malinowski M, Nguyen T L, Stadler M, Home J P 2020 Nature 586 533Google Scholar

    [83]

    Ivory M, Setzer W J, Karl N, McGuinness H, DeRose C, Blain M, Stick D, Gehl M, Parazzoli L P 2021 Phys. Rev. X 11 041033Google Scholar

    [84]

    Setzer W, Ivory M, Slobodyan O, Wall J, Parazzoli L, Stick D, Gehl M, Blain M, Kay R, McGuinness H 2021 Appl. Phys. Lett. 119 154002Google Scholar

    [85]

    Maunz P, Moehring D, Madsen M, Jr R, Younge K, Monroe C 2017 Nat. Phys. 3 538Google Scholar

    [86]

    Blinov B, Moehring D, Duan L, Monroe C 2004 Nature 428 153Google Scholar

    [87]

    Hucul D, Inlek I, Vittorini G, Crocker C, Debnath S, Clark S, Monroe C 2014 Nat. Phys. 11 37Google Scholar

    [88]

    Stute A, Casabone B, Schindler P, Monz T, Schmidt P, Brandstätter B, Northup T, Blatt R 2012 Nature 485 482Google Scholar

    [89]

    Schupp J, Krcmarsky V, Krutyanskiy V, Meraner M, Northup T E, Lanyon B P 2021 PRX Quantum 2 020331Google Scholar

    [90]

    Siverns J D, Quraishi Q 2017 Quantum Inf. Process. 16 314Google Scholar

    [91]

    Kobel P, Breyer M, Köhl M 2021 npj Quantum Inf. 7 6Google Scholar

    [92]

    Walker T, Miyanishi K, Ikuta R, Takahashi H, Vartabi Kashanian S, Tsujimoto Y, Hayasaka K, Yamamoto T, Imoto N, Keller M 2018 Phys. Rev. Lett. 120 203601Google Scholar

    [93]

    Krutyanskiy V, Meraner M, Schupp J, Krcmarsky V, Hainzer H, Lanyon B 2019 npj Quantum Inf. 5 72Google Scholar

    [94]

    Ong F R, Schppert K, Jobez P, Teller M, Ames B, Fioretto D A, Friebe K, Lee M, Colombe Y, Blatt R, Northup T E 2020 New J. Phys. 22 063018Google Scholar

    [95]

    Romaszko Z D, Hong S, Siegele M, Puddy R K, Lebrun-Gallagher F R, Weidt S, Hensinger W K 2020 Nat. Rev. Phys. 2 285Google Scholar

    [96]

    James D F V 199 Technical report, Report number = Quantum Dynamics of Cold Trapped Ions with Application to Quantum Computation

    [97]

    Deng K, Sun Y L, Yuan W H, Xu Z T, Zhang J, Lu Z H, Luo J 2014 Rev. Sci. Instrum. 85 104706Google Scholar

    [98]

    Siverns J D, Simkins L R, Weidt S, and Hensinger W K 2012 Appl. Phys. B 107 921Google Scholar

    [99]

    Michael C 2009 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)

    [100]

    Brownnutt M, Kumph M, Rabl P, Blatt R 2015 Rev. Mod. Phys. 87 1419Google Scholar

    [101]

    Boldin I A, Kraft A, Wunderlich C 2018 Phys. Rev. Lett. 120 023201Google Scholar

    [102]

    Sedlacek J A, Greene A, Stuart J, McConnell R, Bruzewicz C D, Sage J M, Chiaverini J 2018 Phys. Rev. A 97 020302Google Scholar

    [103]

    Hite D A, Colombe Y, Wilson A C, Brown K R, Warring U, Jördens R, Jost J D, McKay K S, Pappas D P, Leibfried D, Wineland D J 2012 Phys. Rev. Lett. 109 103001Google Scholar

    [104]

    Deslauriers L, Olmschenk S, Stick D, Hensinger W K, Sterk J, Monroe C 2006 Phys. Rev. Lett. 97 103007Google Scholar

    [105]

    Klemens S 2020 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)

    [106]

    Michael G 2017 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)

    [107]

    Johnson K G, Wong-Campos J D, Restelli A, Landsman K A, Neyenhuis B, Mizrahi J, Monroe C 2016 Rev. Sci. Instrum. 87 053110Google Scholar

    [108]

    Daniilidis N, Narayanan S, Mller S A, Clark R, Lee T E, Leek P J, Wallraff A, Schulz S, SchmidtKaler F, Hffner H 2011 New J. Phys. 13 013032Google Scholar

    [109]

    He R, Cui J M, Li R R, Qian Z H, Chen Y, Ai M Z, Huang Y F, Li C F, Guo G C 2021 Rev. Sci. Instrum. 92 073201Google Scholar

    [110]

    Akerman N, Glickman Y, Kotler S, Keselman A, Ozeri R 2011 Nature 473 61Google Scholar

    [111]

    Hanns-Christoph N 1998 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)

    [112]

    Berkeland D J 2002 Rev. Sci. Instrum. 73 2856Google Scholar

    [113]

    Herskind P F, Dantan A, Albert M, Marler J P, Drewsen M 2009 J. Phys. B: At. Mol. Opt. Phys. 42 154008Google Scholar

    [114]

    Cornelius H 2014 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)

    [115]

    AQThttps://www.aqt.eu/qc-modules/ 2022-01-25

    [116]

    David H 2015 Ph. D. Dissertation (Maryland: University of Maryland)

    [117]

    Shantanu D 2016 Ph. D. Dissertation(Maryland: University of Maryland)

    [118]

    Gerber S, Rotter D, Hennrich M, Blatt R, Rohde F, Schuck C, Almendros M, Gehr R, Dubin F, Eschner J 2009 New J. Phys. 11 013032Google Scholar

    [119]

    Shu G, Dietrich M R, Kurz N, Blinov B B 2009 J. Phys. B: At. Mol. Opt. Phys. 42 154005Google Scholar

    [120]

    Maiwald R, Leibfried D, Britton J, Bergquist J C, Leuchs G, Wineland D J 2009 Nat. Phys. 5 551Google Scholar

    [121]

    Maiwald R, Golla A, Fischer M, Bader M, Heugel S, Chalopin B, Sondermann M, Leuchs G 2012 Phys. Rev. A 86 043431Google Scholar

    [122]

    Streed E W, Norton B G, Jechow A, Weinhold T J, and Kielpinski D 2011 Phys. Rev. Lett. 106 010502Google Scholar

    [123]

    Ghadimi M, Blms V, Norton B G, Fisher P M, Connell S C, Amini J M, Volin C, Hayden H, Pai C S, Kielpinski D, Lobino M, Streed E W 2017 npj Quantum Inf. 3 1Google Scholar

    [124]

    Monroe C, Swann W, Robinson H, Wieman C 1990 Phys. Rev. Lett. 65 1571Google Scholar

    [125]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [126]

    Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink A, Senko C, Vuletic V, Greiner M, Lukin M D 2016 Science 354 1024Google Scholar

    [127]

    Collopy A L, Ding S, Wu Y, Finneran I A, Anderegg L, Augenbraun B L, Doyle J M, Ye J 2018 Phys. Rev. Lett. 121 213201Google Scholar

    [128]

    Muldoon C, Brandt L, Dong J, Stuart D, Brainis E, Himsworth M, Kuhn A 2012 New J. Phys. 14 073051Google Scholar

    [129]

    Kaufman A M, Lester B J, Regal C A 2012 Phys. Rev. X 2 041014Google Scholar

    [130]

    Stuart D, Kuhn A 2018 New J. Phys. 20 023013Google Scholar

    [131]

    Schlosser N, Reymond G, Protsenko I, Grangier P 2001 Nature 411 1024Google Scholar

    [132]

    Kaufman A M, Lester B J, Reynolds C M, Wall M L, Foss-Feig M, Hazzard K R, Rey A M, Regal C A 2014 Science 345 306Google Scholar

    [133]

    Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletié V, Lukin M D 2017 Nature 551 579Google Scholar

    [134]

    Pagano G, Scazza F, Foss-Feig M 2019 Adv. Quantum Technol. 2 1800067Google Scholar

    [135]

    Enderlein M, Huber T, Schneider C, Schaetz T 2012 Phys. Rev. Lett. 109 233004Google Scholar

    [136]

    Lambrecht A, Schmidt J, Weckesser P, Debatin M, Karpa L, Schaetz T 2017 Nat. Photonics 11 704Google Scholar

    [137]

    Cormick C, Schaetz T, Morigi G 2011 New J. Phys. 13 043019Google Scholar

    [138]

    Huber T, Lambrecht A, Schmidt J, Karpa L, Schaetz T 2014 Nat. Commun. 5 5587Google Scholar

    [139]

    Shen Y C, Lin G D 2020 New J. Phys. 22 053032Google Scholar

    [140]

    Olsacher T, Postler L, Schindler P, Monz T, Zoller P, Sieberer L M 2020 PRX Quantum 1 020316Google Scholar

    [141]

    Espinoza J D A, Mazzanti M, Fouka K, Schssler R X, Wu Z, Corboz P, Gerritsma R, Naini A S 2021 Phys. Rev. A 104 013302.

    [142]

    Teoh Y H, Sajjan M, Sun Z, Rajabi F, Islam R 2021 Phys. Rev. A 104 022420.

    [143]

    Takahashi H, Kassa E, Christoforou C, Keller M 2017 Phys. Rev. A 96 023824Google Scholar

    [144]

    Dantan A, Herskind P, Marler J, Albert M, Drewsen M 2009 Nat. Phys. 5 494Google Scholar

    [145]

    Cetina M, Bylinskii A, Karpa L, Gangloff D, Beck K M, Ge Y, Scholz M, Grier A T, Chuang I, Vuleti V 2013 New J. Phys. 15 053001Google Scholar

    [146]

    Keller M, Lange B, Hayasaka K, Lange W, Walther H 2003 Appl. Phys. B 76 125Google Scholar

    [147]

    Keller M, Lange B, Hayasaka K, Lange W, Walther H 2004 Nature 431 1075Google Scholar

    [148]

    Leibrandt D R, Labaziewicz J, Vuleti’V, Chuang I L 2009 Phys. Rev. Lett. 103 103001Google Scholar

    [149]

    Mundt A B, Kreuter A, Becher C, Leibfried D, Eschner J, Schmidt-Kaler F, Blatt R 2002 Phys. Rev. Lett. 89 103001Google Scholar

    [150]

    Takahashi H, Kassa E, Christoforou C, Keller M 2020 Phys. Rev. Lett. 124 013602Google Scholar

    [151]

    Kato S, Aoki T 2015 Phys. Rev. Lett. 115 093603Google Scholar

    [152]

    Kassa E, Takahashi H, Christoforou C, Keller M 2017 Phys. Rev. A. 96 023824

    [153]

    Guthöhrlein G, Keller M, Hayasaka K, Lange W, Walther H 2001 Nature 414 49Google Scholar

    [154]

    Russo C, Barros H, Stute A, Dubin F, Phillips E, Monz T, Northup T, Becher C, Salzburger T, Ritsch H, Schmidt P, Blatt R 2009 Appl. Phys. B 95 205Google Scholar

    [155]

    Sterk J D, Luo L, Manning T A, Maunz P, Monroe C 2012 Phys. Rev. A 85 062308Google Scholar

    [156]

    Nguyen C H, Utama A N, Lewty N, Kurtsiefer C 2018 Phys. Rev. A 98 063833Google Scholar

    [157]

    Steiner M, Meyer H M, Deutsch C, Reichel J, Khl M 2013 Phys. Rev. Lett. 110 043003Google Scholar

    [158]

    Steiner M, Meyer H M, Reichel J, Köhl M 2014 Phys. Rev. Lett. 113 263003Google Scholar

    [159]

    Ballance T G, Meyer H M, Kobel P, Ott K, Reichel J, Köhl M 2017 Phys. Rev. A 95 033812Google Scholar

    [160]

    Huber G, Deuschle T, Schnitzler W, Reichle R, Singer K, Schmidt-Kaler F 2008 New J. Phys. 10 013004Google Scholar

    [161]

    Kaufmann H, Ruster T, Schmiegelow C T, Schmidt-Kaler F, Poschinger U G 2014 New J. Phys. 16 073012Google Scholar

    [162]

    Flhmann C, Nguyen T L, Marinelli M, Negnevitsky V, Mehta K, Home J P 2019 Nature 566 513Google Scholar

    [163]

    Negnevitsky V, Marinelli M, Mehta K K, Lo H Y, Flühmann C, Home J P 2018 Nature 563 527Google Scholar

    [164]

    Daniel K 2015 Ph. D. Dissertation (Zurich: ETH Zurich)

    [165]

    Hensinger W K, Olmschenk S, Stick D, Hucul D, Yeo M, Acton M, Deslauriers L, Monroe C, Rabchuk J 2006 Appl. Phys. Lett. 88 034101Google Scholar

    [166]

    Decaroli C, Matt R, Oswald R, Axline C, Ernzer M, Flannery J, Ragg S, Home J P 2021 Quantum Science and Technology 6 044001Google Scholar

    [167]

    Ragg S, Decaroli C, Lutz T, Home J P 2019 Rev. Sci. Instrum. 90 103203Google Scholar

    [168]

    Seidelin S, Chiaverini J, Reichle R, Bollinger J J, Leibfried D, Britton J, Wesenberg J H, Blakestad R B, Epstein R J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Shiga N, Wineland D J 2006 Phys. Rev. Lett. 96 253003Google Scholar

    [169]

    Cho D I, Hong S, Lee M, Kim T 2015 Micro and Nano Systems Letters 3 2Google Scholar

    [170]

    Britton J, Leibfried D, Beall J, Blakestad R B, Bollinger J J, Chiaverini J, Epstein R J, Jost J D, Kielpinski D, Langer C, Ozeri R, Reichle R, Seidelin S, Shiga N, Wesenberg J H, Wineland D J 2006 arXiv e-prints, quant.

    [171]

    Wilpers G, See P, Gill P, Sinclair A 2012 Nat. Nanotechnol. 7 572Google Scholar

    [172]

    Brown K R, Kim J, Monroe C 2016 npj Quantum Inf. 2 16034Google Scholar

    [173]

    Moehring D L, Highstrete C, Stick D, Fortier K M, Haltli R, Tigges C, Blain M G 2011 New J. Phys. 13 075018Google Scholar

    [174]

    Amini J M, Uys H, Wesenberg J H, Seidelin S, Britton J, Bollinger J J, Leibfried D, Ospelkaus C, VanDevender A P, Wineland D J 2010 New J. Phys. 12 033031Google Scholar

    [175]

    Shu G, Vittorini G, Buikema A, Nichols C S, Volin C, Stick D, Brown K R 2014 Phys. Rev. A 89 062308Google Scholar

    [176]

    Bowler R, Gaebler J, Lin Y, Tan T R, Hanneke D, Jost J D, Home J P, Leibfried D, Wineland D J 2012 Phys. Rev. Lett. 109 080502Google Scholar

    [177]

    Kaushal V, Lekitsch B, Stahl A, Hilder J, Pijn D, Schmiegelow C, Bermudez A, Mller M, SchmidtKaler F, Poschinger U 2020 AVS Quantum Sci. 2 014101Google Scholar

    [178]

    Barrett M D, DeMarco B, Schaetz T, Meyer V, Leibfried D, Britton J, Chiaverini J, Itano W M, Jelenkovi ′B, Jost J D, Langer C, Rosenband T, Wineland D J 2003 Phys. Rev. A 68 042302Google Scholar

    [179]

    Todaro S L, Verma V B, McCormick K C, Allcock D T C, Mirin R P, Wineland D J, Nam S W, Wilson A C, Leibfried D, Slichter D H 2021 Phys. Rev. Lett. 126 010501Google Scholar

    [180]

    Sorace-Agaskar C, Kharas D, Yegnanarayanan S, Maxson R, West G N, Loh W, Bramhavar S, Ram R J, Chiaverini J, Sage J 2019 IEEE J. Sel. Top. Quantum Electron. 25 1

    [181]

    Khromova A, Piltz C, Scharfenberger B, Gloger T F, Johanning M, Varón A F, Wunderlich C 2012 Phys. Rev. Lett. 108 220502Google Scholar

    [182]

    Weidt S, Randall J, Webster S C, Lake K, Webb A E, Cohen I, Navickas T, Lekitsch B, Retzker A, Hensinger W K 2016 Phys. Rev. Lett. 117 220501Google Scholar

    [183]

    Harty T P, Sepiol M A, Allcock D T C, Ballance C J, Tarlton J E, Lucas D M 2016 Phys. Rev. Lett. 117 140501Google Scholar

    [184]

    Zarantonello G, Hahn H, Morgner J, Schulte M, Bautista-Salvador A, Werner R F, Hammerer K, Ospelkaus C 2019 Phys. Rev. Lett. 123 260503Google Scholar

  • [1] 杨晓堃, 李维, 黄永畅. 量子博弈—“PQ”问题. 物理学报, 2024, 73(3): 030301. doi: 10.7498/aps.73.20230592
    [2] 吴宇恺, 段路明. 离子阱量子计算规模化的研究进展. 物理学报, 2023, 72(23): 230302. doi: 10.7498/aps.72.20231128
    [3] 姜达, 余东洋, 郑沾, 曹晓超, 林强, 刘伍明. 面向量子计算的拓扑超导体材料、物理和器件研究. 物理学报, 2022, 71(16): 160302. doi: 10.7498/aps.71.20220596
    [4] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展. 物理学报, 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [5] 周宗权. 量子存储式量子计算机与无噪声光子回波. 物理学报, 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [6] 王宁, 王保传, 郭国平. 硅基半导体量子计算研究进展. 物理学报, 2022, 71(23): 230301. doi: 10.7498/aps.71.20221900
    [7] 徐达, 王逸璞, 李铁夫, 游建强. 微波驱动下超导量子比特与磁振子的相干耦合. 物理学报, 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [8] 罗雨晨, 李晓鹏. 相互作用费米子的量子模拟. 物理学报, 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [9] 陈阳, 张天炀, 郭光灿, 任希锋. 基于集成光芯片的量子模拟研究进展. 物理学报, 2022, 71(24): 244207. doi: 10.7498/aps.71.20221938
    [10] 高雪儿, 李代莉, 刘志航, 郑超. 非厄米系统的量子模拟新进展. 物理学报, 2022, 71(24): 240303. doi: 10.7498/aps.71.20221825
    [11] 张结印, 高飞, 张建军. 硅和锗量子计算材料研究进展. 物理学报, 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [12] 张诗豪, 张向东, 李绿周. 基于测量的量子计算研究进展. 物理学报, 2021, 70(21): 210301. doi: 10.7498/aps.70.20210923
    [13] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [14] 何映萍, 洪健松, 刘雄军. 马约拉纳零能模的非阿贝尔统计及其在拓扑量子计算的应用. 物理学报, 2020, 69(11): 110302. doi: 10.7498/aps.69.20200812
    [15] 喻祥敏, 谭新生, 于海峰, 于扬. 利用超导量子电路模拟拓扑量子材料. 物理学报, 2018, 67(22): 220302. doi: 10.7498/aps.67.20181857
    [16] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁. 核磁共振量子信息处理研究的新进展. 物理学报, 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [17] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究. 物理学报, 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [18] 范桁. 量子计算与量子模拟. 物理学报, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [19] 叶 宾, 须文波, 顾斌杰. 量子Harper模型的量子计算鲁棒性与耗散退相干. 物理学报, 2008, 57(2): 689-695. doi: 10.7498/aps.57.689
    [20] 叶 宾, 谷瑞军, 须文波. 周期驱动的Harper模型的量子计算鲁棒性与量子混沌. 物理学报, 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
计量
  • 文章访问数:  12578
  • PDF下载量:  773
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-31
  • 修回日期:  2022-03-02
  • 上网日期:  2022-06-20
  • 刊出日期:  2022-07-05

/

返回文章
返回