搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

节线半金属AlB2水环境下发生吸附后拓扑表面态变化

朱庞栋 王长昊 王如志

引用本文:
Citation:

节线半金属AlB2水环境下发生吸附后拓扑表面态变化

朱庞栋, 王长昊, 王如志

Variations of topological surface states of nodal line semimetal AlB2 after adsorption in aqueous environment

Zhu Pang-Dong, Wang Chang-Hao, Wang Ru-Zhi
PDF
HTML
导出引用
  • 拓扑半金属, 作为一种独特的拓扑电子态, 近年来因其固有的拓扑特性和潜在的器件应用而备受研究关注. 体-边界对应是拓扑半金属的一个关键特征, 这意味着如果在体相中存在非平庸的能带拓扑, 那么在表面会存在受拓扑保护导电状态, 即拓扑表面态 (topological surface state, TSS). 这一特征使其在电催化研究领域备受关注. 本文采用第一性原理计算手段研究了AlB2材料的拓扑性质, 并构建(010)表面Al端面和B端面平板模型, 计算得到了TSS的位置. 研究了AlB2表面吸附特性, 发现Al端面氢吸附吉布斯自由能($ \Delta {G}_{{{\mathrm{H}}}^{*}} $)仅为–0.031 eV, 相较于商业电催化析氢(hydrogen evolution reaction, HER)催化剂Pt的–0.08 eV更接近于0, 展现出了优异的HER性能. 观察了AlB2表面吸附H, OH和H2O后TSS的变化, 发现当H吸附时TSS变化最显著, 其次是OH吸附, H2O因其电中性和弱的表面吸附对TSS的影响很微弱. 并且在吸附前后, 由于受拓扑保护TSS依旧存在, 仅是能量发生了改变, 证实了其在环境中的稳定性. 本工作研究结果为不同吸附物对AlB2的TSS的影响提供了系统的认识, 为今后相关领域的理论和实验研究铺平了道路, 也为拓扑材料的实际应用提供了理论支撑.
    Topological semimetals have aroused great research interest due to their intrinsic topological physics and potential applications in devices. A key feature for all topological materials is the so-called bulk-boundary correspondence, which means that if there is non-trivial band topology in the bulk, then we can expect unique topologically protected conducting states in the surface, i.e. the topological surface state (TSS). Previously, the studies of the surface states of topological materials mainly focused on the pristine surfaces, while the topological nodal line semimetal surface states with adsorbates are rarely systematically studied. In this paper, the topological properties of the topological semimetal AlB2 are studied by first-principles calculations, and the TSS position is calculated by constructing the Al- and B-terminated slab models. Observing the topological surface state, it is found that the drumhead-like TSS connects two Dirac nodes with no energy gaps on the node line, and the TSS of the Al end-terminated slab has a smaller energy dispersion than that of the B-terminated slab. The adsorption characteristics of AlB2 (010) surface are studied, and it is found that the Gibbs free energy ($ {\Delta }{G}_{{{\mathrm{H}}}^{*}} $) for hydrogen adsorption on the surface of Al is only –0.031 eV, demonstrating excellent hydrogen evolution reaction (HER) performance. The changes of TSS after H, OH and H2O are adsorbed on the surface of AlB2 in aqueous solution environment are observed. The TSS change is the most significant when H is adsorbed, followed by OH adsorption. And the influence of H2O on TSS due to its electrical neutrality and weak surface adsorption is very weak. Before and after adsorption, because the topology protection TSS still exists, only the energy changes, which confirms its robustness in the environment. The results of this work provide a systematic understanding of the effects of different adsorbents on the TSS of AlB2, paving the way for future theoretical and experimental research in related fields, and alsopresent theoretical support for putting the topological materials into practical applications .
      通信作者: 王长昊, wangch33@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11804012)和北京工业大学城市碳中性科技创新基金(批准号: 048000514123695)资助的课题.
      Corresponding author: Wang Chang-Hao, wangch33@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11804012) and the Urban Carbon Neutral Science and Technology Innovation Fund Project of Beijing University of Technology, China (Grant No. 048000514123695).
    [1]

    Ando Y 2013 J. Phys. Soc. Jpn. 82 102001Google Scholar

    [2]

    Sato M, Ando Y 2017 Rep. Prog. Phys. 80 076501Google Scholar

    [3]

    Gao H, Venderbos J W F, Kim Y, Rappe A M 2019 Annu. Rev. Mater. Res. 49 153Google Scholar

    [4]

    Yan B, Felser C 2017 Annu. Rev. Conden. Ma. P. 8 337Google Scholar

    [5]

    Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X, Fang Z 2012 Phys. Rev. B 85 195320Google Scholar

    [6]

    Fang C, Weng H M, Dai X, Fang Z 2016 Chin. Phys. B 25 117106Google Scholar

    [7]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar

    [8]

    Li G, Zhu S Y, Fan P, Cao L, Gao H J 2022 Chin. Phys. B 31 080301Google Scholar

    [9]

    Hasan M Z, Xu S Y, Belopolski I, Huang S M 2017 Annu. Rev. Conden. Ma. P. 8 289Google Scholar

    [10]

    Zhu Z M, Yu Z M, Wu W K, Zhang L F, Zhang W, Zhang F, Yang S A 2019 Phys. Rev. B 100 161401Google Scholar

    [11]

    Gao W S, Zhu M C, Chen D, Liang X, Wu Y L, Zhu A K, Han Y Y, Li L, Liu X, Zheng G L, Lu W J, Tian M L 2023 ACS Nano 17 4913Google Scholar

    [12]

    Wang L R, Yang Y, Wang J H, Liu W, Liu Y, Gong J L, Liu G D, Wang X T, Cheng Z X, Zhang X M 2022 EcoMat 5 e12316Google Scholar

    [13]

    Xie R K, Zhang T, Weng H M, Chai G L 2022 Small Sci. 2 2100106Google Scholar

    [14]

    Zhang G, Wu H, Zhang L, Yang L, Xie Y, Guo F, Li H, Tao B, Wang G, Zhang W, Chang H 2022 Small 18 2204380Google Scholar

    [15]

    Wang L, Zhao M, Wang J, Liu Y, Liu G, Wang X, Zhang G, Zhang X 2023 ACS Appl. Mater. Interfaces 15 51225Google Scholar

    [16]

    Chen H, Zhu W G, Xiao D, Zhang Z Y 2011 Phys. Rev. Lett. 107 056804Google Scholar

    [17]

    Li L Q, Zeng J, Qin W, Cui P, Zhang Z Y 2019 Nano Energy 58 40Google Scholar

    [18]

    Qu Q, Liu B, Liang J, Li H, Wang J N, Pan D, Sou I K 2020 ACS Catal. 10 2656Google Scholar

    [19]

    Li G W, Huang J, Yang Q, Zhang L G, Mu Q G, Sun Y, Parkin S, Chang K, Felser C 2021 J. Energy Chem. 62 516Google Scholar

    [20]

    Wei Y H, Ma D S, Yuan H K, Wang X, Kuang M Q 2023 Phys. Rev. B 107 235414Google Scholar

    [21]

    Rajamathi C R, Gupta U, Kumar N, Yang H, Sun Y, Süß V, Shekhar C, Schmidt M, Blumtritt H, Werner P, Yan B, Parkin S, Felser C, Rao C N R 2017 Adv. Mater. 29 1606202Google Scholar

    [22]

    Liu W, Zhang X M, Meng W Z, Liu Y, Dai X F, Liu G D 2022 iScience 25 103543Google Scholar

    [23]

    Kong X P, Jiang T, Gao J J, Shi X B, Shao J, Yuan Y H, Qiu H J, Zhao W W 2021 J. Phys. Chem. Lett. 12 3740Google Scholar

    [24]

    Li J X, Ma H, Xie Q, Feng S B, Ullah S, Li R H, Dong J H, Li D Z, Li Y Y, Chen X Q 2018 Sci. China Mater. 61 23Google Scholar

    [25]

    Jovic V, Consiglio A, Smith K E, Jozwiak C, Bostwick A, Rotenberg E, Di Sante D, Moser S 2021 ACS Catal. 11 1749Google Scholar

    [26]

    Wang L R, Zhang X M, Meng W Z, Liu Y, Dai X F, Liu G D 2021 J. Mater. Chem. A 9 22453Google Scholar

    [27]

    Ren Z B, Zhang H N, Wang S H, Huang B B, Dai Y, Wei W 2022 J. Mater. Chem. A 10 8568Google Scholar

    [28]

    Tang M Y, Shen H M, Qie Y, Xie H H, Sun Q 2019 J. Phys. Chem. C 123 2837Google Scholar

    [29]

    Kong X P, Shi X B, Zhao W W 2023 J. Phys. Chem. C 127 5271Google Scholar

    [30]

    Zhang X M, Wang L R, Li M H, et al. 2023 Mater. Today 67 23Google Scholar

    [31]

    Loa I, Kunc K, Syassen K, Bouvier P 2002 Phys. Rev. B 66 134101Google Scholar

    [32]

    Takane D, Souma S, Nakayama K, Nakamura T, Oinuma H, Hori K, Horiba K, Kumigashira H, Kimura N, Takahashi T, Sato T 2018 Phys. Rev. B 98 041105Google Scholar

    [33]

    Greeley J, Jaramillo T F, Bonde J, Chorkendorff I B, Norskov J K 2006 Nat. Mater. 5 909Google Scholar

  • 图 1  (a) AlB2晶体结构; (b) 体相BZ和 (010)表面BZ, 绿线为不同ksy值的$ \bar{X}—\bar{\varGamma } $高对称路径

    Fig. 1.  (a) AlB2 crystal structure; (b) bulk BZ and (010) surface BZ, the green line is the $ \bar{X}-\bar{\varGamma } $ high symmetry path with different ksy values.

    图 2  (a) AlB2的体相材料电子能带结构; (b) AlB2节线分布示意图, 其中K点处的红圈为贝里相位计算路径

    Fig. 2.  (a) Band structure of AlB2; (b) schematic diagram of the node line distribution of AlB2, where the red circle at K point is the calculation path of Berry phase.

    图 3  AlB2 (010) 20层平板的能带结构 (a)表面BZ中ksy = 0, 0.06, 0.15和0.3时, Al端面能带结构图; (b) ksy = 0, 0.1, 0.15和0.3处B端面能带结构图, 动量位置如图1(b)所示; (c) Al端面平板模型在图3(a)中红色标记的能带$ \bar{X} $高对称点处的部分电荷密度图; (d) B端面平板模型在图3(b)中红色标记的能带$ \bar{\varGamma } $高对称点处的部分电荷密度图

    Fig. 3.  Band structure of AlB2 (010) 20-layer slab: (a) Band structure of Al-terminated slab when ksy = 0, 0.06, 0.15 and 0.3 in surface BZ; (b) band structure of B-terminated slab at ksy = 0, 0.1, 0.15 and 0.3, and the position of high symmetry path, as shown in Fig. 1(b); (c) partial charge density of Al-terminated slab at the high symmetry point $ \bar{X} $ of the energy band marked in red in Fig. 3(a); (d) partial charge density diagram of B-terminated slab at the high symmetry point $ \bar{\varGamma } $ of the energy band marked in red in Fig. 3(b).

    图 4  AlB2 (010)表面吸附最佳位点图 (a) Al端面top点位吸附H; (b) Al端面top点位吸附OH; (c) Al端面top点位吸附H2O; (d) B端面top点位吸附H; (e) B端面top点位吸附OH; (f) B端面top点位吸附H2O

    Fig. 4.  Optimal sites for the adsorption of AlB2 (010) surface: (a) Al-terminated slab adsorbing H on the top site; (b) Al-terminated slab adsorbing OH on the top site; (c) Al-terminated slab adsorbing H2O on the top site; (d) B-terminated slab adsorbing H on the top site; (e) B-terminated slab adsorbing OH on the top site; (f) B-terminated slab adsorbing H2O on the top site.

    图 5  AlB2 (010) 表面TSS吸附H后的变化 (a) Al端面平板单侧吸附H; (b) Al端面平板两侧吸附H; (c) B端面平板单侧吸附H; (d) B端面平板两侧吸附H; 红色标记处为两节线间的鼓膜状TSS

    Fig. 5.  Changes of TSS adsorbing H of AlB2 (010) surface: (a) Al-terminated slab adsorbing H on a single side; (b) Al-terminated slab adsorbing H on both sides; (c) B-terminated slab adsorbing H on a single side; (d) B-terminated slab adsorbing H on both sides. The red line represents the drumhead-like TSS between two nodal lines.

    图 6  AlB2 TSS吸附OH后的变化 (a) Al端面平板单侧吸附OH; (b) Al端面平板两侧吸附OH; (c) B端面单侧吸附OH; (d) B端面平板两侧吸附OH; 红色标记处为两节线间的鼓膜状TSS

    Fig. 6.  Changes of TSS adsorbing OH of AlB2 (010) surface: (a) Al-terminated slab adsorbing OH on a single side; (b) Al-terminated slab adsorbing OH on both sides; (c) B-terminated slab adsorbing OH on a single side; (d) B-terminated slab adsorbing OH on both sides. The red line represents the drumhead-like TSS between two nodal lines.

    图 7  AlB2 TSS吸附H2O后的变化 (a) Al端面平板单侧吸附H2O; (b) Al端面平板两侧吸附H2O; (c) B端面平板单侧吸附H2O; (d) B端面平板两侧吸附H2O; 红色标记处为两节线间的鼓膜状TSS

    Fig. 7.  Changes of TSS adsorbing H2O of AlB2 (010) surface: (a) Al-terminated slab adsorbing H2O on a single side; (b) Al-terminated slab adsorbing H2O on both sides; (c) B-terminated slab adsorbing H2O on a single side; (d) B-terminated slab adsorbing H2O on both sides. The red line represents the drumhead-like TSS between two nodal lines.

    表 1  AlB2 (010) 表面吸附性能参数表, 对于Bader电荷分析“+”表示电荷的增益, 而“–”表示电荷的损失(单位为$ {{\mathrm{e}}}^{-} $)

    Table 1.  Parameters of adsorption properties of AlB2 (010) surface. For the Bader charge analysis, “+” means the gain of the charge, while “–” means the loss of the charge (unit in $ {{\mathrm{e}}}^{-} $).

    材料 端面 吸附物 最佳位点 $ \Delta G/{\mathrm{eV}}$ Bader电荷分析/e
    吸附物 B Al
    AlB2 Al H top –0.031 +0.543 +0.073 –0.553
    OH top –0.253 +0.737 +0.002 –0.751
    H2O top 0.682 +0.368 +0.178 –0.556
    B H top –1.659 +0.517 –0.174 –0.019
    OH top –1.815 +0.717 –0.244 –0.008
    H2O top 0.009 +0.384 –0.127 –0.001
    下载: 导出CSV
  • [1]

    Ando Y 2013 J. Phys. Soc. Jpn. 82 102001Google Scholar

    [2]

    Sato M, Ando Y 2017 Rep. Prog. Phys. 80 076501Google Scholar

    [3]

    Gao H, Venderbos J W F, Kim Y, Rappe A M 2019 Annu. Rev. Mater. Res. 49 153Google Scholar

    [4]

    Yan B, Felser C 2017 Annu. Rev. Conden. Ma. P. 8 337Google Scholar

    [5]

    Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X, Fang Z 2012 Phys. Rev. B 85 195320Google Scholar

    [6]

    Fang C, Weng H M, Dai X, Fang Z 2016 Chin. Phys. B 25 117106Google Scholar

    [7]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar

    [8]

    Li G, Zhu S Y, Fan P, Cao L, Gao H J 2022 Chin. Phys. B 31 080301Google Scholar

    [9]

    Hasan M Z, Xu S Y, Belopolski I, Huang S M 2017 Annu. Rev. Conden. Ma. P. 8 289Google Scholar

    [10]

    Zhu Z M, Yu Z M, Wu W K, Zhang L F, Zhang W, Zhang F, Yang S A 2019 Phys. Rev. B 100 161401Google Scholar

    [11]

    Gao W S, Zhu M C, Chen D, Liang X, Wu Y L, Zhu A K, Han Y Y, Li L, Liu X, Zheng G L, Lu W J, Tian M L 2023 ACS Nano 17 4913Google Scholar

    [12]

    Wang L R, Yang Y, Wang J H, Liu W, Liu Y, Gong J L, Liu G D, Wang X T, Cheng Z X, Zhang X M 2022 EcoMat 5 e12316Google Scholar

    [13]

    Xie R K, Zhang T, Weng H M, Chai G L 2022 Small Sci. 2 2100106Google Scholar

    [14]

    Zhang G, Wu H, Zhang L, Yang L, Xie Y, Guo F, Li H, Tao B, Wang G, Zhang W, Chang H 2022 Small 18 2204380Google Scholar

    [15]

    Wang L, Zhao M, Wang J, Liu Y, Liu G, Wang X, Zhang G, Zhang X 2023 ACS Appl. Mater. Interfaces 15 51225Google Scholar

    [16]

    Chen H, Zhu W G, Xiao D, Zhang Z Y 2011 Phys. Rev. Lett. 107 056804Google Scholar

    [17]

    Li L Q, Zeng J, Qin W, Cui P, Zhang Z Y 2019 Nano Energy 58 40Google Scholar

    [18]

    Qu Q, Liu B, Liang J, Li H, Wang J N, Pan D, Sou I K 2020 ACS Catal. 10 2656Google Scholar

    [19]

    Li G W, Huang J, Yang Q, Zhang L G, Mu Q G, Sun Y, Parkin S, Chang K, Felser C 2021 J. Energy Chem. 62 516Google Scholar

    [20]

    Wei Y H, Ma D S, Yuan H K, Wang X, Kuang M Q 2023 Phys. Rev. B 107 235414Google Scholar

    [21]

    Rajamathi C R, Gupta U, Kumar N, Yang H, Sun Y, Süß V, Shekhar C, Schmidt M, Blumtritt H, Werner P, Yan B, Parkin S, Felser C, Rao C N R 2017 Adv. Mater. 29 1606202Google Scholar

    [22]

    Liu W, Zhang X M, Meng W Z, Liu Y, Dai X F, Liu G D 2022 iScience 25 103543Google Scholar

    [23]

    Kong X P, Jiang T, Gao J J, Shi X B, Shao J, Yuan Y H, Qiu H J, Zhao W W 2021 J. Phys. Chem. Lett. 12 3740Google Scholar

    [24]

    Li J X, Ma H, Xie Q, Feng S B, Ullah S, Li R H, Dong J H, Li D Z, Li Y Y, Chen X Q 2018 Sci. China Mater. 61 23Google Scholar

    [25]

    Jovic V, Consiglio A, Smith K E, Jozwiak C, Bostwick A, Rotenberg E, Di Sante D, Moser S 2021 ACS Catal. 11 1749Google Scholar

    [26]

    Wang L R, Zhang X M, Meng W Z, Liu Y, Dai X F, Liu G D 2021 J. Mater. Chem. A 9 22453Google Scholar

    [27]

    Ren Z B, Zhang H N, Wang S H, Huang B B, Dai Y, Wei W 2022 J. Mater. Chem. A 10 8568Google Scholar

    [28]

    Tang M Y, Shen H M, Qie Y, Xie H H, Sun Q 2019 J. Phys. Chem. C 123 2837Google Scholar

    [29]

    Kong X P, Shi X B, Zhao W W 2023 J. Phys. Chem. C 127 5271Google Scholar

    [30]

    Zhang X M, Wang L R, Li M H, et al. 2023 Mater. Today 67 23Google Scholar

    [31]

    Loa I, Kunc K, Syassen K, Bouvier P 2002 Phys. Rev. B 66 134101Google Scholar

    [32]

    Takane D, Souma S, Nakayama K, Nakamura T, Oinuma H, Hori K, Horiba K, Kumigashira H, Kimura N, Takahashi T, Sato T 2018 Phys. Rev. B 98 041105Google Scholar

    [33]

    Greeley J, Jaramillo T F, Bonde J, Chorkendorff I B, Norskov J K 2006 Nat. Mater. 5 909Google Scholar

  • [1] 李秋红, 马小雪, 潘靖. Al原子的替位掺杂与表面吸附对BiVO4 (010) 晶面光电催化分解水析氧性能的影响. 物理学报, 2023, 72(2): 027101. doi: 10.7498/aps.72.20221842
    [2] 初纯光, 王安琦, 廖志敏. 拓扑半金属-超导体异质结的约瑟夫森效应. 物理学报, 2023, 72(8): 087401. doi: 10.7498/aps.72.20230397
    [3] 孙慧敏, 何庆林. 层状磁性拓扑材料中的物理问题与实验进展. 物理学报, 2021, 70(12): 127302. doi: 10.7498/aps.70.20210133
    [4] 强晓斌, 卢海舟. 磁场中拓扑物态的量子输运. 物理学报, 2021, 70(2): 027201. doi: 10.7498/aps.70.20200914
    [5] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导. 物理学报, 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [6] 姜聪颖, 孙飞, 冯子力, 刘世炳, 石友国, 赵继民. 三重简并拓扑半金属磷化钼的时间分辨超快动力学. 物理学报, 2020, 69(7): 077801. doi: 10.7498/aps.69.20191816
    [7] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [8] 韦博元, 步海军, 张帅, 宋凤麒. 拓扑半金属ZrSiSe器件中面内霍尔效应的观测. 物理学报, 2019, 68(22): 227203. doi: 10.7498/aps.68.20191501
    [9] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林. 拓扑半金属材料角分辨光电子能谱研究进展. 物理学报, 2019, 68(22): 227102. doi: 10.7498/aps.68.20191544
    [10] 伊长江, 王乐, 冯子力, 杨萌, 闫大禹, 王翠香, 石友国. 拓扑半金属材料的单晶生长研究进展. 物理学报, 2018, 67(12): 128102. doi: 10.7498/aps.67.20180796
    [11] 卢奕宏, 柯聪明, 付明明, 吴志明, 康俊勇, 张纯淼, 吴雅苹. 单层GaSe表面Fe原子吸附体系电子自旋性质调控. 物理学报, 2017, 66(16): 166301. doi: 10.7498/aps.66.166301
    [12] 张凤春, 李春福, 张丛雷, 冉曾令. H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究. 物理学报, 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [13] 殷聪, 谢逸群, 巩秀芳, 庄军, 宁西京. 理论预测晶体表面吸附二维原子岛的形状. 物理学报, 2009, 58(8): 5291-5296. doi: 10.7498/aps.58.5291
    [14] 许桂贵, 吴青云, 张健敏, 陈志高, 黄志高. 第一性原理研究氧在Ni(111)表面上的吸附能及功函数. 物理学报, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
    [15] 徐 敬. 用分子模拟方法研究羟基乙叉二膦酸(HEDP)在方解石表面的吸附行为. 物理学报, 2006, 55(3): 1107-1112. doi: 10.7498/aps.55.1107
    [16] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [17] 于 洋, 徐力方, 顾长志. 氢吸附金刚石(001)表面的第一性原理研究. 物理学报, 2004, 53(8): 2710-2714. doi: 10.7498/aps.53.2710
    [18] 李 波, 鲍世宁, 庄友谊, 曹培林. 乙烯在Ni(110)表面吸附的几何结构. 物理学报, 2003, 52(1): 202-206. doi: 10.7498/aps.52.202
    [19] 晏浩, 赵学应, 赵汝光, 杨威生. 甘氨酸在Cu(111)表面吸附的扫描隧道显微镜研究. 物理学报, 2001, 50(10): 1964-1969. doi: 10.7498/aps.50.1964
    [20] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究. 物理学报, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
计量
  • 文章访问数:  1430
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-21
  • 修回日期:  2024-04-10
  • 上网日期:  2024-05-06
  • 刊出日期:  2024-06-20

/

返回文章
返回