搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

马约拉纳零能模的非阿贝尔统计及其在拓扑量子计算的应用

何映萍 洪健松 刘雄军

引用本文:
Citation:

马约拉纳零能模的非阿贝尔统计及其在拓扑量子计算的应用

何映萍, 洪健松, 刘雄军

Non-abelian statistics of Majorana modes and the applications to topological quantum computation

He Ying-Ping, Hong Jian-Song, Liu Xiong-Jun
PDF
HTML
导出引用
  • 自1937年被预言以来, 马约拉纳费米子在粒子物理领域和暗物质领域就广受关注. 它们在凝聚态物理中的“副本”, 马约拉纳零能模(Majorana zero mode, MZM), 被指出可以通过拓扑超导实现, 并由于满足非阿贝尔统计及可以用来实现容错的量子计算机而成为凝聚态领域最受关注的研究方向之一. 尤其在近二十年中, 马约拉纳零能模在理论和实验方面均取得了诸多重要进展, 一些综述文章对此做了较详细介绍. 本文将会重点回顾MZM的非阿贝尔统计性质以及它们在量子计算中的应用. 文章的第一部分首先简单介绍了凝聚态系统中MZM的理论发展并概述了在人工异质结体系中寻找MZM的最新理论和实验进展. 然后介绍了MZM非阿贝尔统计的基本概念, 并讨论这一性质怎样应用到量子计算中. 接下来重点讨论了利用MZM平台实现量子计算机的两个关键步骤: MZM非阿贝尔编织操作的实验实现方案和MZM量子比特的读取. 在这一部分里, 本文分别详细列举了现有的比较受关注的实现MZM编织操作和量子比特的读取实验装置. 最后, 文章介绍了在对称性保护的拓扑超导系统中实现马约拉纳的对称保护非阿贝尔统计的可能性.
    Since their prediction as fundamental particles in 1937, Majorana fermions have drawn lots of interests in particle physics and dark matter. Their counterparts in condensed matter physics, Majorana zero-Modes (MZMs), have attracted remarkable attention in condensed matter for their potential in building a fault-tolerant quantum computer. Due to the relentless effort, lots of important progress has been made in Majorana physics in the past two decades, as introduced in several excellent review articles. This review focuses on the non-Abelian statistics of MZMs and their application to quantum computation. In the first section of this work, the theoretical progress in searching for MZM is briefly reviewed and the latest experimental progresses are summarized. We next introduce the basic concepts of non-Abelian statistics of MZMs and explain how they can be applied to quantum computation. We then discuss two key experiments to implementing quantum computers in the MZM platform: MZM braiding and MZM qubit readout. In this part, several representative proposals for the Majorana braiding and MZM qubit readout are elaborated. Finally, we introduce a latest concept, the symmetry-protected non-Abelian braiding of Majorana Kramers pairs in time-reversal invariant topological superconductors.
      通信作者: 刘雄军, xiongjunliu@pku.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 11825401, 11761161003, 11921005)、科技部重点专项 (批准号: 2016 YFA0301604) 和中国科学院战略性先导项目(批准号: XDB28000000) 资助的课题
      Corresponding author: Liu Xiong-Jun, xiongjunliu@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11825401, 11761161003, 11921005), the Major Project of the Ministry of Science and Technology of China (Grant No. 2016 YFA0301604), and the Strategic Priority Research Program of Chinese Academy of Sciences, China (Grant No. XDB28000000)
    [1]

    Majorana E 1937 Nuovo Cim. 14 171Google Scholar

    [2]

    Schechter J, Valle J W F 1982 Phys. Rev. D 25 2951Google Scholar

    [3]

    Keung W Y, Senjanović G 1983 Phys. Rev. Lett. 50 1427Google Scholar

    [4]

    Atre A, Han T, Pascoli S, Zhang B 2009 J. High Energy Phys. 2009 030Google Scholar

    [5]

    Rodejohann W 2011 Inter. J. Mod. Phys. E 20 1833Google Scholar

    [6]

    de Gouvêa A, Vogel P 2013 Progress in Particle and Nuclear Physics 71 75Google Scholar

    [7]

    Kitaev A Y 2001 Physics-Uspekhi 44 131Google Scholar

    [8]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [9]

    Elliott S R, Franz M 2015 Rev. Mod. Phys. 87 137Google Scholar

    [10]

    Leijnse M, Flensberg K 2012 Semiconductor Science and Technology 27 124003Google Scholar

    [11]

    Wilczek F 2009 Nature Physics 5 614Google Scholar

    [12]

    Franz M 2013 Nat. Nanotechnol. 8 149Google Scholar

    [13]

    Read N, Green D 2000 Phys. Rev. B 61 10267Google Scholar

    [14]

    Ivanov D A 2001 Phys. Rev. Lett. 86 268Google Scholar

    [15]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [16]

    Freedman M, Kitaev A, Larsen M, Wang Z 2003 Bulletin of the American Mathematical Society 40 31Google Scholar

    [17]

    Das Sarma S, Freedman M, Nayak C 2005 Phys. Rev. Lett. 94 166802Google Scholar

    [18]

    Sarma S D, Freedman M, Nayak C 2006 Phys. Today 59 32Google Scholar

    [19]

    Kitaev A 2003 Ann. Phys. 303 2Google Scholar

    [20]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [21]

    Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502Google Scholar

    [22]

    Alicea J 2010 Phys. Rev. B 81 125318Google Scholar

    [23]

    Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001Google Scholar

    [24]

    Oreg Y, Refael G, von Oppen F 2010 Phys. Rev. Lett. 105 177002Google Scholar

    [25]

    Hosur P, Ghaemi P, Mong R S K, Vishwanath A 2011 Phys. Rev. Lett. 107 097001Google Scholar

    [26]

    Pientka F, Keselman A, Berg E, Yacoby A, Stern A, Halperin B I 2017 Phys. Rev. X 7 021032Google Scholar

    [27]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [28]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar

    [29]

    Sun H H, Zhang K W, Hu L H, et al. 2016 Phys. Rev. Lett. 116 257003Google Scholar

    [30]

    He Q L, Pan L, Stern A L, et al. 2017 Science 357 294Google Scholar

    [31]

    Zhang P, Yaji K, Hashimoto T, et al. 2018 Science 360 182Google Scholar

    [32]

    Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H, Gao H J 2018 Science 362 333Google Scholar

    [33]

    Fornieri A, Whiticar A M, Setiawan F, Portolés E, Drachmann A C C, Keselman A, Gronin S, Thomas C, Wang T, Kallaher R, et al. 2019 Nature 569 89Google Scholar

    [34]

    Ren H, Pientka F, Hart S, et al. 2019 Nature 569 93Google Scholar

    [35]

    Jäck B, Xie Y, Li J, Jeon S, Bernevig B A, Yazdani A 2019 Science 364 1255Google Scholar

    [36]

    van Heck B, Akhmerov A R, Hassler F, Burrello M, Beenakker C W J 2012 New J. Phys. 14 035019Google Scholar

    [37]

    Aasen D, Hell M, Mishmash R V, Higginbotham A, Danon J, Leijnse M, Jespersen T S, Folk J A, Marcus C M, Flensberg K, Alicea J 2016 Phys. Rev. X 6 031016Google Scholar

    [38]

    Vijay S, Fu L 2016 Phys. Rev. B 94 235446Google Scholar

    [39]

    Karzig T, Knapp C, Lutchyn R M, Bonderson P, Hastings M B, Nayak C, Alicea J, Flensberg K, Plugge S, Oreg Y, Marcus C M, Freedman M H 2017 Phys. Rev. B 95 235305Google Scholar

    [40]

    Schrade C, Fu L 2018. arXiv: 1807.06620 [cond-mat.mes-hall]

    [41]

    Stern A, Berg E 2019 Phys. Rev. Lett. 122 107701Google Scholar

    [42]

    Wang Z 2010 Topological Quantum Computation (Santa Barbara: American Mathematical Soc.)

    [43]

    Zhang L, Liu X J 2018 Spin-orbit Coupling and Topological Phases for Ultracold Atoms (Chap. 1) (Singapore: World Scientific) pp1–87

    [44]

    Sau J D, Tewari S, Lutchyn R M, Stanescu T D, Das Sarma S 2010 Phys. Rev. B 82 214509Google Scholar

    [45]

    Potter A C, Lee P A 2011 Phys. Rev. B 83 184520Google Scholar

    [46]

    Sau J D, Tewari S, Das Sarma S 2012 Phys. Rev. B 85 064512Google Scholar

    [47]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414Google Scholar

    [48]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nat. Phys. 8 887Google Scholar

    [49]

    Finck A D K, Van Harlingen D J, Mohseni P K, Jung K, Li X 2013 Phys. Rev. Lett. 110 126406Google Scholar

    [50]

    Churchill H O H, Fatemi V, Grove-Rasmussen K, Deng M T, Caroff P, Xu H Q, Marcus C M 2013 Phys. Rev. B 87 241401Google Scholar

    [51]

    Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001Google Scholar

    [52]

    Flensberg K 2010 Phys. Rev. B 82 180516Google Scholar

    [53]

    Wimmer M, Akhmerov A R, Dahlhaus J P, Beenakker C W J 2011 New J. Phys. 13 053016Google Scholar

    [54]

    Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus C M, Oreg Y 2018 Nat. Rev.s Mater. 3 52Google Scholar

    [55]

    Liu X J, Lobos A M 2013 Phys. Rev. B 87 060504Google Scholar

    [56]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [57]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [58]

    Fu L, Kane C L 2009 Phys. Rev. B 79 161408Google Scholar

    [59]

    Scharf B, Pientka F, Ren H, Yacoby A, Hankiewicz E M 2019 Phys. Rev. B 99 214503Google Scholar

    [60]

    Setiawan F, Stern A, Berg E 2019 Phys. Rev. B 99 220506Google Scholar

    [61]

    Stone M, Roy R 2004 Physical Review B 69 184511Google Scholar

    [62]

    Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803Google Scholar

    [63]

    Fu L, Kane C L 2009 Phys. Rev. Lett. 102 216403Google Scholar

    [64]

    Akhmerov A R, Nilsson J, Beenakker C W J 2009 Phys. Rev. Lett. 102 216404Google Scholar

    [65]

    Tanaka Y, Yokoyama T, Nagaosa N 2009 Phys. Rev. Lett. 103 107002Google Scholar

    [66]

    Linder J, Tanaka Y, Yokoyama T, Sudbø A, Nagaosa N 2010 Phys. Rev. B 81 184525Google Scholar

    [67]

    Zhang C, Tewari S, Lutchyn R M, Das Sarma S 2008 Phys. Rev. Lett. 101 160401Google Scholar

    [68]

    Sato M, Takahashi Y, Fujimoto S 2009 Phys. Rev. Lett. 103 020401Google Scholar

    [69]

    Wang M X, Liu C, Xu J P, et al. 2012 Science 336 52Google Scholar

    [70]

    He J J, Ng T K, Lee P A, Law K T 2014 Phys. Rev. Lett. 112 037001Google Scholar

    [71]

    Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C, Jia J F 2014 Phys. Rev. Lett. 112 217001Google Scholar

    [72]

    Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001Google Scholar

    [73]

    Wang Z, Zhang P, Xu G, Zeng L K, Miao H, Xu X, Qian T, Weng H, Richard P, Fedorov A V, Ding H, Dai X, Fang Z 2015 Phys. Rev. B 92 115119Google Scholar

    [74]

    Xu G, Lian B, Tang P, Qi X L, Zhang S C 2016 Phys. Rev. Lett. 117 047001Google Scholar

    [75]

    Kong L, Zhu S, Papaj M, et al. 2019 Nat. Phys. 15 1181Google Scholar

    [76]

    König E J, Coleman P 2019 Phys. Rev. Lett. 122 207001Google Scholar

    [77]

    Zhang P, Wang Z, Wu X, Yaji K, Ishida Y, Kohama Y, Dai G, Sun Y, Bareille C, Kuroda K, et al. 2018 Nat. Phys. 15 41Google Scholar

    [78]

    Zhou X, Gordon K N, Jin K H, Li H, Narayan D, Zhao H, Zheng H, Huang H, Cao G, Zhigadlo N D, Liu F, Dessau D S 2019 Phys. Rev. B 100 184511Google Scholar

    [79]

    Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T, Tamegai T 2019 Nat. Mater. 18 811Google Scholar

    [80]

    Yan Z, Bi R, Wang Z 2017 Phys. Rev. Lett. 118 147003Google Scholar

    [81]

    Chan C, Zhang L, Poon T F J, He Y P, Wang Y Q, Liu X J 2017 Phys. Rev. Lett. 119 047001Google Scholar

    [82]

    Teo J C Y, Kane C L 2010 Phys. Rev. B 82 115120Google Scholar

    [83]

    Chan C, Liu X J 2017 Phys. Rev. Lett. 118 207002Google Scholar

    [84]

    Qi X L, Hughes T L, Zhang S C 2010 Phys. Rev. B 82 184516Google Scholar

    [85]

    Chung S B, Qi X L, Maciejko J, Zhang S C 2011 Phys. Rev. B 83 100512Google Scholar

    [86]

    Wang J, Zhou Q, Lian B, Zhang S C 2015 Phys. Rev. B 92 064520Google Scholar

    [87]

    Lian B, Wang J, Zhang S C 2016 Phys. Rev. B 93 161401Google Scholar

    [88]

    Kayyalha M, Xiao D, Zhang R, Shin J, Jiang J, Wang F, Zhao Y F, Xiao R, Zhang L, Fijalkowski K M, Mandal P, Winnerlein M, Gould C, Li Q, Molenkamp L W, Chan M H W, Samarth N, Chang C Z 2020 Science 367 64Google Scholar

    [89]

    Deng M T, Vaitiekenas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P, Marcus C M 2016 Science 354 1557Google Scholar

    [90]

    Nichele F, Drachmann A C, Whiticar A M, et al. 2017 Phys. Rev. Lett. 119 136803Google Scholar

    [91]

    Gül O, Zhang H, Bommer J D S, et al. 2018 Nat. Nanotechnol. 13 192Google Scholar

    [92]

    Feldman B E, Randeria M T, Li J, Jeon S, Xie Y, Wang Z, Drozdov I K, Bernevig B A, Yazdani A 2017 Nat. Phys. 13 286Google Scholar

    [93]

    Jeon S, Xie Y, Li J, Wang Z, Bernevig B A, Yazdani A 2017 Science 358 772Google Scholar

    [94]

    Laroche D, Bouman D, van Woerkom D J, et al. 2019 Nat. Commun. 10 245Google Scholar

    [95]

    Rokhinson L P, Liu X, Furdyna J K 2012 Nat. Phys. 8 795Google Scholar

    [96]

    Beenakker C W J 2019. arXiv: 1907.06497 [cond-mat]

    [97]

    Bonderson P, Gurarie V, Nayak C 2011 Phys. Rev. B 83 075303Google Scholar

    [98]

    Teo J C Y, Kane C L 2010 Phys. Rev. Lett. 104 046401Google Scholar

    [99]

    Freedman M, Hastings M B, Nayak C, Qi X L, Walker K, Wang Z 2011 Phys. Rev. B 83 115132Google Scholar

    [100]

    Freedman M, Hastings M B, Nayak C, Qi X L 2011 Phys. Rev. B 84 245119Google Scholar

    [101]

    Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A 2011 Nat. Phys. 7 412Google Scholar

    [102]

    Feynman R P 1982 Intern. J. Theoretical Phys. 21 467Google Scholar

    [103]

    Shor P W 1994 In Proceedings 35th Annual Symposium on Foundations of Computer Science (Ieee), pp124–134

    [104]

    Grover L K 1997 Phys. Rev. Lett. 79 325Google Scholar

    [105]

    Lloyd S 1996 Science 273 1073Google Scholar

    [106]

    Deutsch D 1985 Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 400 97Google Scholar

    [107]

    Lo H K, Spiller T, Popescu S 1998 Introduction to quantum computation and information (World Scientific)

    [108]

    DiVincenzo D P 2000 Fortschritte der Physik: Progress of Physics 48 771Google Scholar

    [109]

    Sarma S D, Freedman M, Nayak C 2015 npj Quantum Information 1 15001Google Scholar

    [110]

    Lahtinen V, Pachos J 2017 SciPost Physics 3 021Google Scholar

    [111]

    Kitaev A Y 1997 Uspekhi Matematicheskikh Nauk 52 53Google Scholar

    [112]

    Dawson C M, Nielsen M A 2005. arXiv: 0505030 [quant-ph]

    [113]

    Bravyi S, Kitaev A 2005 Phys. Rev. A 71 022316Google Scholar

    [114]

    Bravyi S 2006 Phys. Rev. A 73 042313Google Scholar

    [115]

    Freedman M, Nayak C, Walker K 2006 Phys. Rev. B 73 245307Google Scholar

    [116]

    Bonderson P, Clarke D J, Nayak C, Shtengel K 2010 Phys. Rev. Lett. 104 180505Google Scholar

    [117]

    Karzig T, Oreg Y, Refael G, Freedman M H 2016 Phys. Rev. X 6 031019Google Scholar

    [118]

    Cheng M, Galitski V, Das Sarma S 2011 Phys. Rev. B 84 104529Google Scholar

    [119]

    Bauer B, Karzig T, Mishmash R, Antipov A, Alicea J 2018 Sci. Post Phys. 5 004Google Scholar

    [120]

    Sau J D, Clarke D J, Tewari S 2011 Phys. Rev. B 84 094505Google Scholar

    [121]

    Clarke D J, Sau J D, Tewari S 2011 Phys. Rev. B 84 035120Google Scholar

    [122]

    Halperin B I, Oreg Y, Stern A, Refael G, Alicea J, von Oppen F 2012 Phys. Rev. B 85 144501Google Scholar

    [123]

    Amorim C S, Ebihara K, Yamakage A, Tanaka Y, Sato M 2015 Phys. Rev. B 91 174305Google Scholar

    [124]

    Liu X, Li X, Deng D L, Liu X J, Das Sarma S 2016 Phys. Rev. B 94 014511Google Scholar

    [125]

    Bonderson P, Freedman M, Nayak C 2008 Phys. Rev. Lett. 101 010501Google Scholar

    [126]

    Bonderson P 2013 Phys. Rev. B 87 035113Google Scholar

    [127]

    Preskill J 2004 http://www.theory.caltech.edu/preskill/ talks/Preskill Biedenharn4.pdf

    [128]

    Luo X J, He Y P, Poon T F J, Liu X, Liu X J 2018. arXiv: 1803.02173 [cond-mat.mes-hall]

    [129]

    Chiu C K, Das Sarma S 2019 Phys. Rev. B 99 035312Google Scholar

    [130]

    Jiang L, Pekker D, Alicea J, Refael G, Oreg Y, von Oppen F 2011 Phys. Rev. Lett. 107 236401Google Scholar

    [131]

    Yang G, Lyu Z, Zhang X, Qu F, Lu L 2019 Chin. Phys. B 28 127402Google Scholar

    [132]

    Stenger J P T, Hatridge M, Frolov S M, Pekker D 2019 Phys. Rev. B 99 035307Google Scholar

    [133]

    Plugge S, Rasmussen A, Egger R, Flensberg K 2017 New J. Phys. 19 012001Google Scholar

    [134]

    Liu D E, Cheng M, Lutchyn R M 2015 Phys. Rev. B 91 081405Google Scholar

    [135]

    Barthel C, Reilly D J, Marcus C M, Hanson M P, Gossard A C 2009 Phys. Rev. Lett. 103 160503Google Scholar

    [136]

    Medford J, Beil J, Taylor J M, Bartlett S D, Doherty A C, Rashba E I, DiVincenzo D P, Lu H, Gossard A C, Marcus C M 2013 Nat. Nanotechnol. 8 654Google Scholar

    [137]

    Eng K, Ladd T D, Smith A, Borselli M G, Kiselev A A, Fong B H, Holabird K S, Hazard T M, Huang B, Deelman P W, Milosavljevic I, Schmitz A E, Ross R S, Gyure M F, Hunter A T 2015 Sci. Advances 1 1500214Google Scholar

    [138]

    Fu L 2010 Phys. Rev. Lett. 104 056402Google Scholar

    [139]

    Schrade C, Fu L 2018 Phys. Rev. Lett. 121 267002Google Scholar

    [140]

    Knapp C 2019 Ph.D. Dissertation (UC Santa Barbara)

    [141]

    Qi X L, Hughes T L, Raghu S, Zhang S C 2009 Phys. Rev. Lett. 102 187001Google Scholar

    [142]

    Schnyder A P, Brydon P M R, Manske D, Timm C 2010 Phys. Rev. B 82 184508Google Scholar

    [143]

    Beenakker C W J, Dahlhaus J P, Wimmer M, Akhmerov A R 2011 Phys. Rev. B 83 085413Google Scholar

    [144]

    Deng S, Viola L, Ortiz G 2012 Phys. Rev. Lett. 108 036803Google Scholar

    [145]

    Nakosai S, Tanaka Y, Nagaosa N 2012 Phys. Rev. Lett. 108 147003Google Scholar

    [146]

    Wong C L M, Law K T 2012 Phys. Rev. B 86 184516Google Scholar

    [147]

    Zhang F, Kane C L, Mele E J 2013 Phys. Rev. Lett. 111 056402Google Scholar

    [148]

    Keselman A, Fu L, Stern A, Berg E 2013 Phys. Rev. Lett. 111 116402Google Scholar

    [149]

    Kim Y, Liu D E, Gaidamauskas E, Paaske J, Flensberg K, Lutchyn R M 2016 Phys. Rev. B 94 075439Google Scholar

    [150]

    Fang C, Gilbert M J, Bernevig B A 2014 Phys. Rev. Lett. 112 106401Google Scholar

    [151]

    Liu X J, He J J, Law K T 2014 Phys. Rev. B 90 235141Google Scholar

    [152]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [153]

    Snyder R A, Trimble C J, Rong C C, Folkes P A, Taylor P J, Williams J R 2018 Phys. Rev. Lett. 121 097701Google Scholar

    [154]

    Trifunovic L, Brouwer P W 2019 Phys. Rev. X 9 011012Google Scholar

    [155]

    Liu X J, Wong C L M, Law K T 2014 Phys. Rev. X 4 021018Google Scholar

    [156]

    Gao P, He Y P, Liu X J 2016 Phys. Rev. B 94 224509Google Scholar

    [157]

    Wölms K, Stern A, Flensberg K 2014 Phys. Rev. Lett. 113 246401Google Scholar

    [158]

    Wölms K, Stern A, Flensberg K 2016 Phys. Rev. B 93 045417Google Scholar

    [159]

    McGinley M, Cooper N R 2018 Phys. Rev. Lett. 121 090401Google Scholar

    [160]

    Zhang F, Kane C L 2014 Phys. Rev. B 90 020501Google Scholar

  • 图 1  Kitaev链的两个拓扑相 (a)和(b) Majorana基矢下的哈密顿量示意图. 图(a)中$\mu\neq0, \varDelta=t=0$, 只有第一项$ (1+ {\rm{i}}\gamma_{x, B}\gamma_{x, A})$不为零, 每一个格点上的两个马约拉纳算符耦合在一起, 不存在空间分离的MZM. 图(b)中$\mu=0, \varDelta=t$, 只有第二项$\gamma_{x, B}\gamma_{x+1, A}$不为零, 相邻格点的两个马约拉纳算符耦合在一起, 超导链的两端各自剩下一个MZM. (c) $\varDelta=0$时的色散关系. (d) Kitaev链的拓扑相图. 当化学势穿过能带时, 体系处在拓扑相, 由(d) 中的橙色区域描述; 反之, 体系处在平庸相, 由(d)中的白色区域描述

    Fig. 1.  Two topological phases of the Kiteaev chain. (a) Sche-matic illustration of the Hamiltonian in Majorana basis. In (a) $\mu\neq0$, $\varDelta=t=0$, only the first term $(1+ {\rm{i}}\gamma_{x, B}\gamma_{x, A})$ survives thus Majoranas couple at the same site leaving no seperate MZMs left. In (b) $\mu=0, \varDelta=t$, only the second term $\gamma_{x, B}\gamma_{x+1, A}$ survives thus Majoranas couple at adjacent sites, leaving one MZM at each end of the chain. (c) Energy dispersion for $\varDelta=0$. (d) Topological phase diagram of Kitaev chain. When the chemical potential crosses the nomal spectrum the system is in topological phase, as described by the orange region in (d); otherwise the system is trivial, as described by the white region in (d).

    图 2  在一维SOC纳米线中实现马约拉纳零模激发[8] (a)装置简图; (b)一维SOC纳米线的色散关系. 在无外加塞曼场时, 系统具有时间反演对称性, 体系有偶数个费米面(红色和蓝色曲线); 在外加塞曼场时, 时间反演对称性被破坏, $k=0$处被打开能隙(黑色曲线). 若化学势位于能隙中间, 该体系只有一个费米面, 其低能哈密顿量等效为Kitaev链. (c)体系的拓扑相图, 其中相边界由$h^{2}= \varDelta^{2}+\mu^{2}$给出, 橙色(白色)表示拓扑(平庸)区

    Fig. 2.  Realizing MZMs in a 1D SOC nanowire[8]. (a) Sketch of the basic setup. (b) Energy dispersion for the 1D SOC nanowire. When Zeeman field is absent, the system is time-reversal symmetric(TRS) and possesses even number of Fermi surfaces (red and blue curves); when Zeeman field is introduced, TRS is broken and a gap is opened at $k=0$(black curves). Given that the chemical potential lies within gap, the system possesses only one Fermi surface, and the low-energy Hamilitonian is equivalent to that of the Kitaev chain. (c) Topological phase diagram of the system with the phase boundary given by $h^{2}= \varDelta^{2}+ \mu^{2}$. Orange (white) denotes topological (trivial) region.

    图 3  MZM交换示意图 (a)含有4个空间分离足够远的MZM$\gamma_{1, 2, 3, 4}$的体系, 其中$\gamma_{1}$$\gamma_{2}$$\gamma_{3}$$\gamma_{4}$分别构成两个费米子. $\gamma_{2}$$\gamma_{3}$顺时针交换一次, $\gamma_{2}$会跨越$\gamma_{3}$所在涡旋的相位割线获得一个负号, 而$\gamma_{3}$并未跨越$\gamma_{2}$所在涡旋的相位割线不获得负号. 因此结果是$\gamma_{2}\rightarrow-\gamma_{3}, \gamma_{3}\rightarrow\gamma_{2}$. (b)描述4个MZM的时间-空间(x; t)轨迹的世界线. $\gamma_{2}$$\gamma_{3}$被编织一次, 因此它们的世界线缠绕一次. 系统由初态$|\varPhi_{\rm i}\rangle=|00\rangle$演化到$|\varPhi_{\rm f}\rangle=|00\rangle+ {\rm{i}}|11\rangle$

    Fig. 3.  Skecth of a MZM braiding operation. (a) A system consists of 4 MZMs far enough apart, with $\gamma_{1}$ and $\gamma_{2}$, $\gamma_{3}$ and $\gamma_{4}$ forming 2 fermions $f_{1}$ and $f_{2}$. $\gamma_{2}$ and $\gamma_{3}$ are braided once clockwise. γ2 crosses the branch cut of the votex hosting γ3 and gains a minus sign, while γ3 doesn't cross the branch cut of the votex hosting γ2 and doesn't gain a minus sign. Hence the result is given by γ2 → –γ3, γ3 → γ2. (b) Worldlines in a space-time (x; t) diagram, describing four MZMs. $\gamma_{2}$ and $\gamma_{3}$ are braided once, hence their worldlines winds each other once. The initial state $|\varPhi_{\rm i}\rangle=|00\rangle$ evolves into $|\varPhi_{\rm f}\rangle=|00\rangle+ {\rm{i}}|11\rangle$.

    图 4  通过MZM编织操作实现量子门[110] (a)−(d) 分别为实现单比特量子门H-门、Z-门、双比特门CNOT门和双比特门CZ门的编织操作示意图

    Fig. 4.  Quantum gates realized by MZM braiding operations[110]. (a)−(d) The elementary braids corresponding to the single-qubit gates H-, Z-gates on the first qubit as well as the 2-qubit CNOT and CZ gates.

    图 5  T-型结进行编织操作以及键盘门的操作方式[101]. T- 型结由两条水平链和一条竖直链组成, 深蓝色部分为拓扑相, 浅蓝色部分为平凡相, 超导体上向上和向右的箭头分别代表$\phi= \text{π}/2$$\phi=0$, 用向左和向下的箭头代表$\phi=\text{π}$$\phi=3\text{π}/2$. T-型结外的箭头代表MZM运动的方向. 黑色和灰色方块分别代表局域门的关闭和打开状态, 对应平凡相和拓扑相. (a)—(d) 给出$\gamma_{1}$先运动到竖直链上, 然后$\gamma_{2}$从水平链右端运动到左端, 最后$\gamma_{1}$运动到右端的过程, 过程结束后箭头反向. (e) 中局域门的存在可以保证在不关闭能隙的前提下逐渐移动MZM

    Fig. 5.  A T-junction allows for braiding process and the keyboard gates[101]. The T-junction consists of two horizontal segments and one vertical segment. Dark blue segments are in topological phase, and light blue lines trivial phase. $\phi=0$ or $\text{π}/2$ is represented with rightward or upward pointing arrows, while $\phi=\text{π}$ or $3\text{π}/2$ represents the leftward or downward pointing arrows. MZMs are transported according to the arrows around the T-junction. Black and gray blocks denote different states of tunable gates in accordance with trivial and topological phases. (a)–(d) sketch the process which $\gamma_{1}$ is transported to vertical line firstly, then $\gamma_{2}$ travels from the right end to the left end and at last $\gamma_{1}$ is transported to the right end. After this process, the arrow points to the opposite direction. Local gates in (e) ensure that the MZMs can be manipulated gradually without closing the gap.

    图 6  通过转动铁磁体的磁化方向实现铁磁体两端的MZM[128] (a)交换世界带两次在拓扑上等价于世界带各自扭转$2\text{π}$. 箭头表示MZM的自旋; 世界带的红蓝边界标记MZM的内部自由度的时间演化. (b) SC/QSH/FI异质结装置中的MZM. 黄色(红色)箭头表示MZM的局域自旋方向(铁磁磁化方向). 下方的红色箭头转$\text{π}$角, $\gamma_{1}$$\gamma_{2}$编织一次; 转$2\text{π}$角, $\gamma_{1}$$\gamma_{2}$编织两次. 逆方向转动代表逆交换.

    Fig. 6.  Braiding operation via winding FI magnetization[128]. (a) The monodromy operator can be realized by either braiding two MZMs or twisting each worldribbons by $2\text{π}$. The arrows indicate the MZM spin. The blue and red edges of the ribbon denote the evolution of internal degree of freedom. (b) MZMs in the SC/QSH/FI hybrid system. The yellow (red) arrows represent the directions of local spin polari-zations for MZMs (FI magnetization). Winding the red arrow at the bottom by $\text{π}$, $\gamma_{1}$ and $\gamma_{2}$ are braided once; by $2\text{π}$ they are braided twice. A reverse rotation leads to an inverse braiding operation.

    图 7  约瑟夫森结的量子比特读出装置[129] (a)为MZM约瑟夫森结的示意图. 结两端各自存在一个MZM. 蓝色区域为一维拓扑超导区, 绿色区域为绝缘体区. 拓扑区的长度足够长, 使得两个MZM通过拓扑区的耦合可以忽略. $\gamma_{1}$$\gamma_{2}$通过足够短的绝缘区耦合起来, 形成一个能量非零的费米子. 通过改变通过线圈的磁场通量$\varPhi$可以改变结两端的超导相位差$\phi$. (b) 直流分数约瑟夫森电流随$\phi$的变化关系. 其中红色虚线代表空占据态$|0\rangle$, 蓝色实线代表占据态$|1\rangle$. 和传统的以$2{\text{π}}$周期的约瑟夫森电流不同的是, 分数约瑟夫森电流关于$\phi$的变化周期是$4{\text{π}}$. 量子比特$|0\rangle$$|1\rangle$相对应的电流方向相反, 因此通过测量直流约瑟夫森电流可以读出MZM量子比特

    Fig. 7.  Basic set-up for qubit readout using a Josephson junction(JJ)[129]. (a) The schematic of a JJ with 2 MZMs residing at the junction. The blue region denotes 1d TSC and the green denoted trivial insulator. The TSC region should be long enough so that the coupling of the MZMs through TSC is negligible. $\gamma_{1}$ and $\gamma_{2}$ couple weakly at the junction, forming a non-zero energy fermion. The phase difference $\phi$ can be varied by changing the magnetic flux $\varPhi$. (b) The d.c. fractional Josephson current flowing across the junction versus$\phi$. Instead of conventional $2{\text{π}}$-periodic JJ current induced by Cooper pair tunneling, the fractional JJ current induced by MZMs exhibits $4{\text{π}}$ periodicity. The red dashed line denotes $|0\rangle$ and the blue solid line denotes $|1\rangle$. The direction of the current is inverse for the qubit $|0\rangle$ and $|1\rangle$, which enables the readout of the qubit by measuring the direct Josephson current.

    图 8  MZM和量子点耦合的装置简图[39]  (a) , (b)分别是2个和4个MZM系统的装置; (c) 在调节量子点与MZM之间跃迁矩阵元的局域电平开关

    Fig. 8.  Sketch of MZMs coupled to quantum dots[39], with 2-MZM and 4-MZM system shown in (a) and (b), and in (c) the local gates controlling the coupling between MZMs and quantum dots are shown.

    图 9  马约拉纳干涉仪装置[38] (a)电流从上方经过两个MZM也即一个拓扑量子比特, 从下方经过相位相干长度足够长的金属, 电路中间穿过可调节的磁通. 两条路径的相位差由电子的传输相移以及穿过线路的磁通决定. (b)通过测量干涉后的电导可以得到拓扑量子比特的宇称信息. 实线和虚线分别对应宇称为1和–1的量子比特的电导信号

    Fig. 9.  Majorana inferometry[38]. (a) One path goes through two MZMs i.e. a topological qubit while the other path goes through a normal metal with a sufficiently long phase-coherence length. $\varPsi$ is the applied magnetic flux enclosed by the two paths. The phase difference of two paths is determined by the phase transition shift and the magnetic flux, which can be measured by the conductance. (b) Majorana interferometer provides a projective measurement of the fermion parity. Solid line and dotted line represent the conductance signals corresponding to qubits with parity 1 and –1 respectively.

    图 10  时间反演对称性保护的编织过程及非阿贝尔统计的结果[156] (a) 时间反演不变的拓扑超导体两wlxb 端各有一对MZM, 以T-型结的方案完成编织. (b), (c) 不同的无序强度$W_{0}$下经过完整编织后MKP的演化结果, 在不同条件下均有$\eta(t)=\langle\gamma_{1}(0)|\gamma_{1}(t)\rangle|_{t=2 T}=-1$, 满足非阿贝尔统计. 经过一个周期后$\zeta(nT)=\displaystyle\sum\limits_{j=1, 2}[|\langle\gamma_{1}(nT) |\gamma_{j}(0)\rangle|^{2} + |\langle\gamma_{1}(nT)|\tilde{\gamma}_{j}(0)\rangle|^{2}]=1$给出绝热演化的条件

    Fig. 10.  Time-reversal symmetry protected braiding process and the results of non-Abelian statistics[156]. The TSC in (a) hosts a pair of MZMs at each end, and the braiding is fulfilled by the T-junction scheme. (b), (c) The evoluation of MKPs after the full braiding in the presence of different disorder strengh $W_{0}$. The non-Abelian statistics is confirmed by $\eta(t)=\langle\gamma_{1}(0)|\gamma_{1}(t)\rangle|_{t=2 T}=-1$. The adiabatic condition is satisfied in that $\zeta(nT)= \displaystyle\sum\limits_{j=1, 2}[|\langle\gamma_{1}(nT)|\gamma_{j}(0)\rangle|^{2} + |\langle\gamma_{1}(nT)|\tilde{\gamma}_{j}(0)\rangle|^{2}]=1$.

  • [1]

    Majorana E 1937 Nuovo Cim. 14 171Google Scholar

    [2]

    Schechter J, Valle J W F 1982 Phys. Rev. D 25 2951Google Scholar

    [3]

    Keung W Y, Senjanović G 1983 Phys. Rev. Lett. 50 1427Google Scholar

    [4]

    Atre A, Han T, Pascoli S, Zhang B 2009 J. High Energy Phys. 2009 030Google Scholar

    [5]

    Rodejohann W 2011 Inter. J. Mod. Phys. E 20 1833Google Scholar

    [6]

    de Gouvêa A, Vogel P 2013 Progress in Particle and Nuclear Physics 71 75Google Scholar

    [7]

    Kitaev A Y 2001 Physics-Uspekhi 44 131Google Scholar

    [8]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [9]

    Elliott S R, Franz M 2015 Rev. Mod. Phys. 87 137Google Scholar

    [10]

    Leijnse M, Flensberg K 2012 Semiconductor Science and Technology 27 124003Google Scholar

    [11]

    Wilczek F 2009 Nature Physics 5 614Google Scholar

    [12]

    Franz M 2013 Nat. Nanotechnol. 8 149Google Scholar

    [13]

    Read N, Green D 2000 Phys. Rev. B 61 10267Google Scholar

    [14]

    Ivanov D A 2001 Phys. Rev. Lett. 86 268Google Scholar

    [15]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [16]

    Freedman M, Kitaev A, Larsen M, Wang Z 2003 Bulletin of the American Mathematical Society 40 31Google Scholar

    [17]

    Das Sarma S, Freedman M, Nayak C 2005 Phys. Rev. Lett. 94 166802Google Scholar

    [18]

    Sarma S D, Freedman M, Nayak C 2006 Phys. Today 59 32Google Scholar

    [19]

    Kitaev A 2003 Ann. Phys. 303 2Google Scholar

    [20]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [21]

    Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502Google Scholar

    [22]

    Alicea J 2010 Phys. Rev. B 81 125318Google Scholar

    [23]

    Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001Google Scholar

    [24]

    Oreg Y, Refael G, von Oppen F 2010 Phys. Rev. Lett. 105 177002Google Scholar

    [25]

    Hosur P, Ghaemi P, Mong R S K, Vishwanath A 2011 Phys. Rev. Lett. 107 097001Google Scholar

    [26]

    Pientka F, Keselman A, Berg E, Yacoby A, Stern A, Halperin B I 2017 Phys. Rev. X 7 021032Google Scholar

    [27]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [28]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar

    [29]

    Sun H H, Zhang K W, Hu L H, et al. 2016 Phys. Rev. Lett. 116 257003Google Scholar

    [30]

    He Q L, Pan L, Stern A L, et al. 2017 Science 357 294Google Scholar

    [31]

    Zhang P, Yaji K, Hashimoto T, et al. 2018 Science 360 182Google Scholar

    [32]

    Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H, Gao H J 2018 Science 362 333Google Scholar

    [33]

    Fornieri A, Whiticar A M, Setiawan F, Portolés E, Drachmann A C C, Keselman A, Gronin S, Thomas C, Wang T, Kallaher R, et al. 2019 Nature 569 89Google Scholar

    [34]

    Ren H, Pientka F, Hart S, et al. 2019 Nature 569 93Google Scholar

    [35]

    Jäck B, Xie Y, Li J, Jeon S, Bernevig B A, Yazdani A 2019 Science 364 1255Google Scholar

    [36]

    van Heck B, Akhmerov A R, Hassler F, Burrello M, Beenakker C W J 2012 New J. Phys. 14 035019Google Scholar

    [37]

    Aasen D, Hell M, Mishmash R V, Higginbotham A, Danon J, Leijnse M, Jespersen T S, Folk J A, Marcus C M, Flensberg K, Alicea J 2016 Phys. Rev. X 6 031016Google Scholar

    [38]

    Vijay S, Fu L 2016 Phys. Rev. B 94 235446Google Scholar

    [39]

    Karzig T, Knapp C, Lutchyn R M, Bonderson P, Hastings M B, Nayak C, Alicea J, Flensberg K, Plugge S, Oreg Y, Marcus C M, Freedman M H 2017 Phys. Rev. B 95 235305Google Scholar

    [40]

    Schrade C, Fu L 2018. arXiv: 1807.06620 [cond-mat.mes-hall]

    [41]

    Stern A, Berg E 2019 Phys. Rev. Lett. 122 107701Google Scholar

    [42]

    Wang Z 2010 Topological Quantum Computation (Santa Barbara: American Mathematical Soc.)

    [43]

    Zhang L, Liu X J 2018 Spin-orbit Coupling and Topological Phases for Ultracold Atoms (Chap. 1) (Singapore: World Scientific) pp1–87

    [44]

    Sau J D, Tewari S, Lutchyn R M, Stanescu T D, Das Sarma S 2010 Phys. Rev. B 82 214509Google Scholar

    [45]

    Potter A C, Lee P A 2011 Phys. Rev. B 83 184520Google Scholar

    [46]

    Sau J D, Tewari S, Das Sarma S 2012 Phys. Rev. B 85 064512Google Scholar

    [47]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414Google Scholar

    [48]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nat. Phys. 8 887Google Scholar

    [49]

    Finck A D K, Van Harlingen D J, Mohseni P K, Jung K, Li X 2013 Phys. Rev. Lett. 110 126406Google Scholar

    [50]

    Churchill H O H, Fatemi V, Grove-Rasmussen K, Deng M T, Caroff P, Xu H Q, Marcus C M 2013 Phys. Rev. B 87 241401Google Scholar

    [51]

    Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001Google Scholar

    [52]

    Flensberg K 2010 Phys. Rev. B 82 180516Google Scholar

    [53]

    Wimmer M, Akhmerov A R, Dahlhaus J P, Beenakker C W J 2011 New J. Phys. 13 053016Google Scholar

    [54]

    Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus C M, Oreg Y 2018 Nat. Rev.s Mater. 3 52Google Scholar

    [55]

    Liu X J, Lobos A M 2013 Phys. Rev. B 87 060504Google Scholar

    [56]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [57]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [58]

    Fu L, Kane C L 2009 Phys. Rev. B 79 161408Google Scholar

    [59]

    Scharf B, Pientka F, Ren H, Yacoby A, Hankiewicz E M 2019 Phys. Rev. B 99 214503Google Scholar

    [60]

    Setiawan F, Stern A, Berg E 2019 Phys. Rev. B 99 220506Google Scholar

    [61]

    Stone M, Roy R 2004 Physical Review B 69 184511Google Scholar

    [62]

    Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803Google Scholar

    [63]

    Fu L, Kane C L 2009 Phys. Rev. Lett. 102 216403Google Scholar

    [64]

    Akhmerov A R, Nilsson J, Beenakker C W J 2009 Phys. Rev. Lett. 102 216404Google Scholar

    [65]

    Tanaka Y, Yokoyama T, Nagaosa N 2009 Phys. Rev. Lett. 103 107002Google Scholar

    [66]

    Linder J, Tanaka Y, Yokoyama T, Sudbø A, Nagaosa N 2010 Phys. Rev. B 81 184525Google Scholar

    [67]

    Zhang C, Tewari S, Lutchyn R M, Das Sarma S 2008 Phys. Rev. Lett. 101 160401Google Scholar

    [68]

    Sato M, Takahashi Y, Fujimoto S 2009 Phys. Rev. Lett. 103 020401Google Scholar

    [69]

    Wang M X, Liu C, Xu J P, et al. 2012 Science 336 52Google Scholar

    [70]

    He J J, Ng T K, Lee P A, Law K T 2014 Phys. Rev. Lett. 112 037001Google Scholar

    [71]

    Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C, Jia J F 2014 Phys. Rev. Lett. 112 217001Google Scholar

    [72]

    Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001Google Scholar

    [73]

    Wang Z, Zhang P, Xu G, Zeng L K, Miao H, Xu X, Qian T, Weng H, Richard P, Fedorov A V, Ding H, Dai X, Fang Z 2015 Phys. Rev. B 92 115119Google Scholar

    [74]

    Xu G, Lian B, Tang P, Qi X L, Zhang S C 2016 Phys. Rev. Lett. 117 047001Google Scholar

    [75]

    Kong L, Zhu S, Papaj M, et al. 2019 Nat. Phys. 15 1181Google Scholar

    [76]

    König E J, Coleman P 2019 Phys. Rev. Lett. 122 207001Google Scholar

    [77]

    Zhang P, Wang Z, Wu X, Yaji K, Ishida Y, Kohama Y, Dai G, Sun Y, Bareille C, Kuroda K, et al. 2018 Nat. Phys. 15 41Google Scholar

    [78]

    Zhou X, Gordon K N, Jin K H, Li H, Narayan D, Zhao H, Zheng H, Huang H, Cao G, Zhigadlo N D, Liu F, Dessau D S 2019 Phys. Rev. B 100 184511Google Scholar

    [79]

    Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T, Tamegai T 2019 Nat. Mater. 18 811Google Scholar

    [80]

    Yan Z, Bi R, Wang Z 2017 Phys. Rev. Lett. 118 147003Google Scholar

    [81]

    Chan C, Zhang L, Poon T F J, He Y P, Wang Y Q, Liu X J 2017 Phys. Rev. Lett. 119 047001Google Scholar

    [82]

    Teo J C Y, Kane C L 2010 Phys. Rev. B 82 115120Google Scholar

    [83]

    Chan C, Liu X J 2017 Phys. Rev. Lett. 118 207002Google Scholar

    [84]

    Qi X L, Hughes T L, Zhang S C 2010 Phys. Rev. B 82 184516Google Scholar

    [85]

    Chung S B, Qi X L, Maciejko J, Zhang S C 2011 Phys. Rev. B 83 100512Google Scholar

    [86]

    Wang J, Zhou Q, Lian B, Zhang S C 2015 Phys. Rev. B 92 064520Google Scholar

    [87]

    Lian B, Wang J, Zhang S C 2016 Phys. Rev. B 93 161401Google Scholar

    [88]

    Kayyalha M, Xiao D, Zhang R, Shin J, Jiang J, Wang F, Zhao Y F, Xiao R, Zhang L, Fijalkowski K M, Mandal P, Winnerlein M, Gould C, Li Q, Molenkamp L W, Chan M H W, Samarth N, Chang C Z 2020 Science 367 64Google Scholar

    [89]

    Deng M T, Vaitiekenas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P, Marcus C M 2016 Science 354 1557Google Scholar

    [90]

    Nichele F, Drachmann A C, Whiticar A M, et al. 2017 Phys. Rev. Lett. 119 136803Google Scholar

    [91]

    Gül O, Zhang H, Bommer J D S, et al. 2018 Nat. Nanotechnol. 13 192Google Scholar

    [92]

    Feldman B E, Randeria M T, Li J, Jeon S, Xie Y, Wang Z, Drozdov I K, Bernevig B A, Yazdani A 2017 Nat. Phys. 13 286Google Scholar

    [93]

    Jeon S, Xie Y, Li J, Wang Z, Bernevig B A, Yazdani A 2017 Science 358 772Google Scholar

    [94]

    Laroche D, Bouman D, van Woerkom D J, et al. 2019 Nat. Commun. 10 245Google Scholar

    [95]

    Rokhinson L P, Liu X, Furdyna J K 2012 Nat. Phys. 8 795Google Scholar

    [96]

    Beenakker C W J 2019. arXiv: 1907.06497 [cond-mat]

    [97]

    Bonderson P, Gurarie V, Nayak C 2011 Phys. Rev. B 83 075303Google Scholar

    [98]

    Teo J C Y, Kane C L 2010 Phys. Rev. Lett. 104 046401Google Scholar

    [99]

    Freedman M, Hastings M B, Nayak C, Qi X L, Walker K, Wang Z 2011 Phys. Rev. B 83 115132Google Scholar

    [100]

    Freedman M, Hastings M B, Nayak C, Qi X L 2011 Phys. Rev. B 84 245119Google Scholar

    [101]

    Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A 2011 Nat. Phys. 7 412Google Scholar

    [102]

    Feynman R P 1982 Intern. J. Theoretical Phys. 21 467Google Scholar

    [103]

    Shor P W 1994 In Proceedings 35th Annual Symposium on Foundations of Computer Science (Ieee), pp124–134

    [104]

    Grover L K 1997 Phys. Rev. Lett. 79 325Google Scholar

    [105]

    Lloyd S 1996 Science 273 1073Google Scholar

    [106]

    Deutsch D 1985 Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 400 97Google Scholar

    [107]

    Lo H K, Spiller T, Popescu S 1998 Introduction to quantum computation and information (World Scientific)

    [108]

    DiVincenzo D P 2000 Fortschritte der Physik: Progress of Physics 48 771Google Scholar

    [109]

    Sarma S D, Freedman M, Nayak C 2015 npj Quantum Information 1 15001Google Scholar

    [110]

    Lahtinen V, Pachos J 2017 SciPost Physics 3 021Google Scholar

    [111]

    Kitaev A Y 1997 Uspekhi Matematicheskikh Nauk 52 53Google Scholar

    [112]

    Dawson C M, Nielsen M A 2005. arXiv: 0505030 [quant-ph]

    [113]

    Bravyi S, Kitaev A 2005 Phys. Rev. A 71 022316Google Scholar

    [114]

    Bravyi S 2006 Phys. Rev. A 73 042313Google Scholar

    [115]

    Freedman M, Nayak C, Walker K 2006 Phys. Rev. B 73 245307Google Scholar

    [116]

    Bonderson P, Clarke D J, Nayak C, Shtengel K 2010 Phys. Rev. Lett. 104 180505Google Scholar

    [117]

    Karzig T, Oreg Y, Refael G, Freedman M H 2016 Phys. Rev. X 6 031019Google Scholar

    [118]

    Cheng M, Galitski V, Das Sarma S 2011 Phys. Rev. B 84 104529Google Scholar

    [119]

    Bauer B, Karzig T, Mishmash R, Antipov A, Alicea J 2018 Sci. Post Phys. 5 004Google Scholar

    [120]

    Sau J D, Clarke D J, Tewari S 2011 Phys. Rev. B 84 094505Google Scholar

    [121]

    Clarke D J, Sau J D, Tewari S 2011 Phys. Rev. B 84 035120Google Scholar

    [122]

    Halperin B I, Oreg Y, Stern A, Refael G, Alicea J, von Oppen F 2012 Phys. Rev. B 85 144501Google Scholar

    [123]

    Amorim C S, Ebihara K, Yamakage A, Tanaka Y, Sato M 2015 Phys. Rev. B 91 174305Google Scholar

    [124]

    Liu X, Li X, Deng D L, Liu X J, Das Sarma S 2016 Phys. Rev. B 94 014511Google Scholar

    [125]

    Bonderson P, Freedman M, Nayak C 2008 Phys. Rev. Lett. 101 010501Google Scholar

    [126]

    Bonderson P 2013 Phys. Rev. B 87 035113Google Scholar

    [127]

    Preskill J 2004 http://www.theory.caltech.edu/preskill/ talks/Preskill Biedenharn4.pdf

    [128]

    Luo X J, He Y P, Poon T F J, Liu X, Liu X J 2018. arXiv: 1803.02173 [cond-mat.mes-hall]

    [129]

    Chiu C K, Das Sarma S 2019 Phys. Rev. B 99 035312Google Scholar

    [130]

    Jiang L, Pekker D, Alicea J, Refael G, Oreg Y, von Oppen F 2011 Phys. Rev. Lett. 107 236401Google Scholar

    [131]

    Yang G, Lyu Z, Zhang X, Qu F, Lu L 2019 Chin. Phys. B 28 127402Google Scholar

    [132]

    Stenger J P T, Hatridge M, Frolov S M, Pekker D 2019 Phys. Rev. B 99 035307Google Scholar

    [133]

    Plugge S, Rasmussen A, Egger R, Flensberg K 2017 New J. Phys. 19 012001Google Scholar

    [134]

    Liu D E, Cheng M, Lutchyn R M 2015 Phys. Rev. B 91 081405Google Scholar

    [135]

    Barthel C, Reilly D J, Marcus C M, Hanson M P, Gossard A C 2009 Phys. Rev. Lett. 103 160503Google Scholar

    [136]

    Medford J, Beil J, Taylor J M, Bartlett S D, Doherty A C, Rashba E I, DiVincenzo D P, Lu H, Gossard A C, Marcus C M 2013 Nat. Nanotechnol. 8 654Google Scholar

    [137]

    Eng K, Ladd T D, Smith A, Borselli M G, Kiselev A A, Fong B H, Holabird K S, Hazard T M, Huang B, Deelman P W, Milosavljevic I, Schmitz A E, Ross R S, Gyure M F, Hunter A T 2015 Sci. Advances 1 1500214Google Scholar

    [138]

    Fu L 2010 Phys. Rev. Lett. 104 056402Google Scholar

    [139]

    Schrade C, Fu L 2018 Phys. Rev. Lett. 121 267002Google Scholar

    [140]

    Knapp C 2019 Ph.D. Dissertation (UC Santa Barbara)

    [141]

    Qi X L, Hughes T L, Raghu S, Zhang S C 2009 Phys. Rev. Lett. 102 187001Google Scholar

    [142]

    Schnyder A P, Brydon P M R, Manske D, Timm C 2010 Phys. Rev. B 82 184508Google Scholar

    [143]

    Beenakker C W J, Dahlhaus J P, Wimmer M, Akhmerov A R 2011 Phys. Rev. B 83 085413Google Scholar

    [144]

    Deng S, Viola L, Ortiz G 2012 Phys. Rev. Lett. 108 036803Google Scholar

    [145]

    Nakosai S, Tanaka Y, Nagaosa N 2012 Phys. Rev. Lett. 108 147003Google Scholar

    [146]

    Wong C L M, Law K T 2012 Phys. Rev. B 86 184516Google Scholar

    [147]

    Zhang F, Kane C L, Mele E J 2013 Phys. Rev. Lett. 111 056402Google Scholar

    [148]

    Keselman A, Fu L, Stern A, Berg E 2013 Phys. Rev. Lett. 111 116402Google Scholar

    [149]

    Kim Y, Liu D E, Gaidamauskas E, Paaske J, Flensberg K, Lutchyn R M 2016 Phys. Rev. B 94 075439Google Scholar

    [150]

    Fang C, Gilbert M J, Bernevig B A 2014 Phys. Rev. Lett. 112 106401Google Scholar

    [151]

    Liu X J, He J J, Law K T 2014 Phys. Rev. B 90 235141Google Scholar

    [152]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [153]

    Snyder R A, Trimble C J, Rong C C, Folkes P A, Taylor P J, Williams J R 2018 Phys. Rev. Lett. 121 097701Google Scholar

    [154]

    Trifunovic L, Brouwer P W 2019 Phys. Rev. X 9 011012Google Scholar

    [155]

    Liu X J, Wong C L M, Law K T 2014 Phys. Rev. X 4 021018Google Scholar

    [156]

    Gao P, He Y P, Liu X J 2016 Phys. Rev. B 94 224509Google Scholar

    [157]

    Wölms K, Stern A, Flensberg K 2014 Phys. Rev. Lett. 113 246401Google Scholar

    [158]

    Wölms K, Stern A, Flensberg K 2016 Phys. Rev. B 93 045417Google Scholar

    [159]

    McGinley M, Cooper N R 2018 Phys. Rev. Lett. 121 090401Google Scholar

    [160]

    Zhang F, Kane C L 2014 Phys. Rev. B 90 020501Google Scholar

  • [1] 崔娜玮, 高嘉忻, 董慧薷, 李传奇, 罗小兵, 肖进鹏. 磁性原子链中的拓扑超导相竞争. 物理学报, 2024, 73(23): 237301. doi: 10.7498/aps.73.20241095
    [2] 初纯光, 王安琦, 廖志敏. 拓扑半金属-超导体异质结的约瑟夫森效应. 物理学报, 2023, 72(8): 087401. doi: 10.7498/aps.72.20230397
    [3] 杨帅, 张浩, 何珂. 选区外延生长的PbTe-超导杂化纳米线: 一个可能实现拓扑量子计算的新体系. 物理学报, 2023, 72(23): 238101. doi: 10.7498/aps.72.20231603
    [4] 徐磊, 李沛岭, 吕昭征, 沈洁, 屈凡明, 刘广同, 吕力. 马约拉纳零能模的输运探测. 物理学报, 2023, 72(17): 177401. doi: 10.7498/aps.72.20230951
    [5] 王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿. 量子计算与量子模拟中离子阱结构研究进展. 物理学报, 2022, 71(13): 133701. doi: 10.7498/aps.71.20220224
    [6] 周宗权. 量子存储式量子计算机与无噪声光子回波. 物理学报, 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [7] 王宁, 王保传, 郭国平. 硅基半导体量子计算研究进展. 物理学报, 2022, 71(23): 230301. doi: 10.7498/aps.71.20221900
    [8] 宿非凡, 杨钊华, 赵寿宽, 严海生, 田野, 赵士平. 铌基超导量子比特及辅助器件的制备. 物理学报, 2022, 71(5): 050303. doi: 10.7498/aps.71.20211865
    [9] 姜达, 余东洋, 郑沾, 曹晓超, 林强, 刘伍明. 面向量子计算的拓扑超导体材料、物理和器件研究. 物理学报, 2022, 71(16): 160302. doi: 10.7498/aps.71.20220596
    [10] 张结印, 高飞, 张建军. 硅和锗量子计算材料研究进展. 物理学报, 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [11] 张诗豪, 张向东, 李绿周. 基于测量的量子计算研究进展. 物理学报, 2021, 70(21): 210301. doi: 10.7498/aps.70.20210923
    [12] 文炼均, 潘东, 赵建华. 从高质量半导体/超导体纳米线到马约拉纳零能模. 物理学报, 2021, 70(5): 058101. doi: 10.7498/aps.70.20201750
    [13] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导. 物理学报, 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [14] 王靖. 手征马约拉纳费米子. 物理学报, 2020, 69(11): 117302. doi: 10.7498/aps.69.20200534
    [15] 孔令元, 丁洪. 铁基超导涡旋演生马约拉纳零能模. 物理学报, 2020, 69(11): 110301. doi: 10.7498/aps.69.20200717
    [16] 梁奇锋, 王志, 川上拓人, 胡晓. 拓扑超导Majorana束缚态的探索. 物理学报, 2020, 69(11): 117102. doi: 10.7498/aps.69.20190959
    [17] 范桁. 量子计算与量子模拟. 物理学报, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [18] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究. 物理学报, 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [19] 赵娜, 刘建设, 李铁夫, 陈炜. 超导量子比特的耦合研究进展. 物理学报, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [20] 叶 宾, 谷瑞军, 须文波. 周期驱动的Harper模型的量子计算鲁棒性与量子混沌. 物理学报, 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
计量
  • 文章访问数:  18117
  • PDF下载量:  1318
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-31
  • 修回日期:  2020-06-03
  • 刊出日期:  2020-06-05

/

返回文章
返回