搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究

张凤春 李春福 张丛雷 冉曾令

引用本文:
Citation:

H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究

张凤春, 李春福, 张丛雷, 冉曾令

Surface absorptions of H2S, HS and S on Fe(111) investigated by density functional theory

Zhang Feng-Chun, Li Chun-Fu, Zhang Cong-Lei, Ran Zeng-Ling
PDF
导出引用
  • 采用广义梯度近似下的密度泛函理论方法,研究了不同覆盖度下H2S,HS自由基以及S 原子在Fe(111)表面的吸附结构和吸附特性,计算了吸附能、功函数、差分电荷密度、态密度和电荷布居,讨论了覆盖度对表面吸附的影响作用,对比分析了H2S,HS自由基,S在Fe(111)表面的吸附强弱. 研究结果表明:随着覆盖度的增大,吸附物与表面的作用力逐渐减弱;H2S,HS自由基,S三者与Fe(111)表面的作用力大小依次为:H2SxSy腐蚀产物膜,只是随着覆盖度的不同,其致密度将发生变化. 各吸附物在低指数晶面上的吸附结果表明:Fe(111)面吸附作用最强,而Fe(110)和Fe(100)吸附作用相对较弱,二者吸附能相差不大.
    In this paper, the geometries and properties of H2S and its decomposition fragments adsorbed on Fe(111) surface are studied by means of the density functional theory based on generalized gradient approximation in wide ranges of coverage; the adsorption energy, work function, charge density difference, density of states, and charge population are calculated; the effect of coverage on surface adsorption is discussed; the adsorbability values of H2S, HS radical and S on Fe(111) are compared and analyzed. The results show that the force between absorbates and surface gradually weaken as the coverage increases, the interactions between the above-mentioned particles and Fe(111) are compared with each other: the magnitudes of their interactions are in the order of H2SxSy corrosion product films are easily formed, and the compactnesses of corrosion product films change with coverage variation. A study of the adsorbability values of various adsorbates in low index crystal plane indicates that the interactive force between adsorbates and Fe(111) surface is strongest, and that between the Fe(100) surface and Fe(110) is relatively weak, the difference in adsorption energy between them is not so much.
    • 基金项目: 国家高技术研究发展计划(批准号:2006AA06A105)和西南石油大学油气藏地质及开发工程国家重点实验室基金(批准号:PLN0609)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA06A105) and the Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, China (Grant No. PLN0609).
    [1]

    Chinese Cankerous and Protection Society, Lu Q M 2001 Corrosion and Protection in oil industry (Beijing: Chemical Industry Press) p4 (in Chinese) [中国腐蚀与防护学会, 卢绮敏 2001 石油工业中的腐蚀与防护 (北京: 化学工业出版社) 第4页]

    [2]

    Kuzyukov A N 2002 Int. J. Hydrogen Energy 27 813

    [3]

    Siddiqui R A 2005 J. Mater. Process. Technol. 170 430

    [4]

    Kashkovskiy R V, Kuznetsov Yu I, Kazansky L P 2012 Corros. Sci. 64 126

    [5]

    Chumalo H V 2012 Mater. Sci. 48 176

    [6]

    Kudryavtsev D B, Panteleeva A R, Yurina A V, Lukashenko S S, Khodyrev Y P, Galiakberov R M, Khaziakhmetov D N, Kudryavtseva L A 2009 Petroleum Chem. 49 193

    [7]

    Qi Y M, Luo H Y, Zheng S Q, Chen C F, Wang D N 2013 Corros. Sci. 69 164

    [8]

    Braun F, Miller J B, Gellman A J, Tarditi A M, Fleutot B, Kondratyuk P, Cornaglia L M 2012 Int. J. Hydrogen Energy 37 18547

    [9]

    Lucio-Garcia M A, Gonzalez-Rodriguez J G, Casales M, Martinez L, Chacon-Nava J G, Neri-Flores M A, Martinez-Villafañe A 2009 Corros. Sci. 51 2380

    [10]

    Taheri H, Kakooei S, Ismail M C, Dolati A 2012 Casp. J. Appl. Sci. Res. 1 41

    [11]

    Jiang D E, Carter E A 2005 Surf. Sci. 583 60

    [12]

    Jiang D E, Carter E A 2004 J. Phys. Chem. B 108 19140

    [13]

    Luo Q, Tang B, Zhang Z, Ran Z L 2013 Acta Phys. Sin. 62 077101 (in Chinese) [罗强, 唐斌, 张智, 冉曾令 2013 物理学报 62 077101]

    [14]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [15]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [16]

    Payne M C, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [17]

    Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmataskaya E V, Nobes R H 2000 Int. J. Quantum Chem. 77 895

    [18]

    White J A, Bird D M 1994 Phys. Rev. B 50 4954

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [20]

    Zhang Y, Yang W 1998 Phys. Rev. B 80 890

    [21]

    Peng S F, Ho J J 2010 J. Phys. Chem. C 114 19489

    [22]

    Broyden C G 1970 J. Inst. Math. Appl. 6 76

    [23]

    Fletcher R 1970 Comput. J. 13 317

    [24]

    Goldfarb D 1970 Math. Comput. 24 23

    [25]

    Shanno D F 1970 Math. Comput. 24 647

    [26]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [28]

    Kittel C 1996 Introduction to Solid State Physics (7th Ed.) (New York: John Wiley & Sons)

    [29]

    Chen H L, Wu S Y, Chen H T, Chang J G, Ju S P, Tsai C, Hsu L C 2010 Langmuir 26 7157

    [30]

    Ma C A, Liu T, Chen L T 2010 Acta Phys. Chim. Sin. 26 155 (in Chinese) [马淳安, 刘婷, 陈丽涛 2010 物理化学学报 26 155]

    [31]

    Song J J, Pei J F, Deng X F, Qin Z J, Tang X G 2012 Corros. Protect. 33 649 (in Chinese) [宋佳佳, 裴峻峰, 邓学风, 秦志坚, 汤学耕 2012 腐蚀与防护 33 649]

    [32]

    Liu W, Pu X L, Bai X D, Zhao H W 2008 Petroleum Drilling Techniques 36 83 (in Chinese) [刘伟, 蒲小林, 白晓东, 赵昊伟 2008 石油钻探技术 36 83]

    [33]

    Huang B S, Lu X, Liu Q Y 2011 Corros. Sci. Protect. Technol. 23 205 (in Chinese) [黄本生, 卢曦, 刘清友 2011 腐蚀科学与防腐技术 23 205]

    [34]

    Xu G G, Wu Q Y, Zhang J M, Chen Z G, Huang Z G 2009 Acta Phys. Sin. 58 1924 (in Chinese) [许桂贵, 吴青云, 张健敏, 陈志高, 黄志高 2009 物理学报 58 1924]

    [35]

    Li W X, Stampfl C, Scheffler M 2002 Phys. Rev. B 65 075407

    [36]

    Wu X X, Wang Q E, Wang F H, Zhou Y S 2010 Acta Phys. Sin. 59 7278 (in Chinese) [吴小霞, 王乾恩, 王福和, 周云松 2010 物理学报 59 7278]

  • [1]

    Chinese Cankerous and Protection Society, Lu Q M 2001 Corrosion and Protection in oil industry (Beijing: Chemical Industry Press) p4 (in Chinese) [中国腐蚀与防护学会, 卢绮敏 2001 石油工业中的腐蚀与防护 (北京: 化学工业出版社) 第4页]

    [2]

    Kuzyukov A N 2002 Int. J. Hydrogen Energy 27 813

    [3]

    Siddiqui R A 2005 J. Mater. Process. Technol. 170 430

    [4]

    Kashkovskiy R V, Kuznetsov Yu I, Kazansky L P 2012 Corros. Sci. 64 126

    [5]

    Chumalo H V 2012 Mater. Sci. 48 176

    [6]

    Kudryavtsev D B, Panteleeva A R, Yurina A V, Lukashenko S S, Khodyrev Y P, Galiakberov R M, Khaziakhmetov D N, Kudryavtseva L A 2009 Petroleum Chem. 49 193

    [7]

    Qi Y M, Luo H Y, Zheng S Q, Chen C F, Wang D N 2013 Corros. Sci. 69 164

    [8]

    Braun F, Miller J B, Gellman A J, Tarditi A M, Fleutot B, Kondratyuk P, Cornaglia L M 2012 Int. J. Hydrogen Energy 37 18547

    [9]

    Lucio-Garcia M A, Gonzalez-Rodriguez J G, Casales M, Martinez L, Chacon-Nava J G, Neri-Flores M A, Martinez-Villafañe A 2009 Corros. Sci. 51 2380

    [10]

    Taheri H, Kakooei S, Ismail M C, Dolati A 2012 Casp. J. Appl. Sci. Res. 1 41

    [11]

    Jiang D E, Carter E A 2005 Surf. Sci. 583 60

    [12]

    Jiang D E, Carter E A 2004 J. Phys. Chem. B 108 19140

    [13]

    Luo Q, Tang B, Zhang Z, Ran Z L 2013 Acta Phys. Sin. 62 077101 (in Chinese) [罗强, 唐斌, 张智, 冉曾令 2013 物理学报 62 077101]

    [14]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [15]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [16]

    Payne M C, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [17]

    Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmataskaya E V, Nobes R H 2000 Int. J. Quantum Chem. 77 895

    [18]

    White J A, Bird D M 1994 Phys. Rev. B 50 4954

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [20]

    Zhang Y, Yang W 1998 Phys. Rev. B 80 890

    [21]

    Peng S F, Ho J J 2010 J. Phys. Chem. C 114 19489

    [22]

    Broyden C G 1970 J. Inst. Math. Appl. 6 76

    [23]

    Fletcher R 1970 Comput. J. 13 317

    [24]

    Goldfarb D 1970 Math. Comput. 24 23

    [25]

    Shanno D F 1970 Math. Comput. 24 647

    [26]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [28]

    Kittel C 1996 Introduction to Solid State Physics (7th Ed.) (New York: John Wiley & Sons)

    [29]

    Chen H L, Wu S Y, Chen H T, Chang J G, Ju S P, Tsai C, Hsu L C 2010 Langmuir 26 7157

    [30]

    Ma C A, Liu T, Chen L T 2010 Acta Phys. Chim. Sin. 26 155 (in Chinese) [马淳安, 刘婷, 陈丽涛 2010 物理化学学报 26 155]

    [31]

    Song J J, Pei J F, Deng X F, Qin Z J, Tang X G 2012 Corros. Protect. 33 649 (in Chinese) [宋佳佳, 裴峻峰, 邓学风, 秦志坚, 汤学耕 2012 腐蚀与防护 33 649]

    [32]

    Liu W, Pu X L, Bai X D, Zhao H W 2008 Petroleum Drilling Techniques 36 83 (in Chinese) [刘伟, 蒲小林, 白晓东, 赵昊伟 2008 石油钻探技术 36 83]

    [33]

    Huang B S, Lu X, Liu Q Y 2011 Corros. Sci. Protect. Technol. 23 205 (in Chinese) [黄本生, 卢曦, 刘清友 2011 腐蚀科学与防腐技术 23 205]

    [34]

    Xu G G, Wu Q Y, Zhang J M, Chen Z G, Huang Z G 2009 Acta Phys. Sin. 58 1924 (in Chinese) [许桂贵, 吴青云, 张健敏, 陈志高, 黄志高 2009 物理学报 58 1924]

    [35]

    Li W X, Stampfl C, Scheffler M 2002 Phys. Rev. B 65 075407

    [36]

    Wu X X, Wang Q E, Wang F H, Zhou Y S 2010 Acta Phys. Sin. 59 7278 (in Chinese) [吴小霞, 王乾恩, 王福和, 周云松 2010 物理学报 59 7278]

  • [1] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究. 物理学报, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [2] 卢奕宏, 柯聪明, 付明明, 吴志明, 康俊勇, 张纯淼, 吴雅苹. 单层GaSe表面Fe原子吸附体系电子自旋性质调控. 物理学报, 2017, 66(16): 166301. doi: 10.7498/aps.66.166301
    [3] 李宗宝, 王霞, 樊帅伟. Cu/N表面沉积共掺杂TiO2光催化剂作用机理的理论研究. 物理学报, 2014, 63(15): 157102. doi: 10.7498/aps.63.157102
    [4] 袁健美, 郝文平, 李顺辉, 毛宇亮. Ni(111)表面C原子吸附的密度泛函研究. 物理学报, 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [5] 黄平, 杨春. TiO2分子在GaN(0001)表面吸附的理论研究. 物理学报, 2011, 60(10): 106801. doi: 10.7498/aps.60.106801
    [6] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究. 物理学报, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [7] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究. 物理学报, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [8] 蒙大桥, 罗文华, 李赣, 陈虎翅. Pu(100)表面吸附CO2的密度泛函研究. 物理学报, 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [9] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究. 物理学报, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [10] 殷聪, 谢逸群, 巩秀芳, 庄军, 宁西京. 理论预测晶体表面吸附二维原子岛的形状. 物理学报, 2009, 58(8): 5291-5296. doi: 10.7498/aps.58.5291
    [11] 许桂贵, 吴青云, 张健敏, 陈志高, 黄志高. 第一性原理研究氧在Ni(111)表面上的吸附能及功函数. 物理学报, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
    [12] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究. 物理学报, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [13] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [14] 徐 敬. 用分子模拟方法研究羟基乙叉二膦酸(HEDP)在方解石表面的吸附行为. 物理学报, 2006, 55(3): 1107-1112. doi: 10.7498/aps.55.1107
    [15] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [16] 于 洋, 徐力方, 顾长志. 氢吸附金刚石(001)表面的第一性原理研究. 物理学报, 2004, 53(8): 2710-2714. doi: 10.7498/aps.53.2710
    [17] 李 波, 鲍世宁, 庄友谊, 曹培林. 乙烯在Ni(110)表面吸附的几何结构. 物理学报, 2003, 52(1): 202-206. doi: 10.7498/aps.52.202
    [18] 肖奇, 邱冠周, 胡岳华, 王淀佐. FeS2(100)表面原子几何与电子结构的理论研究. 物理学报, 2002, 51(9): 2133-2138. doi: 10.7498/aps.51.2133
    [19] 晏浩, 赵学应, 赵汝光, 杨威生. 甘氨酸在Cu(111)表面吸附的扫描隧道显微镜研究. 物理学报, 2001, 50(10): 1964-1969. doi: 10.7498/aps.50.1964
    [20] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究. 物理学报, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
计量
  • 文章访问数:  3808
  • PDF下载量:  945
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-19
  • 修回日期:  2014-03-12
  • 刊出日期:  2014-06-05

H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究

  • 1. 西南石油大学, 油气藏地质及开发工程国家重点实验室, 成都 610500;
  • 2. 电子科技大学, 光纤传感与通信教育部重点实验室, 成都 611731
    基金项目: 国家高技术研究发展计划(批准号:2006AA06A105)和西南石油大学油气藏地质及开发工程国家重点实验室基金(批准号:PLN0609)资助的课题.

摘要: 采用广义梯度近似下的密度泛函理论方法,研究了不同覆盖度下H2S,HS自由基以及S 原子在Fe(111)表面的吸附结构和吸附特性,计算了吸附能、功函数、差分电荷密度、态密度和电荷布居,讨论了覆盖度对表面吸附的影响作用,对比分析了H2S,HS自由基,S在Fe(111)表面的吸附强弱. 研究结果表明:随着覆盖度的增大,吸附物与表面的作用力逐渐减弱;H2S,HS自由基,S三者与Fe(111)表面的作用力大小依次为:H2SxSy腐蚀产物膜,只是随着覆盖度的不同,其致密度将发生变化. 各吸附物在低指数晶面上的吸附结果表明:Fe(111)面吸附作用最强,而Fe(110)和Fe(100)吸附作用相对较弱,二者吸附能相差不大.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回