搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拓扑半金属-超导体异质结的约瑟夫森效应

初纯光 王安琦 廖志敏

引用本文:
Citation:

拓扑半金属-超导体异质结的约瑟夫森效应

初纯光, 王安琦, 廖志敏

Josephson effect in topological semimetal-superconductor heterojunctions

Chu Chun-Guang, Wang An-Qi, Liao Zhi-Min
PDF
HTML
导出引用
  • 拓扑半金属是一类受对称性保护的无能隙量子材料. 因其相对论性能带色散关系, 拓扑半金属中涌现出丰富的量子态和量子效应, 例如费米弧表面态和手征反常. 近年来, 因在拓扑量子计算的潜在应用, 拓扑与超导的耦合体系受到广泛关注. 本文从两方面回顾拓扑半金属-超导体异质结体系近年来的实验进展: 1)超导电流对拓扑量子态的模式过滤; 2)拓扑超导和Majorana零能模的探测与调控. 对于前者, 利用约瑟夫森电流对电磁场的响应, 拓扑半金属中费米弧表面态的弹道输运被揭示, 高阶拓扑半金属相被证实, 有限动量配对及超导二极管效应被实现. 对于后者, 通过交流约瑟夫森效应, 狄拉克半金属中4π周期的拓扑超导态被发现, 纯电学栅压调控的拓扑相变被实现. 本文最后展望了拓扑半金属-超导体异质结体系的发展前景和在Majorana零能模编织和拓扑量子计算上的潜在应用.
    Topological semimetals are exotic phases of quantum matter with gapless electronic excitation protected by symmetry. Benefitting from its unique relativistic band dispersion, topological semimetals host abundant quantum states and quantum effects, such as Fermi-arc surface states and chiral anomaly. In recent years, due to the potential application in topological quantum computing, the hybrid system of topology and superconductivity has aroused wide interest in the community. Recent experimental progress of topological semimetal-superconductor heterojunctions is reviewed in two aspects: 1) Josephson current as a mode filter of different topological quantum states; 2) detection and manipulation of topological superconductivity and Majorana zero modes. For the former, utilizing Josephson interference, ballistic transport of Fermi-arc surface states is revealed, higher-order topological phases are discovered, and finite-momentum Cooper pairing and superconducting diode effect are realized. For the latter, by detecting a.c. Josephson effect in Dirac semimetals, the 4π-periodic supercurrent is discovered. By all-electric gate control, the topological transition of superconductivity is obtained. Outlooks of future research on topological semimetal-superconductor heterojunctions and their application in Majorana braiding and topological quantum computing are discussed.
      通信作者: 廖志敏, liaozm@pku.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 91964201, 61825401, 12204016)和科技创新2030重大项目(批准号: 2021ZD0302403)资助的课题.
      Corresponding author: Liao Zhi-Min, liaozm@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91964201, 61825401, 12204016) and the Innovation Program for Quantum Science and Technology, China (Grant No. 2021ZD0302403).
    [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [3]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [4]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [5]

    Lv B Q, Qian T, Ding H 2021 Rev. Mod. Phys. 93 025002Google Scholar

    [6]

    Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [7]

    Burkov A A, Balents L 2011 Phys. Rev. Lett. 107 127205Google Scholar

    [8]

    Balents L 2011 Physics 4 36Google Scholar

    [9]

    Wang Z J, Sun Y, Chen XQ, Franchini C, Xu G, Weng H M, Dai X, Fang Z 2012 Phys. Rev. B 85 195320Google Scholar

    [10]

    Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J, Rappe A M 2012 Phys. Rev. Lett. 108 140405Google Scholar

    [11]

    Mañes J L 2012 Phys. Rev. B 85 155118Google Scholar

    [12]

    Wang Z J, Weng H M, Wu Q S, Dai X, Fang Z 2013 Phys. Rev. B 88 125427Google Scholar

    [13]

    Yang BJ, Nagaosa N 2014 Nat. Commun. 5 4898Google Scholar

    [14]

    Neupane M, Xu SY, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang TR, Jeng HT, Lin H, Bansil A, Chou F, Hasan M Z 2014 Nat. Commun. 5 3786Google Scholar

    [15]

    Jeon S, Zhou B B, Gyenis A, Feldman B E, Kimchi I, Potter A C, Gibson Q D, Cava R J, Vishwanath A, Yazdani A 2014 Nat. Mater. 13 851Google Scholar

    [16]

    Liang T, Gibson Q, Ali M N, Liu M H, Cava R J, Ong N P 2015 Nat. Mater. 14 280Google Scholar

    [17]

    Narayanan A, Watson M D, Blake S F, Bruyant N, Drigo L, Chen Y L, Prabhakaran D, Yan B, Felser C, Kong T, Canfield P C, Coldea A I 2015 Phys. Rev. Lett. 114 117201Google Scholar

    [18]

    Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z, Chen Y, Schnelle W, Borrmann H, Grin Y, Felser C, Yan B 2015 Nat. Phys. 11 645Google Scholar

    [19]

    Qiu G, Du Y, Charnas A, Zhou H, Jin S, Luo Z, Zemlyanov D Y, Xu X, Cheng G J, Ye P D 2016 Nano Lett. 16 7364Google Scholar

    [20]

    Hu J, Liu J Y, Graf D, Radmanesh S M A, Adams D J, Chuang A, Wang Y, Chiorescu I, Wei J, Spinu L, Mao Z Q 2016 Sci. Rep. 6 18674Google Scholar

    [21]

    Zheng G L, Lu J W, Zhu X D, Ning W, Han Y Y, Zhang H W, Zhang J L, Xi C Y, Yang J Y, Du H F, Yang K, Zhang Y H, Tian M L 2016 Phys. Rev. B 93 115414Google Scholar

    [22]

    Tafti F F, Gibson Q D, Kushwaha S K, Haldolaarachchige N, Cava R J 2016 Nat. Phys. 12 272Google Scholar

    [23]

    Zhang CL, Xu SY, Belopolski I, Yuan Z J, Lin Z Q, Tong B B, Bian G, Alidoust N, Lee C C, Huang S M, Chang T R, Chang G Q, Hsu C H, Jeng H T, Neupane M, Sanchez D S, Zheng H, Wang J F, Lin H, Zhang C, Lu H Z, Shen S Q, Neupert T, Hasan M Z, Jia S 2016 Nat. Commun. 7 10735Google Scholar

    [24]

    Wang Z, Zheng Y, Shen Z X, Lu Y H, Fang H Y, Sheng F, Zhou Y, Yang X J, Li Y P, Feng C M, Xu Z A 2016 Phys. Rev. B 93 121112Google Scholar

    [25]

    Chi H, Zhang C, Gu G, Kharzeev D E, Dai X, Li Q 2017 New J. Phys. 19 015005Google Scholar

    [26]

    Huang S, Kim J, Shelton W A, Plummer E W, Jin R 2017 Proc. Natl. Acad. Sci. U. S. A. 114 6256Google Scholar

    [27]

    Gao W S, Hao N N, Zheng FW, Ning W, Wu M, Zhu X D, Zheng G L, Zhang JL, Lu J W, Zhang H W, Xi C Y, Yang J Y, Du H F, Zhang P, Zhang Y H, Tian M L 2017 Phys. Rev. Lett. 118 256601Google Scholar

    [28]

    Uchida M, Nakazawa Y, Nishihaya S, Akiba K, Kriener M, Kozuka Y, Miyake A, Taguchi Y, Tokunaga M, Nagaosa N, Tokura Y, Kawasaki M 2017 Nat. Commun. 8 2274Google Scholar

    [29]

    Kumar N, Sun Y, Xu N, Manna K, Yao M Y, Suess V, Leermakers I, Young O, Foerster T, Schmidt M, Borrmann H, Yan B, Zeitler U, Shi M, Felser C, Shekhar C 2017 Nat. Commun. 8 1642Google Scholar

    [30]

    Li C Z, Wang L X, Liu H W, Wang J, Liao Z M, Yu D P 2015 Nat. Commun. 6 10137Google Scholar

    [31]

    Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J, Ong N P 2015 Science 350 413Google Scholar

    [32]

    Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X, Chen G F 2015 Phys. Rev. X 5 031023Google Scholar

    [33]

    Li H, He H T, Lu HZ, Zhang H C, Liu H C, Ma R, Fan Z Y, Shen S Q, Wang J N 2016 Nat. Commun. 7 10301Google Scholar

    [34]

    Du J H, Wang H D, Chen Q, Mao Q H, Khan R, Xu B J, Zhou Y X, Zhang Y N, Yang J H, Chen B, Feng C M, Fang M H 2016 Sci. China:Phys. Mech. Astron. 59 657406Google Scholar

    [35]

    Jia Z Z, Li C Z, Li X Q, Shi J R, Liao Z M, Yu D P, Wu X S 2016 Nat. Commun. 7 13013Google Scholar

    [36]

    Wang Y J, Liu E F, Liu H M, Pan Y M, Zhang L Q, Zeng J W, Fu Y J, Wang M, Xu K, Huang Z, Wang Z L, Lu H Z, Xing D Y, Wang B G, Wan X G, Miao F 2016 Nat. Commun. 7 13142Google Scholar

    [37]

    Xu X T, Jia S 2016 Chin. Phys. B 25 117204Google Scholar

    [38]

    Hirschberger M, Kushwaha S, Wang Z J, Gibson Q, Liang S H, Belvin C A, Bernevig B A, Cava R J, Ong N P 2016 Nat. Mater. 15 1161Google Scholar

    [39]

    Zhang C, Zhang E Z, Wang W Y, Liu Y W, Chen Z G, Lu S H, Liang S H, Cao J Z, Yuan X, Tang L, Li Q, Zhou C, Gu T, Wu Y Z, Zou J, Xiu F X 2017 Nat. Commun. 8 13741Google Scholar

    [40]

    Niemann A C, Gooth J, Wu S C, Bassler S, Sergelius P, Huhne R, Rellinghaus B, Shekhar C, Suss V, Schmidt M, Felser C, Yan B H, Nielsch K 2017 Sci. Rep. 7 43394Google Scholar

    [41]

    Gooth J, Niemann A C, Meng T, Grushin A G, Landsteiner K, Gotsmann B, Menges F, Schmidt M, Shekhar C, Suss V, Hune R, Rellinghaus B, Felser C, Yan B H, Nielsch K 2017 Nature 547 324Google Scholar

    [42]

    Li P, Wen Y, He X, Zhang Q, Xia C, Yu Z M, Yang S Y A, Zhu Z Y, Alshareef H N, Zhang X X 2017 Nat. Commun. 8 2150Google Scholar

    [43]

    Juyal A, Agarwal A, Mukhopadhyay S 2018 Phys. Rev. Lett. 120 096801Google Scholar

    [44]

    Liang S H, Lin J J, Kushwaha S, Xing J, Ni N, Cava R J, Ong N P 2018 Phys. Rev. X 8 031002Google Scholar

    [45]

    Kumar N, Guin S N, Felser C, Shekhar C 2018 Phys. Rev. B 98 041103Google Scholar

    [46]

    Li P, Zhang C H, Zhang J W, Wen Y, Zhang X X 2018 Phys. Rev. B 98 121108Google Scholar

    [47]

    Guo C Y, Wu F, Smidman M, Yuan H Q 2018 AIP Adv. 8 101336Google Scholar

    [48]

    Wu M, Zheng G L, Chu W W, Liu Y Q, Gao W S, Zhang H W, Lu J W, Han Y Y, Zhou J H, Ning W, Tian M L 2018 Phys. Rev. B 98 161110Google Scholar

    [49]

    Liu E K, Sun Y, Kumar N, Muechler L, Sun A L, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Suss V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B, Felser C 2018 Nat. Phys. 14 1125Google Scholar

    [50]

    Singha R, Roy S, Pariari A, Satpati B, Mandal P 2019 Phys. Rev. B 99 035110Google Scholar

    [51]

    Gooth J, Bradlyn B, Honnali S, Schindler C, Kumar N, Noky J, Qi Y, Shekhar C, Sun Y, Wang Z, Bernevig B A, Felser C 2019 Nature 575 315Google Scholar

    [52]

    Meng J C, Xue H X, Liu M R, Jiang W M, Zhang Z, Ling J Z, He L, Dou R F, Xiang C M, Nie J C 2020 J. Phys. Condens. Matter 32 015702Google Scholar

    [53]

    Zhu Y L, Gui X, Wang Y, Graf D, Xie W W, Hu J, Mao Z Q 2020 Phys. Rev. B 101 035133Google Scholar

    [54]

    Chen J, Li H, Ding B, Liu E K, Yao Y, Wu G H, Wang W H 2020 Appl. Phys. Lett. 116 222403Google Scholar

    [55]

    Zhang J L, Chen J, Li P, Zhang C H, Hou Z P, Wen Y, Zhang Q, Wang W H, Zhang X X 2020 J. Phys. Condens. Matter 32 355707Google Scholar

    [56]

    Ong N P, Liang S H 2021 Nat. Rev. Phys. 3 394Google Scholar

    [57]

    Jiang B Y, Wang L J Y, Bi R, Fan J W, Zhao J J, Yu D P, Li Z L, Wu X S 2021 Phys. Rev. Lett. 126 236601Google Scholar

    [58]

    Laha A, Singha R, Mardanya S, Singh B, Agarwal A, Mandal P, Hossain Z 2021 Phys. Rev. B 103 L241112Google Scholar

    [59]

    Wang L M, Lin S E, Shen D, Chen I N 2021 New J. Phys. 23 093030Google Scholar

    [60]

    Kumar P, Nagpal V, Sudesh, Patnaik S 2022 J. Phys. Condens. Matter 34 055601Google Scholar

    [61]

    Wang L X, Li C Z, Yu D P, Liao Z M 2016 Nat. Commun. 7 10769Google Scholar

    [62]

    Lin B C, Wang S, Wang L X, Li C Z, Li J G, Yu D P, Liao Z M 2017 Phys. Rev. B 95 235436Google Scholar

    [63]

    Wang S, Lin B C, Zheng W Z, Yu D P, Liao Z M 2018 Phys. Rev. Lett. 120 257701Google Scholar

    [64]

    Moll P J W, Nair N L, Helm T, Potter A C, Kimchi I, Vishwanath A, Analytis J G 2016 Nature 535 266Google Scholar

    [65]

    Zhang C, Narayan A, Lu S H, Zhang J L, Zhang H Q, Ni Z L, Yuan X, Liu Y W, Park JH, Zhang E Z, Wang W Y, Liu S S, Cheng L, Pi L, Sheng Z G, Sanvito S, Xiu F X 2017 Nat. Commun. 8 1272Google Scholar

    [66]

    Nishihaya S, Uchida M, Nakazawa Y, Kriener M, Kozuka Y, Taguchi Y, Kawasaki M 2018 Sci. Adv. 4 eaar5668Google Scholar

    [67]

    Schumann T, Galletti L, Kealhofer D A, Kim H, Goyal M, Stemmer S 2018 Phys. Rev. Lett. 120 016801Google Scholar

    [68]

    Goyal M, Galletti L, Salmani-Rezaie S, Schumann T, Kealhofer D A, Stemmer S 2018 APL Mater. 6 026105Google Scholar

    [69]

    Lin B C, Wang S, Wiedmann S, Lu J M, Zheng W Z, Yu D, Liao Z M 2019 Phys. Rev. Lett. 122 036602Google Scholar

    [70]

    Zhang C, Zhang Y, Yuan X, Lu S H, Zhang J L, Narayan A, Liu Y W, Zhang H Q, Ni Z L, Liu R, Choi E S, Suslov A, Sanvito S, Pi L, Lu H Z, Potter A C, Xiu F X 2019 Nature 565 331Google Scholar

    [71]

    Liu J Y, Yu J, Ning J L, Yi H M, Miao L, Min L J, Zhao Y F, Ning W, Lopez K A, Zhu Y L, Pillsbury T, Zhang Y B, Wang Y, Hu J, Cao H B, Chakoumakos B C, Balakirev F, Weickert F, Jaime M, Lai Y, Yang K, Sun J W, Alem N, Gopalan V, Chang C Z, Samarth N, Liu C X, McDonald R D, Mao Z Q 2021 Nat. Commun. 12 4062Google Scholar

    [72]

    Van Delft D, Kes P 2010 Phys. Today 63 38Google Scholar

    [73]

    He L P, Jia Y T, Zhang S J, Hong X C, Jin C Q, Li S Y 2016 NPJ Quantum Mater. 1 16014Google Scholar

    [74]

    Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S C, Shekhar C, Sun Y, Suess V, Schmidt M, Schwarz U, Pippel E, Werner P, Hillebrand R, Foerster T, Kampert E, Parkin S, Cava R J, Felser C, Yan B, Medvedev S A 2016 Nat. Commun. 7 11038Google Scholar

    [75]

    Zhou Y H, Wu J F, Ning W, Li N N, Du Y P, Chen X L, Zhang R R, Chi Z H, Wang X F, Zhu X D, Lu P C, Ji C, Wan X G, Yang Z R, Sun J, Yang W, Tian M L, Zhang Y H, Mao H K 2016 Proc. Natl. Acad. Sci. U. S. A. 113 2904Google Scholar

    [76]

    Chan Y T, Alireza P L, Yip K Y, Niu Q, Lai K T, Goh S K 2017 Phys. Rev. B 96 180504Google Scholar

    [77]

    Guguchia Z, von Rohr F, Shermadini Z, Lee A T, Banerjee S, Wieteska A R, Marianetti C A, Frandsen B A, Luetkens H, Gong Z, Cheung S C, Baines C, Shengelaya A, Taniashvili G, Pasupathy A N, Morenzoni E, Billinge S J L, Amato A, Cava R J, Khasanov R, Uemura Y J 2017 Nat. Commun. 8 1082Google Scholar

    [78]

    Li Y F, Zhou Y H, Guo Z P, Han F, Chen X L, Lu P C, Wang X F, An C, Zhou Y, Xing J, Du G, Zhu X Y, Yang H, Sun J, Yang Z R, Yang W G, Mao H K, Zhang Y H, Wen H H 2017 NPJ Quantum Mater. 2 66Google Scholar

    [79]

    Tafti F F, Torikachvili M S, Stillwell R L, Baer B, Stavrou E, Weir S T, Vohra Y K, Yang H Y, McDonnell E F, Kushwaha S K, Gibson Q D, Cava R J, Jeffries J R 2017 Phys. Rev. B 95 014507Google Scholar

    [80]

    Chi Z H, Chen X L, An C, Yang L X, Zhao J G, Feng Z L, Zhou Y H, Zhou Y, Gu C C, Zhang B W, Yuan Y F, Kenney-Benson C, Yang W G, Wu G, Wan XG, Shi Y G, Yang X P, Yang Z R 2018 NPJ Quantum Mater. 3 28Google Scholar

    [81]

    Heikes C, Liu I L, Metz T, Eckberg C, Neves P, Wu Y, Hung L, Piccoli P, Cao H, Leao J, Paglione J, Yildirim T, Butch N P, Ratcliff W, II 2018 Phys. Rev. Mater. 2 074202Google Scholar

    [82]

    Li Y P, An C, Hua C Q, Chen X L, Zhou Y H, Zhou Y H, Zhang R R, Park CY, Wang Z, Lu Y H, Zheng Y, Yang ZR, Xu ZA 2018 NPJ Quantum Mater. 3 58Google Scholar

    [83]

    Cai S, Emmanouilidou E, Guo J, Li X D, Li Y C, Yang K, Li A G, Wu Q, Ni N, Sun L L 2019 Phys. Rev. B 99 020503Google Scholar

    [84]

    Guguchia Z, Gawryluk D J, Brzezinska M, Tsirkin S S, Khasanov R, Pomjakushina E, von Rohr F O, Verezhak J A T, Hasan M Z, Neupert T, Luetkens H, Amato A 2019 NPJ Quantum Mater. 4 50Google Scholar

    [85]

    Hu Y J, Chan Y T, Lai K T, Ho K O, Guo X, Sun H P, Yip K Y, Ng D H L, Lu H Z, Goh S K 2019 Phys. Rev. Mater. 3 034201Google Scholar

    [86]

    Jia Y T, Zhao J F, Zhang S J, Yu S, Dai G Y, Li W M, Duan L, Zhao G Q, Wang X C, Zheng X, Liu Q Q, Lon Y W, Li Z, Li X D, Weng H M, Yu R Z, Yu R C, Jin C Q 2019 Chin. Phys. Lett. 36 087401Google Scholar

    [87]

    Xu C Q, Li B, van Delft M R, Jiao W H, Zhou W, Qian B, Zhigadlo N D, Qian D, Sankar R, Hussey N E, Xu X 2019 Phys. Rev. B 99 024110Google Scholar

    [88]

    Leng H, Ohmura A, Anh L N, Ishikawa F, Naka T, Huang Y K, de Visser A 2020 J. Phys. Condens. Matter 32 025603Google Scholar

    [89]

    Yuan Y F, Wang W K, Zhou Y H, Chen X L, Cu C C, An C, Zhou Y, Zhang B W, Chen C H, Zhang R R, Yang Z R 2020 Adv. Electron. Mater. 6 1901260Google Scholar

    [90]

    Feng Z J, Si J Y, Li T, Dong H L, Xu C Q, Yang J, Zhang Z, Wang K, Wu H, Hou Q, Xing J J, Wan S, Li S, Deng W, Feng J J, Pal A, Chen F, Hu S B, Ge J Y, Dong C, Wang S S, Ren W, Cao S X, Liu Y, Xu X F, Zhang J C, Chen B, Yeh N C 2021 Mater. Today Phys. 17 100339Google Scholar

    [91]

    Furue Y, Fujino T, Salis M V, Leng H, Ishikawa F, Naka T, Nakano S, Huang Y, de Visser A, Ohmura A 2021 Phys. Rev. B 104 144510Google Scholar

    [92]

    Mu Q G, Fan F R, Borrmann H, Schnelle W, Sun Y, Felser C, Medvedev S 2021 NPJ Quantum Mater. 6 55Google Scholar

    [93]

    Mu Q G, Nenno D, Qi Y P, Fan F R, Pei C, ElGhazali M, Gooth J, Felser C, Narang P, Medvedev S 2021 Phys. Rev. Mater. 5 084201Google Scholar

    [94]

    Yang H, Hooda M K, Yadav C S, Hrabovsky D, Gauzzi A, Klein Y 2021 Phys. Rev. B 103 235105Google Scholar

    [95]

    Cao W Z, Zhao N N, Pei C Y, Wang Q, Zhang Q H, Ying T P, Zhao Y, Gao L L, Li C H, Yu N, Gu L, Chen Y L, Liu K, Qi Y P 2022 Phys. Rev. B 105 174502Google Scholar

    [96]

    Deng W, Zhen J P, Huang Q S, Wang Y J, Dong H L, Wan S, Zhang S H, Feng J J, Chen B 2022 J. Phys. Chem. Lett. 13 5514Google Scholar

    [97]

    Aggarwal L, Gaurav A, Thakur G S, Haque Z, Ganguli A K, Sheet G 2016 Nat. Mater. 15 32Google Scholar

    [98]

    Aggarwal L, Gayen S, Das S, Thakur G S, Ganguli A K, Sheet G 2016 Appl. Phys. Lett. 109 252602Google Scholar

    [99]

    Wang H, Wang H C, Liu H W, Lu H, Yang W H, Jia S, Liu X J, Xie X C, Wei J, Wang J 2016 Nat. Mater. 15 38Google Scholar

    [100]

    Aggarwal L, Gayen S, Das S, Kumar R, Suess V, Felser C, Shekhar C, Sheet G 2017 Nat. Commun. 8 13974Google Scholar

    [101]

    Wang H, Wang H C, Chen Y Q, Luo J W, Yuan Z J, Liu J, Wang Y, Jia S, Liu X J, Wei J, Wang J 2017 Sci. Bull. 62 425Google Scholar

    [102]

    Naidyuk Y, Kvitnitskaya O, Bashlakov D, Aswartham S, Morozov I, Chernyavskii I, Fuchs G, Drechsler S L, Huehne R, Nielsch K, Buechner B, Efremov D 2018 2D Mater. 5 045014Google Scholar

    [103]

    Hou X Y, Wang Z, Gu Y D, He J B, Chen D, Zhu W L, Zhang M D, Zhang F, Xu Y F, Zhang S, Yang H X, Ren Z A, Weng H M, Hao N, Lv W G, Hu J P, Chen G F, Shan L 2019 Phys. Rev. B 100 235109Google Scholar

    [104]

    Le T, Yin L C, Feng Z L, Huang Q, Che L Q, Li J, Shi Y G, Lu X 2019 Phys. Rev. B 99 180504Google Scholar

    [105]

    Luo J W, Li Y N, Li J C, Hashimoto T, Kawakami T, Lu H, Jia S, Sato M, Wang J 2019 Phys. Rev. Mater. 3 124201Google Scholar

    [106]

    Hou X Y, Gu Y D, Li S J, Zhao L X, Zhu W L, Wang Z, Zhang M D, Zhang F, Zhang L, Zi H, Wu Y W, Yang H X, Ren Z A, Zhang P, Chen G F, Hao N, Shan L 2020 Phys. Rev. B 101 134503Google Scholar

    [107]

    Wang H, He Y P, Liu Y Y, Yuan Z J, Jia S, Ma L, Liu X J, Wang J 2020 Sci. Bull. 65 21Google Scholar

    [108]

    Wang H, Liu Y Z, Zhou H B, Ji H R, Luo J W, Zhang J W, Wei T H, Wang P Y, Jia S, Wang J 2020 Sci. China: Phys. Mech. Astron. 63 287411Google Scholar

    [109]

    Zhang M D, Hou X Y, Wang Q, Wang Y Y, Zhao L X, Wang Z, Gu Y D, Zhang F, Xia T L, Ren Z A, Chen G F, Hao N, Shan L 2020 Phys. Rev. B 102 085139Google Scholar

    [110]

    Bashlakov D L, Kvitnitskaya O E, Shipunov G, Aswartham S, Feya O D, Efremov D V, Buechner B, Naidyuk Y G 2022 Low Temp. Phys. 48 747Google Scholar

    [111]

    Vasdev A, Kumar R, Hooda M K, Yadav C S, Sheet G 2022 Solid State Commun. 357 114952Google Scholar

    [112]

    Chen F C, Luo X, Xiao R C, Lu W J, Zhang B, Yang H X, Li J Q, Pei Q L, Shao D F, Zhang R R, Ling L S, Xi C Y, Song W H, Sun Y P 2016 Appl. Phys. Lett. 108 162601Google Scholar

    [113]

    Cho S, Kang S H, Yu H S, Kim H W, Ko W, Hwang S W, Han W H, Choe D H, Jung Y H, Chang K J, Lee Y H, Yang H, Kim S W 2017 2D Mater. 4 021030

    [114]

    de Lima B S, de Cassia R R, Santos F B, Correa L E, Grant T W, Manesco A L R, Martins G W, Eleno L T F, Torikachvili M S, Machado A J S 2018 Solid State Commun. 283 27Google Scholar

    [115]

    Li Y, Gu Q Q, Chen C, Zhang J, Liu Q, Hu X Y, Liu J, Liu Y, Ling L S, Tian M L, Wang Y, Samarth N, Li S Y, Zhang T, Feng J, Wang J 2018 Proc. Natl. Acad. Sci. U. S. A. 115 9503Google Scholar

    [116]

    Mandal M, Marik S, Sajilesh K P, Arushi, Singh D, Chakraborty J, Ganguli N, Singh R P 2018 Phys. Rev. Mater. 2 094201Google Scholar

    [117]

    Dahal R, Deng L Z, Poudel N, Gooch M, Wu Z, Wu H C, Yang H D, Chang C K, Chu C W 2020 Phys. Rev. B 101 140505Google Scholar

    [118]

    Wu J F, Hua C Q, Liu B, Cui Y W, Zhu Q Q, Xiao G R, Wu S Q, Cao G H, Lu Y H, Ren Z 2020 Chem. Mater. 32 8930Google Scholar

    [119]

    Mandal M, Singh R P 2021 J. Phys. Condens. Matter 33 135602Google Scholar

    [120]

    Correa L, Ferreira P S, de Faria L R, Dorini T T, Luz M S d, Fisk Z, Torikachvili M S, Eleno L T F, Machado A J S 2022 J. Alloys Compd. 907 164477Google Scholar

    [121]

    Mandal M, Patra C, Kataria A, Paul S, Saha S, Singh R P 2022 Supercond. Sci. Technol. 35 025011Google Scholar

    [122]

    Ruan B B, Sun J N, Chen Y, Yang Q S, Zhao K, Zhou M H, Gu Y D, Ma M W, Chen G F, Shan L, Ren Z A 2022 Sci. China Mater. 65 3125Google Scholar

    [123]

    Salis M V, Lorenz J P, Huang Y K, de Visser A 2022 Phys. Rev. B 105 054508Google Scholar

    [124]

    Tu X H, Bo T, Liu P F, Yin W, Hao N, Wang B T 2022 Phys. Chem. Chem. Phys. 24 7893Google Scholar

    [125]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [126]

    Kobayashi S, Sato M 2015 Phys. Rev. Lett. 115 187001Google Scholar

    [127]

    Chen A, Franz M 2016 Phys. Rev. B 93 201105Google Scholar

    [128]

    Chan C, Liu X J 2017 Phys. Rev. Lett. 118 207002Google Scholar

    [129]

    Chen A, Pikulin D I, Franz M 2017 Phys. Rev. B 95 174505Google Scholar

    [130]

    Zhang R X, Liu C X 2018 Phys. Rev. Lett. 120 156802Google Scholar

    [131]

    Yan Z B, Wu Z G, Huang W 2020 Phys. Rev. Lett. 124 257001Google Scholar

    [132]

    Giwa R, Hosur P 2021 Phys. Rev. Lett. 127 187002Google Scholar

    [133]

    Li C Z, Li C, Wang L X, Wang S, Liao Z M, Brinkman A, Yu D P 2018 Phys. Rev. B 97 115446Google Scholar

    [134]

    Calado V E, Goswami S, Nanda G, Diez M, Akhmerov A R, Watanabe K, Taniguchi T, Klapwijk T M, Vandersypen L M K 2015 Nat. Nanotechnol. 10 761Google Scholar

    [135]

    Ben Shalom M, Zhu M J, Fal’Ko V I, Mishchenko A, Kretinin A V, Novoselov K S, Woods C R, Watanabe K, Taniguchi T, Geim A K, Prance J R 2016 Nat. Phys. 12 318Google Scholar

    [136]

    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [137]

    Huang C, Narayan A, Zhang E Z, Liu Y W, Yan X, Wang J X, Zhang C, Wang W Y, Zhou T, Yi C J, Liu S S, Ling J W, Zhang H Q, Liu R, Sankar R, Chou F C, Wang Y H, Shi Y G, Law K T, Sanvito S, Zhou P, Han Z, Xiu F X 2018 ACS Nano 12 7185Google Scholar

    [138]

    Kononov A, Shvetsov O O, Egorov S V, Timonina A V, Kolesnikov N N, Deviatov E V 2018 EPL 122 27004Google Scholar

    [139]

    Grabecki G, Dabrowski A, Iwanowski P, Hruban A, Kowalski B J, Olszowska N, Kolodziej J, Chojnacki M, Dybko K, Lusakowski A, Wojtowicz T, Wojciechowski T, Jakiela R, Wisniewski A 2020 Phys. Rev. B 101 085113Google Scholar

    [140]

    Shvetsov O O, Esin V D, Barash Y S, Timonina A V, Kolesnikov N N, Deviatov E V 2020 Phys. Rev. B 101 035304Google Scholar

    [141]

    Huang C, Zhou B T, Zhang H Q, Yang B J, Liu R, Wang H W, Wan Y M, Huang K, Liao Z M, Zhang E Z, Liu S S, Deng Q S, Chen Y H, Han X D, Zou J, Lin X, Han Z, Wang Y H, Law K T, Xiu F X 2019 Nat. Commun. 10 2217Google Scholar

    [142]

    Dynes R C, Fulton T A 1971 Phys. Rev. B 3 3015Google Scholar

    [143]

    Shvetsov O O, Kononov A, Timonina A V, Kolesnikov N N, Deviatov E V 2018 JETP Lett. 107 774Google Scholar

    [144]

    Li C Z, Wang A Q, Li C, Zheng W Z, Brinkman A, Yu D P, Liao Z M 2020 Nat. Commun. 11 1150Google Scholar

    [145]

    Crosser M S, Huang J, Pierre F, Virtanen P, Heikkilä T T, Wilhelm F K, Birge N O 2008 Phys. Rev. B 77 014528Google Scholar

    [146]

    Li N, Tan Z B, Chen J J, Zhao T Y, Chu C G, Wang A Q, Pan Z C, Yu D P, Liao Z M 2022 Supercond. Sci. Technol. 35 044003Google Scholar

    [147]

    Guo B, Lygo A C, Pardue T N, Stemmer S 2022 Phys. Rev. Mater. 6 034203Google Scholar

    [148]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Science 357 61Google Scholar

    [149]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Phys. Rev. B 96 245115Google Scholar

    [150]

    Langbehn J, Peng Y, Trifunovic L, von Oppen F, Brouwer P W 2017 Phys. Rev. Lett. 119 246401Google Scholar

    [151]

    Song Z D, Fang Z, Fang C 2017 Phys. Rev. Lett. 119 246402Google Scholar

    [152]

    Ezawa M 2018 Phys. Rev. Lett. 120 026801Google Scholar

    [153]

    Geier M, Trifunovic L, Hoskam M, Brouwer P W 2018 Phys. Rev. B 97 205135Google Scholar

    [154]

    Schindler F, Cook Ashley M, Vergniory Maia G, Wang Z, Parkin Stuart S P, Bernevig B A, Neupert T 2018 Sci. Adv. 4 eaat0346Google Scholar

    [155]

    Hsu C H, Stano P, Klinovaja J, Loss D 2018 Phys. Rev. Lett. 121 196801Google Scholar

    [156]

    Khalaf E 2018 Phys. Rev. B 97 205136Google Scholar

    [157]

    Murani A, Kasumov A, Sengupta S, Kasumov Y A, Volkov V T, Khodos I I, Brisset F, Delagrange R, Chepelianskii A, Deblock R, Bouchiat H, Guéron S 2017 Nat. Commun. 8 15941Google Scholar

    [158]

    Schindler F, Wang Z, Vergniory M G, Cook A M, Murani A, Sengupta S, Kasumov A Y, Deblock R, Jeon S, Drozdov I, Bouchiat H, Guéron S, Yazdani A, Bernevig B A, Neupert T 2018 Nat. Phys. 14 918Google Scholar

    [159]

    Lin M, Hughes T L 2018 Phys. Rev. B 98 241103Google Scholar

    [160]

    Călugăru D, Juričić V, Roy B 2019 Phys. Rev. B 99 041301(R)

    [161]

    Ezawa M 2019 Sci. Rep. 9 5286Google Scholar

    [162]

    Wang Z J, Wieder B J, Li J, Yan B H, Bernevig B A 2019 Phys. Rev. Lett. 123 186401Google Scholar

    [163]

    Huang FT, Joon Lim S, Singh S, Kim J, Zhang L, Kim J W, Chu M W, Rabe K M, Vanderbilt D, Cheong S W 2019 Nat. Commun. 10 4211Google Scholar

    [164]

    Li C Z, Wang A Q, Li C, Zheng W Z, Brinkman A, Yu D P, Liao Z M 2020 Phys. Rev. Lett. 124 156601Google Scholar

    [165]

    Wang W D, Kim S, Liu M H, Cevallos F A, Cava R J, Ong N P 2020 Science 368 534Google Scholar

    [166]

    Zhu Z, Kim S, Lei S, Schoop L M, Cava R J, Ong N P 2022 Proc. Natl. Acad. Sci. U. S. A. 119 e2204468119Google Scholar

    [167]

    Kononov A, Abulizi G, Qu K, Yan J, Mandrus D, Watanabe K, Taniguchi T, Schönenberger C 2020 Nano Lett. 20 4228Google Scholar

    [168]

    Huang C, Narayan A, Zhang E Z, Xie X, Ai L, Liu S, Yi C, Shi Y G, Sanvito S, Xiu F 2020 Natl. Sci. Rev. 7 1468Google Scholar

    [169]

    Choi Y B, Xie Y, Chen C Z, Park J, Song S B, Yoon J, Kim B J, Taniguchi T, Watanabe K, Kim J, Fong K C, Ali M N, Law K T, Lee G H 2020 Nat. Mater. 19 974Google Scholar

    [170]

    Ohtomo M, Deacon R S, Hosoda M, Fushimi N, Hosoi H, Randle M D, Ohfuchi M, Kawaguchi K, Ishibashi K, Sato S 2022 Appl. Phys. Express 15 075003Google Scholar

    [171]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 106 162Google Scholar

    [172]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175Google Scholar

    [173]

    Seife C 2005 Science 309 82Google Scholar

    [174]

    Fulde P, Ferrell R A 1964 Phys. Rev. 135 A550Google Scholar

    [175]

    Larkin A I, Ovchinnikov Y N 1964 Zh. Eksperim. i Teor. Fiz. 47 1136

    [176]

    Bianchi A, Movshovich R, Capan C, Pagliuso P G, Sarrao J L 2003 Phys. Rev. Lett. 91 187004Google Scholar

    [177]

    Radovan H A, Fortune N A, Murphy T P, Hannahs S T, Palm E C, Tozer S W, Hall D 2003 Nature 425 51Google Scholar

    [178]

    Lortz R, Wang Y, Demuer A, Bottger P H M, Bergk B, Zwicknagl G, Nakazawa Y, Wosnitza J 2007 Phys. Rev. Lett. 99 187002Google Scholar

    [179]

    Mayaffre H, Kramer S, Horvatic M, Berthier C, Miyagawa K, Kanoda K, Mitrovic V F 2014 Nat. Phys. 10 928Google Scholar

    [180]

    Kitagawa S, Nakamine G, Ishida K, Jeevan H S, Geibel C, Steglich F 2018 Phys. Rev. Lett. 121 157004Google Scholar

    [181]

    Devarakonda A, Inoue H, Fang S, Ozsoy-Keskinbora C, Suzuki T, Kriener M, Fu L, Kaxiras E, Bell D C, Checkelsky J G 2020 Science 370 231Google Scholar

    [182]

    Kinjo K, Manago M, Kitagawa S, Mao Z Q, Yonezawa S, Maeno Y, Ishida K 2022 Science 376 397Google Scholar

    [183]

    Aoyama K, Sigrist M 2012 Phys. Rev. Lett. 109 237007Google Scholar

    [184]

    Michaeli K, Potter A C, Lee P A 2012 Phys. Rev. Lett. 108 117003Google Scholar

    [185]

    Zwicknagl G, Jahns S, Fulde P 2017 J. Phys. Soc. Jpn. 86 083701Google Scholar

    [186]

    Yang F, Wu M W 2018 J. Low Temp. Phys. 192 241Google Scholar

    [187]

    Yuan N F Q, Fu L 2021 Proc. Natl. Acad. Sci. U. S. A. 118 e2019063118Google Scholar

    [188]

    Yuan N F Q, Fu L 2022 Proc. Natl. Acad. Sci. U. S. A. 119 e2119548119Google Scholar

    [189]

    Hart S, Ren H, Kosowsky M, Ben-Shach G, Leubner P, Brüne C, Buhmann H, Molenkamp L W, Halperin B I, Yacoby A 2016 Nat. Phys. 13 87Google Scholar

    [190]

    Chen A Q, Park M J, Gill S T, Xiao Y, Reig-I-Plessis D, Macdougall G J, Gilbert M J, Mason N 2018 Nat. Commun. 9 3478Google Scholar

    [191]

    Li C, de Boer J C, de Ronde B, Ramankutty S V, van Heumen E, Huang Y, de Visser A, Golubov A A, Golden M S, Brinkman A 2018 Nat. Mater. 17 875Google Scholar

    [192]

    Li C Z, Wang A Q, Li C, Zheng W Z, Brinkman A, Yu D P, Liao Z M 2021 Phys. Rev. Lett. 126 027001Google Scholar

    [193]

    Li C, de Ronde B, de Boer J, Ridderbos J, Zwanenburg F, Huang Y, Golubov A, Brinkman A 2019 Phys. Rev. Lett. 123 026802Google Scholar

    [194]

    Ando F, Miyasaka Y, Li T, Ishizuka J, Arakawa T, Shiota Y, Moriyama T, Yanase Y, Ono T 2020 Nature 584 373Google Scholar

    [195]

    Lyu Y Y, Jiang J, Wang Y L, Xiao Z L, Dong S, Chen Q H, Milošević M V, Wang H, Divan R, Pearson J E, Wu P, Peeters F M, Kwok W K 2021 Nat. Commun. 12 2703Google Scholar

    [196]

    Baumgartner C, Fuchs L, Costa A, Reinhardt S, Gronin S, Gardner G C, Lindemann T, Manfra M J, Faria Junior P E, Kochan D, Fabian J, Paradiso N, Strunk C 2022 Nat. Nanotechnol. 17 39Google Scholar

    [197]

    Bauriedl L, Bäuml C, Fuchs L, Baumgartner C, Paulik N, Bauer J M, Lin K Q, Lupton J M, Taniguchi T, Watanabe K, Strunk C, Paradiso N 2022 Nat. Commun. 13 4266Google Scholar

    [198]

    Golod T, Krasnov V M 2022 Nat. Commun. 13 3658Google Scholar

    [199]

    Strambini E, Spies M, Ligato N, Ilić S, Rouco M, González-Orellana C, Ilyn M, Rogero C, Bergeret F S, Moodera J S, Virtanen P, Heikkilä T T, Giazotto F 2022 Nat. Commun. 13 2431Google Scholar

    [200]

    Pal B, Chakraborty A, Sivakumar P K, Davydova M, Gopi A K, Pandeya A K, Krieger J A, Zhang Y, Date M, Ju S, Yuan N, Schroeter N B M, Fu L, Parkin S S P 2022 Nat. Phys. 18 1228Google Scholar

    [201]

    Wu H, Wang Y, Xu Y, Sivakumar P K, Pasco C, Filippozzi U, Parkin S S P, Zeng Y J, Mcqueen T, Ali M N 2022 Nature 604 653Google Scholar

    [202]

    Narita H, Ishizuka J, Kawarazaki R, Kan D, Shiota Y, Moriyama T, Shimakawa Y, Ognev A V, Samardak A S, Yanase Y, Ono T 2022 Nat. Nanotechnol. 17 823Google Scholar

    [203]

    Jeon K R, Kim J K, Yoon J, Jeon J C, Han H, Cottet A, Kontos T, Parkin S S P 2022 Nat. Mater. 21 1008Google Scholar

    [204]

    Lin J X, Siriviboon P, Scammell H D, Liu S, Rhodes D, Watanabe K, Taniguchi T, Hone J, Scheurer M S, Li J I A 2022 Nat. Phys. 18 1221Google Scholar

    [205]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [206]

    Wilczek F 2009 Nat. Phys. 5 614Google Scholar

    [207]

    Elliott S R, Franz M 2015 Rev. Mod. Phys. 87 137Google Scholar

    [208]

    Anderson C D 1933 Phys. Rev. 43 491Google Scholar

    [209]

    Majorana E 1937 Il Nuovo Cimento 14 171Google Scholar

    [210]

    Read N, Green D 2000 Phys. Rev. B 61 10267Google Scholar

    [211]

    Kitaev A Y 2001 Phys. Usp. 44 131Google Scholar

    [212]

    Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001Google Scholar

    [213]

    Alicea J 2010 Phys. Rev. B 81 125318Google Scholar

    [214]

    Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001Google Scholar

    [215]

    Oreg Y, Refael G, von Oppen F 2010 Phys. Rev. Lett. 105 177002Google Scholar

    [216]

    Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502Google Scholar

    [217]

    Koren G, Kirzhner T, Lahoud E, Chashka K B, Kanigel A 2011 Phys. Rev. B 84 224521Google Scholar

    [218]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [219]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nat. Phys. 8 887Google Scholar

    [220]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414Google Scholar

    [221]

    Lin Z, Song H D, Ye X G, Xue J, Wang A Q, Zhang Y, Liu S, Zhang Z, Xu H, Yu D, Liao Z M 2020 Phys. Rev. B 101 214519Google Scholar

    [222]

    Shvetsov O O, Barash Y S, Egorov S V, Timonina A V, Kolesnikov N N, Deviatov E V 2020 EPL 132 67002Google Scholar

    [223]

    Yu W, Haenel R, Rodriguez M A, Lee S R, Zhang F, Franz M, Pikulin D I, Pan W 2020 Phys. Rev. Res. 2 032002Google Scholar

    [224]

    Esin V D, Barash Y S, Timonina A V, Kolesnikov N N, Deviatov E V 2021 JETP Lett. 113 662Google Scholar

    [225]

    Chen J, Woods B D, Yu P, Hocevar M, Car D, Plissard S R, Bakkers E P A M, Stanescu T D, Frolov S M 2019 Phys. Rev. Lett. 123 107703Google Scholar

    [226]

    Yu P, Chen J, Gomanko M, Badawy G, Bakkers E P A M, Zuo K, Mourik V, Frolov S M 2021 Nat. Phys. 17 482Google Scholar

    [227]

    Fu L, Kane C L 2009 Phys. Rev. B 79 161408Google Scholar

    [228]

    Shapiro S 1963 Phys. Rev. Lett. 11 80Google Scholar

    [229]

    Picó-Cortés J, Domínguez F, Platero G 2017 Phys. Rev. B 96 125438Google Scholar

    [230]

    Veldhorst M, Snelder M, Hoek M, Gang T, Guduru V K, Wang X L, Zeitler U, van der Wiel W G, Golubov A A, Hilgenkamp H, Brinkman A 2012 Nat. Mater. 11 417Google Scholar

    [231]

    Rokhinson L P, Liu X, Furdyna J K 2012 Nat. Phys. 8 795Google Scholar

    [232]

    Wiedenmann J, Bocquillon E, Deacon R S, Hartinger S, Herrmann O, Klapwijk T M, Maier L, Ames C, Brüne C, Gould C, Oiwa A, Ishibashi K, Tarucha S, Buhmann H, Molenkamp L W 2016 Nat. Commun. 7 10303Google Scholar

    [233]

    Bocquillon E, Deacon R S, Wiedenmann J, Leubner P, Klapwijk T M, Bruene C, Ishibashi K, Buhmann H, Molenkamp L W 2017 Nat. Nanotechnol. 12 137Google Scholar

    [234]

    Yu W, Pan W, Medlin D L, Rodriguez M A, Lee S R, Bao Z Q, Zhang F 2018 Phys. Rev. Lett. 120 177704Google Scholar

    [235]

    Russer P 1972 J. Appl. Phys. 43 2008Google Scholar

    [236]

    Wang A Q, Li C Z, Li C, Liao Z M, Brinkman A, Yu D P 2018 Phys. Rev. Lett. 121 237701Google Scholar

    [237]

    Shvetsov O O, Kononov A, Timonina A V, Kolesnikov N N, Deviatov E V 2018 EPL 124 47003Google Scholar

    [238]

    Pientka F, Keselman A, Berg E, Yacoby A, Stern A, Halperin B I 2017 Phys. Rev. X 7 021032Google Scholar

    [239]

    Fornieri A, Whiticar A M, Setiawan F, Portolés E, Drachmann A C C, Keselman A, Gronin S, Thomas C, Wang T, Kallaher R, Gardner G C, Berg E, Manfra M J, Stern A, Marcus C M, Nichele F 2019 Nature 569 89Google Scholar

    [240]

    Ren H, Pientka F, Hart S, Pierce A T, Kosowsky M, Lunczer L, Schlereth R, Scharf B, Hankiewicz E M, Molenkamp L W, Halperin B I, Yacoby A 2019 Nature 569 93Google Scholar

    [241]

    Cho S, Dellabetta B, Zhong R D, Schneeloch J, Liu T S, Gu G D, Gilbert M J, Mason N 2015 Nat. Commun. 6 7634Google Scholar

    [242]

    Jauregui L A, Pettes M T, Rokhinson L P, Shi L, Chen Y P 2016 Nat. Nanotechnol. 11 345Google Scholar

    [243]

    Collins J L, Tadich A, Wu W, Gomes L C, Rodrigues J N B, Liu C, Hellerstedt J, Ryu H, Tang S, Mo S K, Adam S, Yang S A, Fuhrer M S, Edmonds M T 2018 Nature 564 390Google Scholar

    [244]

    Pan H, Wu M, Liu Y, Yang S A 2015 Sci. Rep. 5 14639Google Scholar

    [245]

    Liu J W, Hsieh T H, Wei P, Duan W H, Moodera J, Fu L 2014 Nat. Mater. 13 178Google Scholar

    [246]

    Nie T P, Meng L J, Li Y R, Luan Y H, Yu J 2018 J. Phys. Condens. Matter 30 125502Google Scholar

    [247]

    Shao D X, Ruan J W, Wu J F, Chen T, Guo Z P, Zhang H J, Sun J, Sheng L, Xing D Y 2017 Phys. Rev. B 96 075112Google Scholar

    [248]

    Liao Z M, Chu C G, Wang A Q, Li N 2021 China Patent ZL202110952523.6

    [249]

    Yao S Y, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [250]

    Yao S Y, Song F, Wang Z 2018 Phys. Rev. Lett. 121 136802Google Scholar

    [251]

    Jung M, Yoshida K, Park K, Zhang X X, Yesilyurt C, Siu Z B, Jalil M B A, Park J, Park J, Nagaosa N, Seo J, Hirakawa K 2018 Nano Lett. 18 1863Google Scholar

    [252]

    Wang G, Dvir T, Mazur G P, Liu C X, van Loo N, Ten Haaf S L D, Bordin A, Gazibegovic S, Badawy G, Bakkers E, Wimmer M, Kouwenhoven L P 2022 Nature 612 448Google Scholar

    [253]

    Dvir T, Wang G, van Loo N, Liu C X, Mazur G P, Bordin A, ten Haaf S L D, Wang J Y, van Driel D, Zatelli F, Li X, Malinowski F K, Gazibegovic S, Badawy G, Bakkers E P A M, Wimmer M, Kouwenhoven L P 2023 Nature 614 445Google Scholar

    [254]

    Bordoloi A, Zannier V, Sorba L, Schonenberger C, Baumgartner A 2022 Nature 612 454Google Scholar

    [255]

    Harper F, Pushp A, Roy R 2019 Phys. Rev. Res. 1 033207Google Scholar

    [256]

    Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A 2011 Nat. Phys. 7 412Google Scholar

  • 图 1  拓扑半金属能带结构 (a) 狄拉克点处的线性能带色散关系[10]; (b) 狄拉克, 外尔和绝缘相 (1)四重简并狄拉克点, (2)打破空间反演对称性, 分为4个外尔点, (3)塞曼场使狄拉克点沿磁场方向劈裂为两个手性相反的外尔点, (4)打破四重旋转对称性, 产生能隙[10]; (c)外尔半金属能带结构示意图, 外尔点(红点)在表面布里渊区(灰色)的投影连线形成费米弧表面态(黄线)[8]

    Fig. 1.  Band structure of topological semimetals: (a) Linear band dispersion at Dirac points[10]; (b) Dirac, Weyl, and insulating phase (1) Fourfold degenerate Dirac point, (2) four Weyl points due to a small inversion breaking perturbation, (3) Dirac point splits into two Weyl points with opposite chirality along the direction of a Zeeman field, (4) gapped phase obtained by breaking the fourfold rotation symmetry[10]; (c) schematic of the band structure of the Weyl semimetal, the projection of Weyl points (red points) to the surface Brillouin zone (in gray) leads to Fermi-arc surface states (yellow line)[8].

    图 2  狄拉克半金属Cd3As2费米弧表面态的法布里-珀罗干涉[133] (a)零电阻态的观测, 插图为约瑟夫森结的SEM图片; (b)微分电阻dV/dI随源漏电流Isd的演化; (c) dV/dI对栅压VgIsd的依赖, 中间深色区域为超导态, 其上边界反映了临界电流IcVg的演化; (d) –1—0 V显著的Ic振荡; (e) 法布里-珀罗谐振腔示意图; (f) Ic(kF)振荡的FFT分析, 峰值F = 0.249对应周期ΔkF ~ 4.01 μm–1

    Fig. 2.  Fabry-Pérot interferences of Fermi-arc surface states in Dirac semimetal Cd3As2[133]: (a) Observation of zero resistance, inset is an SEM image of the Josephson junctions; (b) differential resistance dV/dI as a function of the source-drain current Isd; (c) gate voltage Vg and Isd dependence of dV/dI. The central dark region represents the superconducting state, in which its upper boundary reflects the evolution of critical current Ic with Vg; (d) clear oscillations in –1—0 V; (e) sketch of the Fabry-Pérot resonator; (f) FFT analysis of the Ic(kF) oscillations, the peak F = 0.249 corresponds to a period ΔkF ~ 4.01 μm–1.

    图 3  Cd3As2费米弧超导电流振荡[144] (a) IcVg的超导拱形依赖; (b)多重Andreev反射; (c)平行磁场下Ic-B振荡, 插图为约瑟夫森结的光学显微镜图片, 标尺为2 μm; (d) 0.1 T磁场时的Ic-Vg及正常态电导GN-Vg演化, 狄拉克点处Ic取极大值; (e) Ic极大值随磁场增加向狄拉克点偏移; (f)费米面靠近(上图)和远离(下图)狄拉克点的费米弧

    Fig. 3.  Fermi-arc supercurrent oscillations in Cd3As2[144]: (a) Superconducting dome of Ic-Vg; (b) multiple Andreev reflections (MAR); (c) Ic-B oscillations under parallel magnetic field, inset is an optical image of the Josephson junctions, scale bar is 2 μm; (d) evolution of Ic and normal conductance GN with varying Vg at B = 0.1 T; (e) the maximum of Ic shifts towards Dirac point with increasing B field; (f) the Fermi arcs for Fermi level close to (up panel) and away from (bottom panel) Dirac point.

    图 4  铋(Bi)纳米线中的边缘超导电流[157] (a)钨(W)-Bi-W约瑟夫森结示意图; (b)面外磁场下的Ic-B振荡; (c) 面内磁场下的Ic-B振荡; (d) Bi纳米线中局域态密度的紧束缚计算

    Fig. 4.  Edge supercurrent in bismuth (Bi) nanowires[157]: (a) Schematic of the tungsten (W)-Bi-W Josephson junction; (b) Ic-B oscillations under an out-of-plane magnetic field; (c) Ic-B oscillations under an in-plane magnetic field; (d) tight-binding calculation of the local density of states (LDOS) in bismuth nanowire.

    图 5  Cd3As2中的高阶拓扑相[164] (a) 面外磁场下的Ic振荡, 插图为约瑟夫森结SEM图片, 标尺为2 μm; (b) Ic-B偏离夫琅禾费图样, 可被反对称SQUID模型拟合; (c) 超导电流密度Jc受限在一维通道; (d) 扣除光滑背景后的拍频振荡; (e) 对(d)做FFT, 得到两个振荡频率; (f) Cd3As2中高阶拓扑棱态示意图

    Fig. 5.  Higher-order topological phase in Cd3As2[164]: (a) Ic oscillations under an out-of-plane magnetic field, inset is an SEM image of the Josephson junctions, scale bar is 2 μm; (b) Ic-B deviates from the Fraunhofer pattern and could be fitted by the asymmetric SQUID model; (c) the supercurrent density Jc is confined in 1D channels; (d) beating oscillations after subtracting a smooth background; (e) two frequencies obtained by applying FFT to (d); (f) schematic of the higher-order topological hinge states in Cd3As2.

    图 6  外尔半金属Td-MoTe2中的边缘超导电流[165] (a) S1样品中的两种Ic-B振荡模式, 内侧夫琅禾费形的低频模, 外侧扇贝形的高频模; (b)低频模(红箭头)和高频模(蓝箭头)随磁场的演化; 较大面积样品S2 (c)和S6 (d)中则只有高频模; (e) 由振荡周期推算的面积与物理面积的标度关系; (f) 对称性破缺的弱激发态

    Fig. 6.  Edge supercurrent in the Weyl semimetal Td-MoTe2[165]: (a) Two Ic-B oscillation modes in sample S1, the slow mode displays the inner Fraunhofer pattern, while the fast mode exhibits the outer scalloped boundary; (b) magnetic field evolution of the slow mode (red arrows) and fast mode (blue arrows); in large-area crystals S2 (c) and S6 (d), only the fast mode is visible; (e) scaling between the flux penetration area derived from the oscillation period and the physical area; (f) weak excitation branches with broken symmetry.

    图 7  Cd3As2约瑟夫森结中的有限动量配对[192] (a) Nb-Cd3As2纳米线-Nb约瑟夫森结在平行磁场下的Ic振荡; (b) IcVg和平行磁场的演化

    Fig. 7.  Finite momentum pairing in Cd3As2 Josephson junctions[192]: (a) Ic oscillations with parallel magnetic field in Nb-Cd3As2 nanowire-Nb Josephson junctions; (b) evolution of Ic with Vg and parallel magnetic field.

    图 8  Bi0.97Sb0.03约瑟夫森结中塞曼效应诱导0-π相变[193] (a) Bi0.97Sb0.03与Nb构成的非对称SQUID器件示意图; (b) 20 mK的锯齿形CPR; (c) 平行磁场诱导的0-π相变; (d) 不同平行磁场下的CPR; (e) 临界电流随平行磁场的振荡; (f) 塞曼效应诱导的有限动量配对

    Fig. 8.  Zeeman-effect-induced 0-π transitions in Bi0.97Sb0.03 Josephson junctions[193]: (a) Schematic of the asymmetric SQUID made of Bi0.97Sb0.03 and Nb; (b) sawtooth-shaped CPR at 20 mK; (c) parallel-magnetic-field-induced 0-π transitions; (d) CPR at different parallel magnetic fields; (e) critical current oscillations with parallel magnetic field; (f) illustration of the Zeeman-effect-induced finite-momentum pairing.

    图 9  狄拉克半金属NiTe2中的约瑟夫森二极管效应[200] (a) 约瑟夫森结与面内垂直磁场By示意图; By = 20 mT的非互易临界电流${I_{{\text{c}} + }} \ne \left| {{I_{{\text{c}} - }}} \right|$ (b)和整流效应(c); (d)$\Delta {I_{\text{c}}}$By和温度的演化; (e) dV/dI-Bz干涉图案随平行磁场Bx的演化; (f) 计算的Ic-Bz干涉图案随平行磁场Bx的演化

    Fig. 9.  Josephson diode effect in a Dirac semimetal NiTe2[200]: (a) Schematic of a Josephson junction with in-plane perpendicular magnetic field By; non-reciprocal critical current ${I_{{\text{c}} + }} \ne \left| {{I_{{\text{c}} - }}} \right|$(b) and rectification effect (c) with By = 20 mT; (d) dependence of $\Delta {I_{\text{c}}}$ on By and temperature; (e) evolution of the interference pattern of dV/dI-Bz due to the parallel magnetic field Bx; (f) calculated interference pattern of Ic-Bz evolving with Bx.

    图 10  Cd3As2表面态承载的4π周期超导电流[236] (a), (b) 微波频率分别为6.7 GHz和2 GHz, 微分电阻随电流和微波功率的演化; (c) n = 1 Shapiro台阶的消失; (d), (e) 分别从(a)和(b)提取的Shapiro台阶宽度随功率的演化; (f)模拟的低频下n = 0台阶对微波功率的响应, 占比7%的4π周期超导电流可以产生明显的剩余电流$I_0^{k = 1}$

    Fig. 10.  4π-periodic supercurrent carried by surface states of Cd3As2[236]: (a), (b) Differential resistance as a function of current and microwave power under irradiation frequency of 6.7 GHz and 2 GHz, respectively; (c) missing of the n = 1 Shapiro step; (d), (e) extracted power evolution of Shapiro step sizes from (a) and (b), respectively; (f) simulated response of n = 0 step to microwave power under low irradiation frequency, a 7% admixture of 4π-periodic supercurrent could generate a clear residual supercurrent $I_0^{k = 1}$.

    图 11  Cd3As2纳米线约瑟夫森结中栅压调控的拓扑超导相变 (a) 栅压调控表面态拓扑相变[192]; (b)平行磁场中, 3个栅压下的归一化Ic-B曲线[192]; (c) 300 mT平行磁场中dV/dI关于IdcVg的函数图[192]; (d) dV/dI随栅压和平行磁场的变化[192]; 正栅压(e)和负栅压(f)下Shapiro台阶宽度随电压V和射频功率的演化[236]

    Fig. 11.  Topological transition of superconductivity in Cd3As2 nanowire Josephson junctions by gate control: (a) Topological transition of surface states by tuning gate voltages[192]; (b) normalized Ic-parallel magnetic field B at three gate voltages[192]; (c) dV/dI as a function of Idc and Vg under a parallel magnetic field of 300 mT[192]; (d) evolution of dV/dI with Vg and parallel magnetic field B[192]; Shapiro step size as a function of voltage V and radio frequency power at positive (e) and negative (f) gate voltages[236].

    图 12  纳米线Y型结构的Majorana零能模编织[255] (a) 理想的Majorana编织, 从真空中产生两对Majorana零能模(γi), 各一个被编织后, 每对Majorana零能模融合为一个费米子(ci), 始末状态可以定义一个拓扑量子比特的$\left| 0 \right\rangle $$\left| 1 \right\rangle $; (b)纳米线Y型结构中两个Majorana零能模的交换操作, 一次完整的编织需要进行两次这样的交换; (c) 栅压调控Majorana零能模的实验构型, Majorana零能模(γ)位于纳米线中拓扑超导(红色)和平庸(浅灰)区域的边界

    Fig. 12.  Braiding Majorana zero modes in a nanowire Y-junction[255]: (a) Ideal Majorana braiding, two pairs of Majorana fermions (γi) are created from the vacuum, and one from each pair is braided, after this process, each pair of Majorana fermions fuses to form a complex fermion (ci), initial and final states could be defined as the $\left| 0 \right\rangle $ and $\left| 1 \right\rangle $ of a topological qubit; (b) sequence of moves for exchanging one from each pair of Majorana zero modes in a nanowire Y-junction, this exchange must be carried out twice to perform a complete braid; (c) schematic experimental setup for manipulating Majorana fermions by gate control, Majorana zero modes (γ) locate at the boundary between the topological regions (red) and trivial regions (light gray).

  • [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [3]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [4]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [5]

    Lv B Q, Qian T, Ding H 2021 Rev. Mod. Phys. 93 025002Google Scholar

    [6]

    Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [7]

    Burkov A A, Balents L 2011 Phys. Rev. Lett. 107 127205Google Scholar

    [8]

    Balents L 2011 Physics 4 36Google Scholar

    [9]

    Wang Z J, Sun Y, Chen XQ, Franchini C, Xu G, Weng H M, Dai X, Fang Z 2012 Phys. Rev. B 85 195320Google Scholar

    [10]

    Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J, Rappe A M 2012 Phys. Rev. Lett. 108 140405Google Scholar

    [11]

    Mañes J L 2012 Phys. Rev. B 85 155118Google Scholar

    [12]

    Wang Z J, Weng H M, Wu Q S, Dai X, Fang Z 2013 Phys. Rev. B 88 125427Google Scholar

    [13]

    Yang BJ, Nagaosa N 2014 Nat. Commun. 5 4898Google Scholar

    [14]

    Neupane M, Xu SY, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang TR, Jeng HT, Lin H, Bansil A, Chou F, Hasan M Z 2014 Nat. Commun. 5 3786Google Scholar

    [15]

    Jeon S, Zhou B B, Gyenis A, Feldman B E, Kimchi I, Potter A C, Gibson Q D, Cava R J, Vishwanath A, Yazdani A 2014 Nat. Mater. 13 851Google Scholar

    [16]

    Liang T, Gibson Q, Ali M N, Liu M H, Cava R J, Ong N P 2015 Nat. Mater. 14 280Google Scholar

    [17]

    Narayanan A, Watson M D, Blake S F, Bruyant N, Drigo L, Chen Y L, Prabhakaran D, Yan B, Felser C, Kong T, Canfield P C, Coldea A I 2015 Phys. Rev. Lett. 114 117201Google Scholar

    [18]

    Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z, Chen Y, Schnelle W, Borrmann H, Grin Y, Felser C, Yan B 2015 Nat. Phys. 11 645Google Scholar

    [19]

    Qiu G, Du Y, Charnas A, Zhou H, Jin S, Luo Z, Zemlyanov D Y, Xu X, Cheng G J, Ye P D 2016 Nano Lett. 16 7364Google Scholar

    [20]

    Hu J, Liu J Y, Graf D, Radmanesh S M A, Adams D J, Chuang A, Wang Y, Chiorescu I, Wei J, Spinu L, Mao Z Q 2016 Sci. Rep. 6 18674Google Scholar

    [21]

    Zheng G L, Lu J W, Zhu X D, Ning W, Han Y Y, Zhang H W, Zhang J L, Xi C Y, Yang J Y, Du H F, Yang K, Zhang Y H, Tian M L 2016 Phys. Rev. B 93 115414Google Scholar

    [22]

    Tafti F F, Gibson Q D, Kushwaha S K, Haldolaarachchige N, Cava R J 2016 Nat. Phys. 12 272Google Scholar

    [23]

    Zhang CL, Xu SY, Belopolski I, Yuan Z J, Lin Z Q, Tong B B, Bian G, Alidoust N, Lee C C, Huang S M, Chang T R, Chang G Q, Hsu C H, Jeng H T, Neupane M, Sanchez D S, Zheng H, Wang J F, Lin H, Zhang C, Lu H Z, Shen S Q, Neupert T, Hasan M Z, Jia S 2016 Nat. Commun. 7 10735Google Scholar

    [24]

    Wang Z, Zheng Y, Shen Z X, Lu Y H, Fang H Y, Sheng F, Zhou Y, Yang X J, Li Y P, Feng C M, Xu Z A 2016 Phys. Rev. B 93 121112Google Scholar

    [25]

    Chi H, Zhang C, Gu G, Kharzeev D E, Dai X, Li Q 2017 New J. Phys. 19 015005Google Scholar

    [26]

    Huang S, Kim J, Shelton W A, Plummer E W, Jin R 2017 Proc. Natl. Acad. Sci. U. S. A. 114 6256Google Scholar

    [27]

    Gao W S, Hao N N, Zheng FW, Ning W, Wu M, Zhu X D, Zheng G L, Zhang JL, Lu J W, Zhang H W, Xi C Y, Yang J Y, Du H F, Zhang P, Zhang Y H, Tian M L 2017 Phys. Rev. Lett. 118 256601Google Scholar

    [28]

    Uchida M, Nakazawa Y, Nishihaya S, Akiba K, Kriener M, Kozuka Y, Miyake A, Taguchi Y, Tokunaga M, Nagaosa N, Tokura Y, Kawasaki M 2017 Nat. Commun. 8 2274Google Scholar

    [29]

    Kumar N, Sun Y, Xu N, Manna K, Yao M Y, Suess V, Leermakers I, Young O, Foerster T, Schmidt M, Borrmann H, Yan B, Zeitler U, Shi M, Felser C, Shekhar C 2017 Nat. Commun. 8 1642Google Scholar

    [30]

    Li C Z, Wang L X, Liu H W, Wang J, Liao Z M, Yu D P 2015 Nat. Commun. 6 10137Google Scholar

    [31]

    Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J, Ong N P 2015 Science 350 413Google Scholar

    [32]

    Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X, Chen G F 2015 Phys. Rev. X 5 031023Google Scholar

    [33]

    Li H, He H T, Lu HZ, Zhang H C, Liu H C, Ma R, Fan Z Y, Shen S Q, Wang J N 2016 Nat. Commun. 7 10301Google Scholar

    [34]

    Du J H, Wang H D, Chen Q, Mao Q H, Khan R, Xu B J, Zhou Y X, Zhang Y N, Yang J H, Chen B, Feng C M, Fang M H 2016 Sci. China:Phys. Mech. Astron. 59 657406Google Scholar

    [35]

    Jia Z Z, Li C Z, Li X Q, Shi J R, Liao Z M, Yu D P, Wu X S 2016 Nat. Commun. 7 13013Google Scholar

    [36]

    Wang Y J, Liu E F, Liu H M, Pan Y M, Zhang L Q, Zeng J W, Fu Y J, Wang M, Xu K, Huang Z, Wang Z L, Lu H Z, Xing D Y, Wang B G, Wan X G, Miao F 2016 Nat. Commun. 7 13142Google Scholar

    [37]

    Xu X T, Jia S 2016 Chin. Phys. B 25 117204Google Scholar

    [38]

    Hirschberger M, Kushwaha S, Wang Z J, Gibson Q, Liang S H, Belvin C A, Bernevig B A, Cava R J, Ong N P 2016 Nat. Mater. 15 1161Google Scholar

    [39]

    Zhang C, Zhang E Z, Wang W Y, Liu Y W, Chen Z G, Lu S H, Liang S H, Cao J Z, Yuan X, Tang L, Li Q, Zhou C, Gu T, Wu Y Z, Zou J, Xiu F X 2017 Nat. Commun. 8 13741Google Scholar

    [40]

    Niemann A C, Gooth J, Wu S C, Bassler S, Sergelius P, Huhne R, Rellinghaus B, Shekhar C, Suss V, Schmidt M, Felser C, Yan B H, Nielsch K 2017 Sci. Rep. 7 43394Google Scholar

    [41]

    Gooth J, Niemann A C, Meng T, Grushin A G, Landsteiner K, Gotsmann B, Menges F, Schmidt M, Shekhar C, Suss V, Hune R, Rellinghaus B, Felser C, Yan B H, Nielsch K 2017 Nature 547 324Google Scholar

    [42]

    Li P, Wen Y, He X, Zhang Q, Xia C, Yu Z M, Yang S Y A, Zhu Z Y, Alshareef H N, Zhang X X 2017 Nat. Commun. 8 2150Google Scholar

    [43]

    Juyal A, Agarwal A, Mukhopadhyay S 2018 Phys. Rev. Lett. 120 096801Google Scholar

    [44]

    Liang S H, Lin J J, Kushwaha S, Xing J, Ni N, Cava R J, Ong N P 2018 Phys. Rev. X 8 031002Google Scholar

    [45]

    Kumar N, Guin S N, Felser C, Shekhar C 2018 Phys. Rev. B 98 041103Google Scholar

    [46]

    Li P, Zhang C H, Zhang J W, Wen Y, Zhang X X 2018 Phys. Rev. B 98 121108Google Scholar

    [47]

    Guo C Y, Wu F, Smidman M, Yuan H Q 2018 AIP Adv. 8 101336Google Scholar

    [48]

    Wu M, Zheng G L, Chu W W, Liu Y Q, Gao W S, Zhang H W, Lu J W, Han Y Y, Zhou J H, Ning W, Tian M L 2018 Phys. Rev. B 98 161110Google Scholar

    [49]

    Liu E K, Sun Y, Kumar N, Muechler L, Sun A L, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Suss V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B, Felser C 2018 Nat. Phys. 14 1125Google Scholar

    [50]

    Singha R, Roy S, Pariari A, Satpati B, Mandal P 2019 Phys. Rev. B 99 035110Google Scholar

    [51]

    Gooth J, Bradlyn B, Honnali S, Schindler C, Kumar N, Noky J, Qi Y, Shekhar C, Sun Y, Wang Z, Bernevig B A, Felser C 2019 Nature 575 315Google Scholar

    [52]

    Meng J C, Xue H X, Liu M R, Jiang W M, Zhang Z, Ling J Z, He L, Dou R F, Xiang C M, Nie J C 2020 J. Phys. Condens. Matter 32 015702Google Scholar

    [53]

    Zhu Y L, Gui X, Wang Y, Graf D, Xie W W, Hu J, Mao Z Q 2020 Phys. Rev. B 101 035133Google Scholar

    [54]

    Chen J, Li H, Ding B, Liu E K, Yao Y, Wu G H, Wang W H 2020 Appl. Phys. Lett. 116 222403Google Scholar

    [55]

    Zhang J L, Chen J, Li P, Zhang C H, Hou Z P, Wen Y, Zhang Q, Wang W H, Zhang X X 2020 J. Phys. Condens. Matter 32 355707Google Scholar

    [56]

    Ong N P, Liang S H 2021 Nat. Rev. Phys. 3 394Google Scholar

    [57]

    Jiang B Y, Wang L J Y, Bi R, Fan J W, Zhao J J, Yu D P, Li Z L, Wu X S 2021 Phys. Rev. Lett. 126 236601Google Scholar

    [58]

    Laha A, Singha R, Mardanya S, Singh B, Agarwal A, Mandal P, Hossain Z 2021 Phys. Rev. B 103 L241112Google Scholar

    [59]

    Wang L M, Lin S E, Shen D, Chen I N 2021 New J. Phys. 23 093030Google Scholar

    [60]

    Kumar P, Nagpal V, Sudesh, Patnaik S 2022 J. Phys. Condens. Matter 34 055601Google Scholar

    [61]

    Wang L X, Li C Z, Yu D P, Liao Z M 2016 Nat. Commun. 7 10769Google Scholar

    [62]

    Lin B C, Wang S, Wang L X, Li C Z, Li J G, Yu D P, Liao Z M 2017 Phys. Rev. B 95 235436Google Scholar

    [63]

    Wang S, Lin B C, Zheng W Z, Yu D P, Liao Z M 2018 Phys. Rev. Lett. 120 257701Google Scholar

    [64]

    Moll P J W, Nair N L, Helm T, Potter A C, Kimchi I, Vishwanath A, Analytis J G 2016 Nature 535 266Google Scholar

    [65]

    Zhang C, Narayan A, Lu S H, Zhang J L, Zhang H Q, Ni Z L, Yuan X, Liu Y W, Park JH, Zhang E Z, Wang W Y, Liu S S, Cheng L, Pi L, Sheng Z G, Sanvito S, Xiu F X 2017 Nat. Commun. 8 1272Google Scholar

    [66]

    Nishihaya S, Uchida M, Nakazawa Y, Kriener M, Kozuka Y, Taguchi Y, Kawasaki M 2018 Sci. Adv. 4 eaar5668Google Scholar

    [67]

    Schumann T, Galletti L, Kealhofer D A, Kim H, Goyal M, Stemmer S 2018 Phys. Rev. Lett. 120 016801Google Scholar

    [68]

    Goyal M, Galletti L, Salmani-Rezaie S, Schumann T, Kealhofer D A, Stemmer S 2018 APL Mater. 6 026105Google Scholar

    [69]

    Lin B C, Wang S, Wiedmann S, Lu J M, Zheng W Z, Yu D, Liao Z M 2019 Phys. Rev. Lett. 122 036602Google Scholar

    [70]

    Zhang C, Zhang Y, Yuan X, Lu S H, Zhang J L, Narayan A, Liu Y W, Zhang H Q, Ni Z L, Liu R, Choi E S, Suslov A, Sanvito S, Pi L, Lu H Z, Potter A C, Xiu F X 2019 Nature 565 331Google Scholar

    [71]

    Liu J Y, Yu J, Ning J L, Yi H M, Miao L, Min L J, Zhao Y F, Ning W, Lopez K A, Zhu Y L, Pillsbury T, Zhang Y B, Wang Y, Hu J, Cao H B, Chakoumakos B C, Balakirev F, Weickert F, Jaime M, Lai Y, Yang K, Sun J W, Alem N, Gopalan V, Chang C Z, Samarth N, Liu C X, McDonald R D, Mao Z Q 2021 Nat. Commun. 12 4062Google Scholar

    [72]

    Van Delft D, Kes P 2010 Phys. Today 63 38Google Scholar

    [73]

    He L P, Jia Y T, Zhang S J, Hong X C, Jin C Q, Li S Y 2016 NPJ Quantum Mater. 1 16014Google Scholar

    [74]

    Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S C, Shekhar C, Sun Y, Suess V, Schmidt M, Schwarz U, Pippel E, Werner P, Hillebrand R, Foerster T, Kampert E, Parkin S, Cava R J, Felser C, Yan B, Medvedev S A 2016 Nat. Commun. 7 11038Google Scholar

    [75]

    Zhou Y H, Wu J F, Ning W, Li N N, Du Y P, Chen X L, Zhang R R, Chi Z H, Wang X F, Zhu X D, Lu P C, Ji C, Wan X G, Yang Z R, Sun J, Yang W, Tian M L, Zhang Y H, Mao H K 2016 Proc. Natl. Acad. Sci. U. S. A. 113 2904Google Scholar

    [76]

    Chan Y T, Alireza P L, Yip K Y, Niu Q, Lai K T, Goh S K 2017 Phys. Rev. B 96 180504Google Scholar

    [77]

    Guguchia Z, von Rohr F, Shermadini Z, Lee A T, Banerjee S, Wieteska A R, Marianetti C A, Frandsen B A, Luetkens H, Gong Z, Cheung S C, Baines C, Shengelaya A, Taniashvili G, Pasupathy A N, Morenzoni E, Billinge S J L, Amato A, Cava R J, Khasanov R, Uemura Y J 2017 Nat. Commun. 8 1082Google Scholar

    [78]

    Li Y F, Zhou Y H, Guo Z P, Han F, Chen X L, Lu P C, Wang X F, An C, Zhou Y, Xing J, Du G, Zhu X Y, Yang H, Sun J, Yang Z R, Yang W G, Mao H K, Zhang Y H, Wen H H 2017 NPJ Quantum Mater. 2 66Google Scholar

    [79]

    Tafti F F, Torikachvili M S, Stillwell R L, Baer B, Stavrou E, Weir S T, Vohra Y K, Yang H Y, McDonnell E F, Kushwaha S K, Gibson Q D, Cava R J, Jeffries J R 2017 Phys. Rev. B 95 014507Google Scholar

    [80]

    Chi Z H, Chen X L, An C, Yang L X, Zhao J G, Feng Z L, Zhou Y H, Zhou Y, Gu C C, Zhang B W, Yuan Y F, Kenney-Benson C, Yang W G, Wu G, Wan XG, Shi Y G, Yang X P, Yang Z R 2018 NPJ Quantum Mater. 3 28Google Scholar

    [81]

    Heikes C, Liu I L, Metz T, Eckberg C, Neves P, Wu Y, Hung L, Piccoli P, Cao H, Leao J, Paglione J, Yildirim T, Butch N P, Ratcliff W, II 2018 Phys. Rev. Mater. 2 074202Google Scholar

    [82]

    Li Y P, An C, Hua C Q, Chen X L, Zhou Y H, Zhou Y H, Zhang R R, Park CY, Wang Z, Lu Y H, Zheng Y, Yang ZR, Xu ZA 2018 NPJ Quantum Mater. 3 58Google Scholar

    [83]

    Cai S, Emmanouilidou E, Guo J, Li X D, Li Y C, Yang K, Li A G, Wu Q, Ni N, Sun L L 2019 Phys. Rev. B 99 020503Google Scholar

    [84]

    Guguchia Z, Gawryluk D J, Brzezinska M, Tsirkin S S, Khasanov R, Pomjakushina E, von Rohr F O, Verezhak J A T, Hasan M Z, Neupert T, Luetkens H, Amato A 2019 NPJ Quantum Mater. 4 50Google Scholar

    [85]

    Hu Y J, Chan Y T, Lai K T, Ho K O, Guo X, Sun H P, Yip K Y, Ng D H L, Lu H Z, Goh S K 2019 Phys. Rev. Mater. 3 034201Google Scholar

    [86]

    Jia Y T, Zhao J F, Zhang S J, Yu S, Dai G Y, Li W M, Duan L, Zhao G Q, Wang X C, Zheng X, Liu Q Q, Lon Y W, Li Z, Li X D, Weng H M, Yu R Z, Yu R C, Jin C Q 2019 Chin. Phys. Lett. 36 087401Google Scholar

    [87]

    Xu C Q, Li B, van Delft M R, Jiao W H, Zhou W, Qian B, Zhigadlo N D, Qian D, Sankar R, Hussey N E, Xu X 2019 Phys. Rev. B 99 024110Google Scholar

    [88]

    Leng H, Ohmura A, Anh L N, Ishikawa F, Naka T, Huang Y K, de Visser A 2020 J. Phys. Condens. Matter 32 025603Google Scholar

    [89]

    Yuan Y F, Wang W K, Zhou Y H, Chen X L, Cu C C, An C, Zhou Y, Zhang B W, Chen C H, Zhang R R, Yang Z R 2020 Adv. Electron. Mater. 6 1901260Google Scholar

    [90]

    Feng Z J, Si J Y, Li T, Dong H L, Xu C Q, Yang J, Zhang Z, Wang K, Wu H, Hou Q, Xing J J, Wan S, Li S, Deng W, Feng J J, Pal A, Chen F, Hu S B, Ge J Y, Dong C, Wang S S, Ren W, Cao S X, Liu Y, Xu X F, Zhang J C, Chen B, Yeh N C 2021 Mater. Today Phys. 17 100339Google Scholar

    [91]

    Furue Y, Fujino T, Salis M V, Leng H, Ishikawa F, Naka T, Nakano S, Huang Y, de Visser A, Ohmura A 2021 Phys. Rev. B 104 144510Google Scholar

    [92]

    Mu Q G, Fan F R, Borrmann H, Schnelle W, Sun Y, Felser C, Medvedev S 2021 NPJ Quantum Mater. 6 55Google Scholar

    [93]

    Mu Q G, Nenno D, Qi Y P, Fan F R, Pei C, ElGhazali M, Gooth J, Felser C, Narang P, Medvedev S 2021 Phys. Rev. Mater. 5 084201Google Scholar

    [94]

    Yang H, Hooda M K, Yadav C S, Hrabovsky D, Gauzzi A, Klein Y 2021 Phys. Rev. B 103 235105Google Scholar

    [95]

    Cao W Z, Zhao N N, Pei C Y, Wang Q, Zhang Q H, Ying T P, Zhao Y, Gao L L, Li C H, Yu N, Gu L, Chen Y L, Liu K, Qi Y P 2022 Phys. Rev. B 105 174502Google Scholar

    [96]

    Deng W, Zhen J P, Huang Q S, Wang Y J, Dong H L, Wan S, Zhang S H, Feng J J, Chen B 2022 J. Phys. Chem. Lett. 13 5514Google Scholar

    [97]

    Aggarwal L, Gaurav A, Thakur G S, Haque Z, Ganguli A K, Sheet G 2016 Nat. Mater. 15 32Google Scholar

    [98]

    Aggarwal L, Gayen S, Das S, Thakur G S, Ganguli A K, Sheet G 2016 Appl. Phys. Lett. 109 252602Google Scholar

    [99]

    Wang H, Wang H C, Liu H W, Lu H, Yang W H, Jia S, Liu X J, Xie X C, Wei J, Wang J 2016 Nat. Mater. 15 38Google Scholar

    [100]

    Aggarwal L, Gayen S, Das S, Kumar R, Suess V, Felser C, Shekhar C, Sheet G 2017 Nat. Commun. 8 13974Google Scholar

    [101]

    Wang H, Wang H C, Chen Y Q, Luo J W, Yuan Z J, Liu J, Wang Y, Jia S, Liu X J, Wei J, Wang J 2017 Sci. Bull. 62 425Google Scholar

    [102]

    Naidyuk Y, Kvitnitskaya O, Bashlakov D, Aswartham S, Morozov I, Chernyavskii I, Fuchs G, Drechsler S L, Huehne R, Nielsch K, Buechner B, Efremov D 2018 2D Mater. 5 045014Google Scholar

    [103]

    Hou X Y, Wang Z, Gu Y D, He J B, Chen D, Zhu W L, Zhang M D, Zhang F, Xu Y F, Zhang S, Yang H X, Ren Z A, Weng H M, Hao N, Lv W G, Hu J P, Chen G F, Shan L 2019 Phys. Rev. B 100 235109Google Scholar

    [104]

    Le T, Yin L C, Feng Z L, Huang Q, Che L Q, Li J, Shi Y G, Lu X 2019 Phys. Rev. B 99 180504Google Scholar

    [105]

    Luo J W, Li Y N, Li J C, Hashimoto T, Kawakami T, Lu H, Jia S, Sato M, Wang J 2019 Phys. Rev. Mater. 3 124201Google Scholar

    [106]

    Hou X Y, Gu Y D, Li S J, Zhao L X, Zhu W L, Wang Z, Zhang M D, Zhang F, Zhang L, Zi H, Wu Y W, Yang H X, Ren Z A, Zhang P, Chen G F, Hao N, Shan L 2020 Phys. Rev. B 101 134503Google Scholar

    [107]

    Wang H, He Y P, Liu Y Y, Yuan Z J, Jia S, Ma L, Liu X J, Wang J 2020 Sci. Bull. 65 21Google Scholar

    [108]

    Wang H, Liu Y Z, Zhou H B, Ji H R, Luo J W, Zhang J W, Wei T H, Wang P Y, Jia S, Wang J 2020 Sci. China: Phys. Mech. Astron. 63 287411Google Scholar

    [109]

    Zhang M D, Hou X Y, Wang Q, Wang Y Y, Zhao L X, Wang Z, Gu Y D, Zhang F, Xia T L, Ren Z A, Chen G F, Hao N, Shan L 2020 Phys. Rev. B 102 085139Google Scholar

    [110]

    Bashlakov D L, Kvitnitskaya O E, Shipunov G, Aswartham S, Feya O D, Efremov D V, Buechner B, Naidyuk Y G 2022 Low Temp. Phys. 48 747Google Scholar

    [111]

    Vasdev A, Kumar R, Hooda M K, Yadav C S, Sheet G 2022 Solid State Commun. 357 114952Google Scholar

    [112]

    Chen F C, Luo X, Xiao R C, Lu W J, Zhang B, Yang H X, Li J Q, Pei Q L, Shao D F, Zhang R R, Ling L S, Xi C Y, Song W H, Sun Y P 2016 Appl. Phys. Lett. 108 162601Google Scholar

    [113]

    Cho S, Kang S H, Yu H S, Kim H W, Ko W, Hwang S W, Han W H, Choe D H, Jung Y H, Chang K J, Lee Y H, Yang H, Kim S W 2017 2D Mater. 4 021030

    [114]

    de Lima B S, de Cassia R R, Santos F B, Correa L E, Grant T W, Manesco A L R, Martins G W, Eleno L T F, Torikachvili M S, Machado A J S 2018 Solid State Commun. 283 27Google Scholar

    [115]

    Li Y, Gu Q Q, Chen C, Zhang J, Liu Q, Hu X Y, Liu J, Liu Y, Ling L S, Tian M L, Wang Y, Samarth N, Li S Y, Zhang T, Feng J, Wang J 2018 Proc. Natl. Acad. Sci. U. S. A. 115 9503Google Scholar

    [116]

    Mandal M, Marik S, Sajilesh K P, Arushi, Singh D, Chakraborty J, Ganguli N, Singh R P 2018 Phys. Rev. Mater. 2 094201Google Scholar

    [117]

    Dahal R, Deng L Z, Poudel N, Gooch M, Wu Z, Wu H C, Yang H D, Chang C K, Chu C W 2020 Phys. Rev. B 101 140505Google Scholar

    [118]

    Wu J F, Hua C Q, Liu B, Cui Y W, Zhu Q Q, Xiao G R, Wu S Q, Cao G H, Lu Y H, Ren Z 2020 Chem. Mater. 32 8930Google Scholar

    [119]

    Mandal M, Singh R P 2021 J. Phys. Condens. Matter 33 135602Google Scholar

    [120]

    Correa L, Ferreira P S, de Faria L R, Dorini T T, Luz M S d, Fisk Z, Torikachvili M S, Eleno L T F, Machado A J S 2022 J. Alloys Compd. 907 164477Google Scholar

    [121]

    Mandal M, Patra C, Kataria A, Paul S, Saha S, Singh R P 2022 Supercond. Sci. Technol. 35 025011Google Scholar

    [122]

    Ruan B B, Sun J N, Chen Y, Yang Q S, Zhao K, Zhou M H, Gu Y D, Ma M W, Chen G F, Shan L, Ren Z A 2022 Sci. China Mater. 65 3125Google Scholar

    [123]

    Salis M V, Lorenz J P, Huang Y K, de Visser A 2022 Phys. Rev. B 105 054508Google Scholar

    [124]

    Tu X H, Bo T, Liu P F, Yin W, Hao N, Wang B T 2022 Phys. Chem. Chem. Phys. 24 7893Google Scholar

    [125]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [126]

    Kobayashi S, Sato M 2015 Phys. Rev. Lett. 115 187001Google Scholar

    [127]

    Chen A, Franz M 2016 Phys. Rev. B 93 201105Google Scholar

    [128]

    Chan C, Liu X J 2017 Phys. Rev. Lett. 118 207002Google Scholar

    [129]

    Chen A, Pikulin D I, Franz M 2017 Phys. Rev. B 95 174505Google Scholar

    [130]

    Zhang R X, Liu C X 2018 Phys. Rev. Lett. 120 156802Google Scholar

    [131]

    Yan Z B, Wu Z G, Huang W 2020 Phys. Rev. Lett. 124 257001Google Scholar

    [132]

    Giwa R, Hosur P 2021 Phys. Rev. Lett. 127 187002Google Scholar

    [133]

    Li C Z, Li C, Wang L X, Wang S, Liao Z M, Brinkman A, Yu D P 2018 Phys. Rev. B 97 115446Google Scholar

    [134]

    Calado V E, Goswami S, Nanda G, Diez M, Akhmerov A R, Watanabe K, Taniguchi T, Klapwijk T M, Vandersypen L M K 2015 Nat. Nanotechnol. 10 761Google Scholar

    [135]

    Ben Shalom M, Zhu M J, Fal’Ko V I, Mishchenko A, Kretinin A V, Novoselov K S, Woods C R, Watanabe K, Taniguchi T, Geim A K, Prance J R 2016 Nat. Phys. 12 318Google Scholar

    [136]

    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [137]

    Huang C, Narayan A, Zhang E Z, Liu Y W, Yan X, Wang J X, Zhang C, Wang W Y, Zhou T, Yi C J, Liu S S, Ling J W, Zhang H Q, Liu R, Sankar R, Chou F C, Wang Y H, Shi Y G, Law K T, Sanvito S, Zhou P, Han Z, Xiu F X 2018 ACS Nano 12 7185Google Scholar

    [138]

    Kononov A, Shvetsov O O, Egorov S V, Timonina A V, Kolesnikov N N, Deviatov E V 2018 EPL 122 27004Google Scholar

    [139]

    Grabecki G, Dabrowski A, Iwanowski P, Hruban A, Kowalski B J, Olszowska N, Kolodziej J, Chojnacki M, Dybko K, Lusakowski A, Wojtowicz T, Wojciechowski T, Jakiela R, Wisniewski A 2020 Phys. Rev. B 101 085113Google Scholar

    [140]

    Shvetsov O O, Esin V D, Barash Y S, Timonina A V, Kolesnikov N N, Deviatov E V 2020 Phys. Rev. B 101 035304Google Scholar

    [141]

    Huang C, Zhou B T, Zhang H Q, Yang B J, Liu R, Wang H W, Wan Y M, Huang K, Liao Z M, Zhang E Z, Liu S S, Deng Q S, Chen Y H, Han X D, Zou J, Lin X, Han Z, Wang Y H, Law K T, Xiu F X 2019 Nat. Commun. 10 2217Google Scholar

    [142]

    Dynes R C, Fulton T A 1971 Phys. Rev. B 3 3015Google Scholar

    [143]

    Shvetsov O O, Kononov A, Timonina A V, Kolesnikov N N, Deviatov E V 2018 JETP Lett. 107 774Google Scholar

    [144]

    Li C Z, Wang A Q, Li C, Zheng W Z, Brinkman A, Yu D P, Liao Z M 2020 Nat. Commun. 11 1150Google Scholar

    [145]

    Crosser M S, Huang J, Pierre F, Virtanen P, Heikkilä T T, Wilhelm F K, Birge N O 2008 Phys. Rev. B 77 014528Google Scholar

    [146]

    Li N, Tan Z B, Chen J J, Zhao T Y, Chu C G, Wang A Q, Pan Z C, Yu D P, Liao Z M 2022 Supercond. Sci. Technol. 35 044003Google Scholar

    [147]

    Guo B, Lygo A C, Pardue T N, Stemmer S 2022 Phys. Rev. Mater. 6 034203Google Scholar

    [148]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Science 357 61Google Scholar

    [149]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Phys. Rev. B 96 245115Google Scholar

    [150]

    Langbehn J, Peng Y, Trifunovic L, von Oppen F, Brouwer P W 2017 Phys. Rev. Lett. 119 246401Google Scholar

    [151]

    Song Z D, Fang Z, Fang C 2017 Phys. Rev. Lett. 119 246402Google Scholar

    [152]

    Ezawa M 2018 Phys. Rev. Lett. 120 026801Google Scholar

    [153]

    Geier M, Trifunovic L, Hoskam M, Brouwer P W 2018 Phys. Rev. B 97 205135Google Scholar

    [154]

    Schindler F, Cook Ashley M, Vergniory Maia G, Wang Z, Parkin Stuart S P, Bernevig B A, Neupert T 2018 Sci. Adv. 4 eaat0346Google Scholar

    [155]

    Hsu C H, Stano P, Klinovaja J, Loss D 2018 Phys. Rev. Lett. 121 196801Google Scholar

    [156]

    Khalaf E 2018 Phys. Rev. B 97 205136Google Scholar

    [157]

    Murani A, Kasumov A, Sengupta S, Kasumov Y A, Volkov V T, Khodos I I, Brisset F, Delagrange R, Chepelianskii A, Deblock R, Bouchiat H, Guéron S 2017 Nat. Commun. 8 15941Google Scholar

    [158]

    Schindler F, Wang Z, Vergniory M G, Cook A M, Murani A, Sengupta S, Kasumov A Y, Deblock R, Jeon S, Drozdov I, Bouchiat H, Guéron S, Yazdani A, Bernevig B A, Neupert T 2018 Nat. Phys. 14 918Google Scholar

    [159]

    Lin M, Hughes T L 2018 Phys. Rev. B 98 241103Google Scholar

    [160]

    Călugăru D, Juričić V, Roy B 2019 Phys. Rev. B 99 041301(R)

    [161]

    Ezawa M 2019 Sci. Rep. 9 5286Google Scholar

    [162]

    Wang Z J, Wieder B J, Li J, Yan B H, Bernevig B A 2019 Phys. Rev. Lett. 123 186401Google Scholar

    [163]

    Huang FT, Joon Lim S, Singh S, Kim J, Zhang L, Kim J W, Chu M W, Rabe K M, Vanderbilt D, Cheong S W 2019 Nat. Commun. 10 4211Google Scholar

    [164]

    Li C Z, Wang A Q, Li C, Zheng W Z, Brinkman A, Yu D P, Liao Z M 2020 Phys. Rev. Lett. 124 156601Google Scholar

    [165]

    Wang W D, Kim S, Liu M H, Cevallos F A, Cava R J, Ong N P 2020 Science 368 534Google Scholar

    [166]

    Zhu Z, Kim S, Lei S, Schoop L M, Cava R J, Ong N P 2022 Proc. Natl. Acad. Sci. U. S. A. 119 e2204468119Google Scholar

    [167]

    Kononov A, Abulizi G, Qu K, Yan J, Mandrus D, Watanabe K, Taniguchi T, Schönenberger C 2020 Nano Lett. 20 4228Google Scholar

    [168]

    Huang C, Narayan A, Zhang E Z, Xie X, Ai L, Liu S, Yi C, Shi Y G, Sanvito S, Xiu F 2020 Natl. Sci. Rev. 7 1468Google Scholar

    [169]

    Choi Y B, Xie Y, Chen C Z, Park J, Song S B, Yoon J, Kim B J, Taniguchi T, Watanabe K, Kim J, Fong K C, Ali M N, Law K T, Lee G H 2020 Nat. Mater. 19 974Google Scholar

    [170]

    Ohtomo M, Deacon R S, Hosoda M, Fushimi N, Hosoi H, Randle M D, Ohfuchi M, Kawaguchi K, Ishibashi K, Sato S 2022 Appl. Phys. Express 15 075003Google Scholar

    [171]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 106 162Google Scholar

    [172]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175Google Scholar

    [173]

    Seife C 2005 Science 309 82Google Scholar

    [174]

    Fulde P, Ferrell R A 1964 Phys. Rev. 135 A550Google Scholar

    [175]

    Larkin A I, Ovchinnikov Y N 1964 Zh. Eksperim. i Teor. Fiz. 47 1136

    [176]

    Bianchi A, Movshovich R, Capan C, Pagliuso P G, Sarrao J L 2003 Phys. Rev. Lett. 91 187004Google Scholar

    [177]

    Radovan H A, Fortune N A, Murphy T P, Hannahs S T, Palm E C, Tozer S W, Hall D 2003 Nature 425 51Google Scholar

    [178]

    Lortz R, Wang Y, Demuer A, Bottger P H M, Bergk B, Zwicknagl G, Nakazawa Y, Wosnitza J 2007 Phys. Rev. Lett. 99 187002Google Scholar

    [179]

    Mayaffre H, Kramer S, Horvatic M, Berthier C, Miyagawa K, Kanoda K, Mitrovic V F 2014 Nat. Phys. 10 928Google Scholar

    [180]

    Kitagawa S, Nakamine G, Ishida K, Jeevan H S, Geibel C, Steglich F 2018 Phys. Rev. Lett. 121 157004Google Scholar

    [181]

    Devarakonda A, Inoue H, Fang S, Ozsoy-Keskinbora C, Suzuki T, Kriener M, Fu L, Kaxiras E, Bell D C, Checkelsky J G 2020 Science 370 231Google Scholar

    [182]

    Kinjo K, Manago M, Kitagawa S, Mao Z Q, Yonezawa S, Maeno Y, Ishida K 2022 Science 376 397Google Scholar

    [183]

    Aoyama K, Sigrist M 2012 Phys. Rev. Lett. 109 237007Google Scholar

    [184]

    Michaeli K, Potter A C, Lee P A 2012 Phys. Rev. Lett. 108 117003Google Scholar

    [185]

    Zwicknagl G, Jahns S, Fulde P 2017 J. Phys. Soc. Jpn. 86 083701Google Scholar

    [186]

    Yang F, Wu M W 2018 J. Low Temp. Phys. 192 241Google Scholar

    [187]

    Yuan N F Q, Fu L 2021 Proc. Natl. Acad. Sci. U. S. A. 118 e2019063118Google Scholar

    [188]

    Yuan N F Q, Fu L 2022 Proc. Natl. Acad. Sci. U. S. A. 119 e2119548119Google Scholar

    [189]

    Hart S, Ren H, Kosowsky M, Ben-Shach G, Leubner P, Brüne C, Buhmann H, Molenkamp L W, Halperin B I, Yacoby A 2016 Nat. Phys. 13 87Google Scholar

    [190]

    Chen A Q, Park M J, Gill S T, Xiao Y, Reig-I-Plessis D, Macdougall G J, Gilbert M J, Mason N 2018 Nat. Commun. 9 3478Google Scholar

    [191]

    Li C, de Boer J C, de Ronde B, Ramankutty S V, van Heumen E, Huang Y, de Visser A, Golubov A A, Golden M S, Brinkman A 2018 Nat. Mater. 17 875Google Scholar

    [192]

    Li C Z, Wang A Q, Li C, Zheng W Z, Brinkman A, Yu D P, Liao Z M 2021 Phys. Rev. Lett. 126 027001Google Scholar

    [193]

    Li C, de Ronde B, de Boer J, Ridderbos J, Zwanenburg F, Huang Y, Golubov A, Brinkman A 2019 Phys. Rev. Lett. 123 026802Google Scholar

    [194]

    Ando F, Miyasaka Y, Li T, Ishizuka J, Arakawa T, Shiota Y, Moriyama T, Yanase Y, Ono T 2020 Nature 584 373Google Scholar

    [195]

    Lyu Y Y, Jiang J, Wang Y L, Xiao Z L, Dong S, Chen Q H, Milošević M V, Wang H, Divan R, Pearson J E, Wu P, Peeters F M, Kwok W K 2021 Nat. Commun. 12 2703Google Scholar

    [196]

    Baumgartner C, Fuchs L, Costa A, Reinhardt S, Gronin S, Gardner G C, Lindemann T, Manfra M J, Faria Junior P E, Kochan D, Fabian J, Paradiso N, Strunk C 2022 Nat. Nanotechnol. 17 39Google Scholar

    [197]

    Bauriedl L, Bäuml C, Fuchs L, Baumgartner C, Paulik N, Bauer J M, Lin K Q, Lupton J M, Taniguchi T, Watanabe K, Strunk C, Paradiso N 2022 Nat. Commun. 13 4266Google Scholar

    [198]

    Golod T, Krasnov V M 2022 Nat. Commun. 13 3658Google Scholar

    [199]

    Strambini E, Spies M, Ligato N, Ilić S, Rouco M, González-Orellana C, Ilyn M, Rogero C, Bergeret F S, Moodera J S, Virtanen P, Heikkilä T T, Giazotto F 2022 Nat. Commun. 13 2431Google Scholar

    [200]

    Pal B, Chakraborty A, Sivakumar P K, Davydova M, Gopi A K, Pandeya A K, Krieger J A, Zhang Y, Date M, Ju S, Yuan N, Schroeter N B M, Fu L, Parkin S S P 2022 Nat. Phys. 18 1228Google Scholar

    [201]

    Wu H, Wang Y, Xu Y, Sivakumar P K, Pasco C, Filippozzi U, Parkin S S P, Zeng Y J, Mcqueen T, Ali M N 2022 Nature 604 653Google Scholar

    [202]

    Narita H, Ishizuka J, Kawarazaki R, Kan D, Shiota Y, Moriyama T, Shimakawa Y, Ognev A V, Samardak A S, Yanase Y, Ono T 2022 Nat. Nanotechnol. 17 823Google Scholar

    [203]

    Jeon K R, Kim J K, Yoon J, Jeon J C, Han H, Cottet A, Kontos T, Parkin S S P 2022 Nat. Mater. 21 1008Google Scholar

    [204]

    Lin J X, Siriviboon P, Scammell H D, Liu S, Rhodes D, Watanabe K, Taniguchi T, Hone J, Scheurer M S, Li J I A 2022 Nat. Phys. 18 1221Google Scholar

    [205]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [206]

    Wilczek F 2009 Nat. Phys. 5 614Google Scholar

    [207]

    Elliott S R, Franz M 2015 Rev. Mod. Phys. 87 137Google Scholar

    [208]

    Anderson C D 1933 Phys. Rev. 43 491Google Scholar

    [209]

    Majorana E 1937 Il Nuovo Cimento 14 171Google Scholar

    [210]

    Read N, Green D 2000 Phys. Rev. B 61 10267Google Scholar

    [211]

    Kitaev A Y 2001 Phys. Usp. 44 131Google Scholar

    [212]

    Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001Google Scholar

    [213]

    Alicea J 2010 Phys. Rev. B 81 125318Google Scholar

    [214]

    Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001Google Scholar

    [215]

    Oreg Y, Refael G, von Oppen F 2010 Phys. Rev. Lett. 105 177002Google Scholar

    [216]

    Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502Google Scholar

    [217]

    Koren G, Kirzhner T, Lahoud E, Chashka K B, Kanigel A 2011 Phys. Rev. B 84 224521Google Scholar

    [218]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [219]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nat. Phys. 8 887Google Scholar

    [220]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414Google Scholar

    [221]

    Lin Z, Song H D, Ye X G, Xue J, Wang A Q, Zhang Y, Liu S, Zhang Z, Xu H, Yu D, Liao Z M 2020 Phys. Rev. B 101 214519Google Scholar

    [222]

    Shvetsov O O, Barash Y S, Egorov S V, Timonina A V, Kolesnikov N N, Deviatov E V 2020 EPL 132 67002Google Scholar

    [223]

    Yu W, Haenel R, Rodriguez M A, Lee S R, Zhang F, Franz M, Pikulin D I, Pan W 2020 Phys. Rev. Res. 2 032002Google Scholar

    [224]

    Esin V D, Barash Y S, Timonina A V, Kolesnikov N N, Deviatov E V 2021 JETP Lett. 113 662Google Scholar

    [225]

    Chen J, Woods B D, Yu P, Hocevar M, Car D, Plissard S R, Bakkers E P A M, Stanescu T D, Frolov S M 2019 Phys. Rev. Lett. 123 107703Google Scholar

    [226]

    Yu P, Chen J, Gomanko M, Badawy G, Bakkers E P A M, Zuo K, Mourik V, Frolov S M 2021 Nat. Phys. 17 482Google Scholar

    [227]

    Fu L, Kane C L 2009 Phys. Rev. B 79 161408Google Scholar

    [228]

    Shapiro S 1963 Phys. Rev. Lett. 11 80Google Scholar

    [229]

    Picó-Cortés J, Domínguez F, Platero G 2017 Phys. Rev. B 96 125438Google Scholar

    [230]

    Veldhorst M, Snelder M, Hoek M, Gang T, Guduru V K, Wang X L, Zeitler U, van der Wiel W G, Golubov A A, Hilgenkamp H, Brinkman A 2012 Nat. Mater. 11 417Google Scholar

    [231]

    Rokhinson L P, Liu X, Furdyna J K 2012 Nat. Phys. 8 795Google Scholar

    [232]

    Wiedenmann J, Bocquillon E, Deacon R S, Hartinger S, Herrmann O, Klapwijk T M, Maier L, Ames C, Brüne C, Gould C, Oiwa A, Ishibashi K, Tarucha S, Buhmann H, Molenkamp L W 2016 Nat. Commun. 7 10303Google Scholar

    [233]

    Bocquillon E, Deacon R S, Wiedenmann J, Leubner P, Klapwijk T M, Bruene C, Ishibashi K, Buhmann H, Molenkamp L W 2017 Nat. Nanotechnol. 12 137Google Scholar

    [234]

    Yu W, Pan W, Medlin D L, Rodriguez M A, Lee S R, Bao Z Q, Zhang F 2018 Phys. Rev. Lett. 120 177704Google Scholar

    [235]

    Russer P 1972 J. Appl. Phys. 43 2008Google Scholar

    [236]

    Wang A Q, Li C Z, Li C, Liao Z M, Brinkman A, Yu D P 2018 Phys. Rev. Lett. 121 237701Google Scholar

    [237]

    Shvetsov O O, Kononov A, Timonina A V, Kolesnikov N N, Deviatov E V 2018 EPL 124 47003Google Scholar

    [238]

    Pientka F, Keselman A, Berg E, Yacoby A, Stern A, Halperin B I 2017 Phys. Rev. X 7 021032Google Scholar

    [239]

    Fornieri A, Whiticar A M, Setiawan F, Portolés E, Drachmann A C C, Keselman A, Gronin S, Thomas C, Wang T, Kallaher R, Gardner G C, Berg E, Manfra M J, Stern A, Marcus C M, Nichele F 2019 Nature 569 89Google Scholar

    [240]

    Ren H, Pientka F, Hart S, Pierce A T, Kosowsky M, Lunczer L, Schlereth R, Scharf B, Hankiewicz E M, Molenkamp L W, Halperin B I, Yacoby A 2019 Nature 569 93Google Scholar

    [241]

    Cho S, Dellabetta B, Zhong R D, Schneeloch J, Liu T S, Gu G D, Gilbert M J, Mason N 2015 Nat. Commun. 6 7634Google Scholar

    [242]

    Jauregui L A, Pettes M T, Rokhinson L P, Shi L, Chen Y P 2016 Nat. Nanotechnol. 11 345Google Scholar

    [243]

    Collins J L, Tadich A, Wu W, Gomes L C, Rodrigues J N B, Liu C, Hellerstedt J, Ryu H, Tang S, Mo S K, Adam S, Yang S A, Fuhrer M S, Edmonds M T 2018 Nature 564 390Google Scholar

    [244]

    Pan H, Wu M, Liu Y, Yang S A 2015 Sci. Rep. 5 14639Google Scholar

    [245]

    Liu J W, Hsieh T H, Wei P, Duan W H, Moodera J, Fu L 2014 Nat. Mater. 13 178Google Scholar

    [246]

    Nie T P, Meng L J, Li Y R, Luan Y H, Yu J 2018 J. Phys. Condens. Matter 30 125502Google Scholar

    [247]

    Shao D X, Ruan J W, Wu J F, Chen T, Guo Z P, Zhang H J, Sun J, Sheng L, Xing D Y 2017 Phys. Rev. B 96 075112Google Scholar

    [248]

    Liao Z M, Chu C G, Wang A Q, Li N 2021 China Patent ZL202110952523.6

    [249]

    Yao S Y, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [250]

    Yao S Y, Song F, Wang Z 2018 Phys. Rev. Lett. 121 136802Google Scholar

    [251]

    Jung M, Yoshida K, Park K, Zhang X X, Yesilyurt C, Siu Z B, Jalil M B A, Park J, Park J, Nagaosa N, Seo J, Hirakawa K 2018 Nano Lett. 18 1863Google Scholar

    [252]

    Wang G, Dvir T, Mazur G P, Liu C X, van Loo N, Ten Haaf S L D, Bordin A, Gazibegovic S, Badawy G, Bakkers E, Wimmer M, Kouwenhoven L P 2022 Nature 612 448Google Scholar

    [253]

    Dvir T, Wang G, van Loo N, Liu C X, Mazur G P, Bordin A, ten Haaf S L D, Wang J Y, van Driel D, Zatelli F, Li X, Malinowski F K, Gazibegovic S, Badawy G, Bakkers E P A M, Wimmer M, Kouwenhoven L P 2023 Nature 614 445Google Scholar

    [254]

    Bordoloi A, Zannier V, Sorba L, Schonenberger C, Baumgartner A 2022 Nature 612 454Google Scholar

    [255]

    Harper F, Pushp A, Roy R 2019 Phys. Rev. Res. 1 033207Google Scholar

    [256]

    Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A 2011 Nat. Phys. 7 412Google Scholar

  • [1] 侯延亮, 王翔, 孙晓培, 吕力. 基于拓扑绝缘体纳米线约瑟夫森结的反常临界超流增强和半整数夏皮洛台阶. 物理学报, 2023, 72(3): 037401. doi: 10.7498/aps.72.20222072
    [2] 王欢, 何春娟, 徐升, 王义炎, 曾祥雨, 林浚发, 王小艳, 巩静, 马小平, 韩坤, 王乙婷, 夏天龙. 拓扑半金属及磁性拓扑材料的单晶生长. 物理学报, 2023, 72(3): 038103. doi: 10.7498/aps.72.20221574
    [3] 徐磊, 李沛岭, 吕昭征, 沈洁, 屈凡明, 刘广同, 吕力. 马约拉纳零能模的输运探测. 物理学报, 2023, 72(17): 177401. doi: 10.7498/aps.72.20230951
    [4] 郑东宁. 超导量子干涉器件. 物理学报, 2021, 70(1): 018502. doi: 10.7498/aps.70.20202131
    [5] 孙慧敏, 何庆林. 层状磁性拓扑材料中的物理问题与实验进展. 物理学报, 2021, 70(12): 127302. doi: 10.7498/aps.70.20210133
    [6] 强晓斌, 卢海舟. 磁场中拓扑物态的量子输运. 物理学报, 2021, 70(2): 027201. doi: 10.7498/aps.70.20200914
    [7] 陈晨, 刘琴, 张童, 封东来. 电子型FeSe基高温超导体的磁通束缚态与Majorana零能模. 物理学报, 2021, 70(1): 017401. doi: 10.7498/aps.70.20201673
    [8] 王靖. 手征马约拉纳费米子. 物理学报, 2020, 69(11): 117302. doi: 10.7498/aps.69.20200534
    [9] 姜聪颖, 孙飞, 冯子力, 刘世炳, 石友国, 赵继民. 三重简并拓扑半金属磷化钼的时间分辨超快动力学. 物理学报, 2020, 69(7): 077801. doi: 10.7498/aps.69.20191816
    [10] 何映萍, 洪健松, 刘雄军. 马约拉纳零能模的非阿贝尔统计及其在拓扑量子计算的应用. 物理学报, 2020, 69(11): 110302. doi: 10.7498/aps.69.20200812
    [11] 梁奇锋, 王志, 川上拓人, 胡晓. 拓扑超导Majorana束缚态的探索. 物理学报, 2020, 69(11): 117102. doi: 10.7498/aps.69.20190959
    [12] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导. 物理学报, 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [13] 许兵, 邱子阳, 杨润, 戴耀民, 邱祥冈. 拓扑半金属的红外光谱研究. 物理学报, 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [14] 李耀义, 贾金锋. 在人工拓扑超导体磁通涡旋中寻找Majorana零能模. 物理学报, 2019, 68(13): 137401. doi: 10.7498/aps.68.20181698
    [15] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [16] 韦博元, 步海军, 张帅, 宋凤麒. 拓扑半金属ZrSiSe器件中面内霍尔效应的观测. 物理学报, 2019, 68(22): 227203. doi: 10.7498/aps.68.20191501
    [17] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林. 拓扑半金属材料角分辨光电子能谱研究进展. 物理学报, 2019, 68(22): 227102. doi: 10.7498/aps.68.20191544
    [18] 伊长江, 王乐, 冯子力, 杨萌, 闫大禹, 王翠香, 石友国. 拓扑半金属材料的单晶生长研究进展. 物理学报, 2018, 67(12): 128102. doi: 10.7498/aps.67.20180796
    [19] 张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟. 时间反演对称性破缺系统中的拓扑零能模. 物理学报, 2017, 66(22): 220201. doi: 10.7498/aps.66.220201
    [20] 刘福绥. 超导桥约瑟夫森效应的微观理论. 物理学报, 1977, 26(5): 411-416. doi: 10.7498/aps.26.411
计量
  • 文章访问数:  5799
  • PDF下载量:  423
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-06
  • 修回日期:  2023-04-10
  • 上网日期:  2023-04-14
  • 刊出日期:  2023-04-20

/

返回文章
返回