搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

节线半金属AlB2水环境下发生吸附后拓扑表面态变化

朱庞栋 王长昊 王如志

引用本文:
Citation:

节线半金属AlB2水环境下发生吸附后拓扑表面态变化

朱庞栋, 王长昊, 王如志

Topological Surface States Variation of Nodal Line Semimetal AlB2 after Adsorption in Aqueous Environment

Zhu Pang-Dong, Wang Chang-Hao, Wang Ru-Zhi
PDF
导出引用
  • 拓扑半金属,作为一种独特的拓扑电子态,近年来因其固有的拓扑特性和潜在的器件应用而备受研究关注。体-边界对应是拓扑半金属的一个关键特征,这意味着如果在体相中存在非平庸的能带拓扑,那么在表面会存在受拓扑保护导电状态,即拓扑表面态(topological surface state,TSS)。这一特征使其在电催化研究领域备受关注。本文采用第一性原理计算手段研究了AlB2材料的拓扑性质,并构建(010)表面Al端面和B端面平板模型,计算得到了TSS的位置。研究了AlB2表面吸附特性,发现Al端面氢吸附吉布斯自由能(∆GH*)仅为-0.031 eV,相较于商业电催化析氢(hydrogen evolution reaction,HER)催化剂Pt的-0.08 eV更接近于0,展现出了优异的HER性能。观察了AlB2表面吸附H、OH和H2O后TSS的变化,发现当H吸附时TSS变化最显著,其次是OH吸附,H2O因其电中性和弱的表面吸附对TSS的影响很微弱。并且在吸附前后,由于受拓扑保护TSS依旧存在,仅是能量发生了改变,证实了其在环境中的稳定性。本工作研究结果为不同吸附物对AlB2的TSS的影响提供了系统的认识,为今后相关领域的理论和实验研究铺平了道路,也为拓扑材料的实际应用提供了理论支撑。
    Topological semimetals have been attracting great research interests due to their intrinsic topological physics and potential devices applications. A key feature for all topological materials is the so-called bulk-boundary correspondence, which means if there is non-trivial band topology in the bulk, then we can expect unique topologically protected conducting states in the edges, i.e., the topological surface state (TSS). Previously the studies for the surface states of topological materials mainly focus on the pristine surfaces, while the topological nodal line semimetal surface states with adsorbates are rarely systematically studied. In this paper, the topological properties of the topological semimetal AlB2 are studied by first-principles calculations, and the TSS position is calculated by constructing the Al- and B-terminated slab models. Observing the topological surface state, it is found that the drumhead-like TSS connects two Dirac nodes with no energy gaps on the node line, and the TSS of the Al end-terminated slab has a smaller energy dispersion than that of the B-terminated slab. The adsorption characteristics of AlB2 (010) surface were studied, and it was found that the Gibbs free energy (∆GH*) for hydrogen adsorption on the surface of Al was only -0.031 eV, demonstrating excellent hydrogen evolution reaction (HER) performance. The changes of TSS after surface adsorption of H, OH and H2O on the surface of AlB2 in aqueous solution environment were observed, as shown in FIG. 1. The TSS change was the most significant when H was adsorbed, followed by OH adsorption. And the influence of H2O on TSS due to its electrical neutrality and weak surface adsorption was very weak, Before and after adsorption, because the topology protection TSS still exists, only the energy changes, which confirms its robust in the environment. The results of this work provide a systematic understanding of the effects of different adsorbents on the TSS of AlB2, pave the way for future theoretical and experimental research in related fields, and also provide theoretical support for the practical application of topological materials.
  • [1]

    Ando Y 2013 J. Phys. Soc. Jpn. 82 102001

    [2]

    Sato M, Ando Y 2017 Rep. Prog. Phys. 80 076501

    [3]

    Gao H, Venderbos J W F, Kim Y, Rappe A M 2019 Annu. Rev. Mater. Res. 49 153

    [4]

    Yan B, Felser C 2017 Annu. Rev. Conden. Ma. P. 8 337

    [5]

    Wang Z, Sun Y, Chen X-Q, Franchini C, Xu G, Weng H, Dai X, Fang Z 2012 Phys. Rev. B 85 195320

    [6]

    Fang C, Weng H, Dai X, Fang Z 2016 Chin. Phys. B 25 117106

    [7]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864

    [8]

    Li G, Zhu S, Fan P, Cao L, Gao H-J 2022 Chin. Phys. B 31 080301

    [9]

    Hasan M Z, Xu S-Y, Belopolski I, Huang S-M 2017 Annu. Rev. Conden. Ma. P. 8 289

    [10]

    Zhu Z, Yu Z-M, Wu W, Zhang L, Zhang W, Zhang F, Yang S A 2019 Phys. Rev. B 100 161401

    [11]

    Gao W, Zhu M, Chen D, Liang X, Wu Y, Zhu A, Han Y, Li L, Liu X, Zheng G, Lu W, Tian M 2023 ACS Nano 17 4913

    [12]

    Wang L, Yang Y, Wang J, Liu W, Liu Y, Gong J, Liu G, Wang X, Cheng Z, Zhang X 2022 EcoMat 5 e12316

    [13]

    Xie R, Zhang T, Weng H, Chai G-L 2022 Small Sci. 2 2100106

    [14]

    Zhang G, Wu H, Zhang L, Yang L, Xie Y, Guo F, Li H, Tao B, Wang G, Zhang W, Chang H 2022 Small 18 2204380

    [15]

    Wang L, Zhao M, Wang J, Liu Y, Liu G, Wang X, Zhang G, Zhang X 2023 ACS Appl. Mater. Interfaces 15 51225

    [16]

    Chen H, Zhu W, Xiao D, Zhang Z 2011 Phys. Rev. Lett. 107 056804

    [17]

    Li L, Zeng J, Qin W, Cui P, Zhang Z 2019 Nano Energy 58 40

    [18]

    Qu Q, Liu B, Liang J, Li H, Wang J, Pan D, Sou I K 2020 ACS Catal. 10 2656

    [19]

    Li G, Huang J, Yang Q, Zhang L, Mu Q, Sun Y, Parkin S, Chang K, Felser C 2021 J. Energy Chem. 62 516

    [20]

    Wei Y-H, Ma D-S, Yuan H-K, Wang X, Kuang M-Q 2023 Phys. Rev. B 107 235414

    [21]

    Rajamathi C R, Gupta U, Kumar N, Yang H, Sun Y, Süß V, Shekhar C, Schmidt M, Blumtritt H, Werner P, Yan B, Parkin S, Felser C, Rao C N R 2017 Adv. Mater. 29 1606202

    [22]

    Liu W, Zhang X, Meng W, Liu Y, Dai X, Liu G 2022 iScience 25 103543

    [23]

    Kong X-P, Jiang T, Gao J, Shi X, Shao J, Yuan Y, Qiu H-J, Zhao W 2021 J. Phys. Chem. Lett. 12 3740

    [24]

    Li J, Ma H, Xie Q, Feng S, Ullah S, Li R, Dong J, Li D, Li Y, Chen X-Q 2018 Sci. China Mater. 61 23

    [25]

    Jovic V, Consiglio A, Smith K E, Jozwiak C, Bostwick A, Rotenberg E, Di Sante D, Moser S 2021 ACS Catal. 11 1749

    [26]

    Wang L, Zhang X, Meng W, Liu Y, Dai X, Liu G 2021 J. Mater. Chem. A 9 22453

    [27]

    Ren Z, Zhang H, Wang S, Huang B, Dai Y, Wei W 2022 J. Mater. Chem. A 10 8568

    [28]

    Tang M, Shen H, Qie Y, Xie H, Sun Q 2019 J. Phys. Chem. C 123 2837

    [29]

    Kong X-P, Shi X, Zhao W 2023 J. Phys. Chem. C 127 5271

    [30]

    Zhang X, Wang L, Li M, Meng W, Liu Y, Dai X, Liu G, Gu Y, Liu J, Kou L 2023 Mater. Today 67 23

    [31]

    Loa I, Kunc K, Syassen K, Bouvier P 2002 Phys. Rev. B 13 134101

    [32]

    Takane D, Souma S, Nakayama K, Nakamura T, Oinuma H, Hori K, Horiba K, Kumigashira H, Kimura N, Takahashi T, Sato T 2018 Phys. Rev. B 98 041105

    [33]

    Greeley J, Jaramillo T F, Bonde J, Chorkendorff I B, Norskov J K 2006 Nat. Mater. 5 909

  • [1] 李秋红, 马小雪, 潘靖. Al原子的替位掺杂与表面吸附对BiVO4 (010) 晶面光电催化分解水析氧性能的影响. 物理学报, doi: 10.7498/aps.72.20221842
    [2] 初纯光, 王安琦, 廖志敏. 拓扑半金属-超导体异质结的约瑟夫森效应. 物理学报, doi: 10.7498/aps.72.20230397
    [3] 孙慧敏, 何庆林. 层状磁性拓扑材料中的物理问题与实验进展. 物理学报, doi: 10.7498/aps.70.20210133
    [4] 强晓斌, 卢海舟. 磁场中拓扑物态的量子输运. 物理学报, doi: 10.7498/aps.70.20200914
    [5] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导. 物理学报, doi: 10.7498/aps.69.20191627
    [6] 姜聪颖, 孙飞, 冯子力, 刘世炳, 石友国, 赵继民. 三重简并拓扑半金属磷化钼的时间分辨超快动力学. 物理学报, doi: 10.7498/aps.69.20191816
    [7] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, doi: 10.7498/aps.68.20191098
    [8] 韦博元, 步海军, 张帅, 宋凤麒. 拓扑半金属ZrSiSe器件中面内霍尔效应的观测. 物理学报, doi: 10.7498/aps.68.20191501
    [9] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林. 拓扑半金属材料角分辨光电子能谱研究进展. 物理学报, doi: 10.7498/aps.68.20191544
    [10] 伊长江, 王乐, 冯子力, 杨萌, 闫大禹, 王翠香, 石友国. 拓扑半金属材料的单晶生长研究进展. 物理学报, doi: 10.7498/aps.67.20180796
    [11] 卢奕宏, 柯聪明, 付明明, 吴志明, 康俊勇, 张纯淼, 吴雅苹. 单层GaSe表面Fe原子吸附体系电子自旋性质调控. 物理学报, doi: 10.7498/aps.66.166301
    [12] 张凤春, 李春福, 张丛雷, 冉曾令. H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究. 物理学报, doi: 10.7498/aps.63.127101
    [13] 殷聪, 谢逸群, 巩秀芳, 庄军, 宁西京. 理论预测晶体表面吸附二维原子岛的形状. 物理学报, doi: 10.7498/aps.58.5291
    [14] 许桂贵, 吴青云, 张健敏, 陈志高, 黄志高. 第一性原理研究氧在Ni(111)表面上的吸附能及功函数. 物理学报, doi: 10.7498/aps.58.1924
    [15] 徐 敬. 用分子模拟方法研究羟基乙叉二膦酸(HEDP)在方解石表面的吸附行为. 物理学报, doi: 10.7498/aps.55.1107
    [16] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, doi: 10.7498/aps.55.3157
    [17] 于 洋, 徐力方, 顾长志. 氢吸附金刚石(001)表面的第一性原理研究. 物理学报, doi: 10.7498/aps.53.2710
    [18] 李 波, 鲍世宁, 庄友谊, 曹培林. 乙烯在Ni(110)表面吸附的几何结构. 物理学报, doi: 10.7498/aps.52.202
    [19] 晏浩, 赵学应, 赵汝光, 杨威生. 甘氨酸在Cu(111)表面吸附的扫描隧道显微镜研究. 物理学报, doi: 10.7498/aps.50.1964
    [20] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究. 物理学报, doi: 10.7498/aps.49.1316
计量
  • 文章访问数:  123
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2024-05-06

/

返回文章
返回