搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究

张凤春 李春福 张丛雷 冉曾令

引用本文:
Citation:

H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究

张凤春, 李春福, 张丛雷, 冉曾令

Surface absorptions of H2S, HS and S on Fe(111) investigated by density functional theory

Zhang Feng-Chun, Li Chun-Fu, Zhang Cong-Lei, Ran Zeng-Ling
PDF
导出引用
  • 采用广义梯度近似下的密度泛函理论方法,研究了不同覆盖度下H2S,HS自由基以及S 原子在Fe(111)表面的吸附结构和吸附特性,计算了吸附能、功函数、差分电荷密度、态密度和电荷布居,讨论了覆盖度对表面吸附的影响作用,对比分析了H2S,HS自由基,S在Fe(111)表面的吸附强弱. 研究结果表明:随着覆盖度的增大,吸附物与表面的作用力逐渐减弱;H2S,HS自由基,S三者与Fe(111)表面的作用力大小依次为:H2SxSy腐蚀产物膜,只是随着覆盖度的不同,其致密度将发生变化. 各吸附物在低指数晶面上的吸附结果表明:Fe(111)面吸附作用最强,而Fe(110)和Fe(100)吸附作用相对较弱,二者吸附能相差不大.
    In this paper, the geometries and properties of H2S and its decomposition fragments adsorbed on Fe(111) surface are studied by means of the density functional theory based on generalized gradient approximation in wide ranges of coverage; the adsorption energy, work function, charge density difference, density of states, and charge population are calculated; the effect of coverage on surface adsorption is discussed; the adsorbability values of H2S, HS radical and S on Fe(111) are compared and analyzed. The results show that the force between absorbates and surface gradually weaken as the coverage increases, the interactions between the above-mentioned particles and Fe(111) are compared with each other: the magnitudes of their interactions are in the order of H2SxSy corrosion product films are easily formed, and the compactnesses of corrosion product films change with coverage variation. A study of the adsorbability values of various adsorbates in low index crystal plane indicates that the interactive force between adsorbates and Fe(111) surface is strongest, and that between the Fe(100) surface and Fe(110) is relatively weak, the difference in adsorption energy between them is not so much.
    • 基金项目: 国家高技术研究发展计划(批准号:2006AA06A105)和西南石油大学油气藏地质及开发工程国家重点实验室基金(批准号:PLN0609)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA06A105) and the Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, China (Grant No. PLN0609).
    [1]

    Chinese Cankerous and Protection Society, Lu Q M 2001 Corrosion and Protection in oil industry (Beijing: Chemical Industry Press) p4 (in Chinese) [中国腐蚀与防护学会, 卢绮敏 2001 石油工业中的腐蚀与防护 (北京: 化学工业出版社) 第4页]

    [2]

    Kuzyukov A N 2002 Int. J. Hydrogen Energy 27 813

    [3]

    Siddiqui R A 2005 J. Mater. Process. Technol. 170 430

    [4]

    Kashkovskiy R V, Kuznetsov Yu I, Kazansky L P 2012 Corros. Sci. 64 126

    [5]

    Chumalo H V 2012 Mater. Sci. 48 176

    [6]

    Kudryavtsev D B, Panteleeva A R, Yurina A V, Lukashenko S S, Khodyrev Y P, Galiakberov R M, Khaziakhmetov D N, Kudryavtseva L A 2009 Petroleum Chem. 49 193

    [7]

    Qi Y M, Luo H Y, Zheng S Q, Chen C F, Wang D N 2013 Corros. Sci. 69 164

    [8]

    Braun F, Miller J B, Gellman A J, Tarditi A M, Fleutot B, Kondratyuk P, Cornaglia L M 2012 Int. J. Hydrogen Energy 37 18547

    [9]

    Lucio-Garcia M A, Gonzalez-Rodriguez J G, Casales M, Martinez L, Chacon-Nava J G, Neri-Flores M A, Martinez-Villafañe A 2009 Corros. Sci. 51 2380

    [10]

    Taheri H, Kakooei S, Ismail M C, Dolati A 2012 Casp. J. Appl. Sci. Res. 1 41

    [11]

    Jiang D E, Carter E A 2005 Surf. Sci. 583 60

    [12]

    Jiang D E, Carter E A 2004 J. Phys. Chem. B 108 19140

    [13]

    Luo Q, Tang B, Zhang Z, Ran Z L 2013 Acta Phys. Sin. 62 077101 (in Chinese) [罗强, 唐斌, 张智, 冉曾令 2013 物理学报 62 077101]

    [14]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [15]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [16]

    Payne M C, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [17]

    Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmataskaya E V, Nobes R H 2000 Int. J. Quantum Chem. 77 895

    [18]

    White J A, Bird D M 1994 Phys. Rev. B 50 4954

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [20]

    Zhang Y, Yang W 1998 Phys. Rev. B 80 890

    [21]

    Peng S F, Ho J J 2010 J. Phys. Chem. C 114 19489

    [22]

    Broyden C G 1970 J. Inst. Math. Appl. 6 76

    [23]

    Fletcher R 1970 Comput. J. 13 317

    [24]

    Goldfarb D 1970 Math. Comput. 24 23

    [25]

    Shanno D F 1970 Math. Comput. 24 647

    [26]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [28]

    Kittel C 1996 Introduction to Solid State Physics (7th Ed.) (New York: John Wiley & Sons)

    [29]

    Chen H L, Wu S Y, Chen H T, Chang J G, Ju S P, Tsai C, Hsu L C 2010 Langmuir 26 7157

    [30]

    Ma C A, Liu T, Chen L T 2010 Acta Phys. Chim. Sin. 26 155 (in Chinese) [马淳安, 刘婷, 陈丽涛 2010 物理化学学报 26 155]

    [31]

    Song J J, Pei J F, Deng X F, Qin Z J, Tang X G 2012 Corros. Protect. 33 649 (in Chinese) [宋佳佳, 裴峻峰, 邓学风, 秦志坚, 汤学耕 2012 腐蚀与防护 33 649]

    [32]

    Liu W, Pu X L, Bai X D, Zhao H W 2008 Petroleum Drilling Techniques 36 83 (in Chinese) [刘伟, 蒲小林, 白晓东, 赵昊伟 2008 石油钻探技术 36 83]

    [33]

    Huang B S, Lu X, Liu Q Y 2011 Corros. Sci. Protect. Technol. 23 205 (in Chinese) [黄本生, 卢曦, 刘清友 2011 腐蚀科学与防腐技术 23 205]

    [34]

    Xu G G, Wu Q Y, Zhang J M, Chen Z G, Huang Z G 2009 Acta Phys. Sin. 58 1924 (in Chinese) [许桂贵, 吴青云, 张健敏, 陈志高, 黄志高 2009 物理学报 58 1924]

    [35]

    Li W X, Stampfl C, Scheffler M 2002 Phys. Rev. B 65 075407

    [36]

    Wu X X, Wang Q E, Wang F H, Zhou Y S 2010 Acta Phys. Sin. 59 7278 (in Chinese) [吴小霞, 王乾恩, 王福和, 周云松 2010 物理学报 59 7278]

  • [1]

    Chinese Cankerous and Protection Society, Lu Q M 2001 Corrosion and Protection in oil industry (Beijing: Chemical Industry Press) p4 (in Chinese) [中国腐蚀与防护学会, 卢绮敏 2001 石油工业中的腐蚀与防护 (北京: 化学工业出版社) 第4页]

    [2]

    Kuzyukov A N 2002 Int. J. Hydrogen Energy 27 813

    [3]

    Siddiqui R A 2005 J. Mater. Process. Technol. 170 430

    [4]

    Kashkovskiy R V, Kuznetsov Yu I, Kazansky L P 2012 Corros. Sci. 64 126

    [5]

    Chumalo H V 2012 Mater. Sci. 48 176

    [6]

    Kudryavtsev D B, Panteleeva A R, Yurina A V, Lukashenko S S, Khodyrev Y P, Galiakberov R M, Khaziakhmetov D N, Kudryavtseva L A 2009 Petroleum Chem. 49 193

    [7]

    Qi Y M, Luo H Y, Zheng S Q, Chen C F, Wang D N 2013 Corros. Sci. 69 164

    [8]

    Braun F, Miller J B, Gellman A J, Tarditi A M, Fleutot B, Kondratyuk P, Cornaglia L M 2012 Int. J. Hydrogen Energy 37 18547

    [9]

    Lucio-Garcia M A, Gonzalez-Rodriguez J G, Casales M, Martinez L, Chacon-Nava J G, Neri-Flores M A, Martinez-Villafañe A 2009 Corros. Sci. 51 2380

    [10]

    Taheri H, Kakooei S, Ismail M C, Dolati A 2012 Casp. J. Appl. Sci. Res. 1 41

    [11]

    Jiang D E, Carter E A 2005 Surf. Sci. 583 60

    [12]

    Jiang D E, Carter E A 2004 J. Phys. Chem. B 108 19140

    [13]

    Luo Q, Tang B, Zhang Z, Ran Z L 2013 Acta Phys. Sin. 62 077101 (in Chinese) [罗强, 唐斌, 张智, 冉曾令 2013 物理学报 62 077101]

    [14]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [15]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [16]

    Payne M C, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [17]

    Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmataskaya E V, Nobes R H 2000 Int. J. Quantum Chem. 77 895

    [18]

    White J A, Bird D M 1994 Phys. Rev. B 50 4954

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [20]

    Zhang Y, Yang W 1998 Phys. Rev. B 80 890

    [21]

    Peng S F, Ho J J 2010 J. Phys. Chem. C 114 19489

    [22]

    Broyden C G 1970 J. Inst. Math. Appl. 6 76

    [23]

    Fletcher R 1970 Comput. J. 13 317

    [24]

    Goldfarb D 1970 Math. Comput. 24 23

    [25]

    Shanno D F 1970 Math. Comput. 24 647

    [26]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [28]

    Kittel C 1996 Introduction to Solid State Physics (7th Ed.) (New York: John Wiley & Sons)

    [29]

    Chen H L, Wu S Y, Chen H T, Chang J G, Ju S P, Tsai C, Hsu L C 2010 Langmuir 26 7157

    [30]

    Ma C A, Liu T, Chen L T 2010 Acta Phys. Chim. Sin. 26 155 (in Chinese) [马淳安, 刘婷, 陈丽涛 2010 物理化学学报 26 155]

    [31]

    Song J J, Pei J F, Deng X F, Qin Z J, Tang X G 2012 Corros. Protect. 33 649 (in Chinese) [宋佳佳, 裴峻峰, 邓学风, 秦志坚, 汤学耕 2012 腐蚀与防护 33 649]

    [32]

    Liu W, Pu X L, Bai X D, Zhao H W 2008 Petroleum Drilling Techniques 36 83 (in Chinese) [刘伟, 蒲小林, 白晓东, 赵昊伟 2008 石油钻探技术 36 83]

    [33]

    Huang B S, Lu X, Liu Q Y 2011 Corros. Sci. Protect. Technol. 23 205 (in Chinese) [黄本生, 卢曦, 刘清友 2011 腐蚀科学与防腐技术 23 205]

    [34]

    Xu G G, Wu Q Y, Zhang J M, Chen Z G, Huang Z G 2009 Acta Phys. Sin. 58 1924 (in Chinese) [许桂贵, 吴青云, 张健敏, 陈志高, 黄志高 2009 物理学报 58 1924]

    [35]

    Li W X, Stampfl C, Scheffler M 2002 Phys. Rev. B 65 075407

    [36]

    Wu X X, Wang Q E, Wang F H, Zhou Y S 2010 Acta Phys. Sin. 59 7278 (in Chinese) [吴小霞, 王乾恩, 王福和, 周云松 2010 物理学报 59 7278]

  • [1] 王悦, 王伦, 孙柏逊, 郎鹏, 徐洋, 赵振龙, 宋晓伟, 季博宇, 林景全. 表面等离激元与入射光共同作用下的金纳米结构近场调控. 物理学报, 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [2] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [3] 刘远峰, 李斌成, 赵斌兴, 刘红. SiC光学材料亚表面缺陷的光热辐射检测. 物理学报, 2023, 72(2): 024208. doi: 10.7498/aps.72.20221303
    [4] 熊枫, 彭志敏, 王振, 丁艳军, 吕俊复, 杜艳君. CO2/CO干扰下基于腔衰荡吸收光谱的痕量H2S浓度测量. 物理学报, 2023, 72(4): 043302. doi: 10.7498/aps.72.20221851
    [5] 冯婕, 郭强, 舒鹏丽, 温阳, 温焕飞, 马宗敏, 李艳君, 刘俊, 伊戈尔·弗拉基米罗维奇·雅明斯基. 超高真空原子尺度Aux/Si(111)-(7×7)表面吸附的电荷分布测量. 物理学报, 2023, 72(11): 110701. doi: 10.7498/aps.72.20230051
    [6] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [7] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [8] 郭厦蕾, 侯育花, 郑寿红, 黄有林, 陶小马. Ge-S/F共掺杂对Li2MSiO4(M = Mn, Fe)晶体结构和性能影响的理论研究. 物理学报, 2022, 71(17): 178201. doi: 10.7498/aps.71.20220473
    [9] 钟东洲, 曾能, 杨华, 徐喆. 外部光注入的光泵浦自旋垂直腔表面发射激光器中的两个混沌偏振分量对两个复杂形状目标中的多区域精确测距. 物理学报, 2021, 70(7): 074206. doi: 10.7498/aps.70.20201693
    [10] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置. 物理学报, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [11] 李海鹏, 吴潇, 丁海洋, 辛可为, 王光明. 基于复合超构表面的宽带圆极化双功能器件设计. 物理学报, 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [12] 李渊, 邓翰宾, 王翠香, 李帅帅, 刘立民, 朱长江, 贾可, 孙英开, 杜鑫, 于鑫, 关童, 武睿, 张书源, 石友国, 毛寒青. 反铁磁轴子绝缘体候选材料EuIn2As2的表面原子排布和电子结构. 物理学报, 2021, 70(18): 186801. doi: 10.7498/aps.70.20210783
    [13] 徐强, 司雪, 佘维汉, 杨光敏. 超电容储能电极材料的密度泛函理论研究. 物理学报, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
    [14] 王娇, 刘少辉, 周梦, 郝好山, 翟继卫. 钛酸锶纳米纤维表面羟基化处理对聚偏氟乙烯复合材料介电性能和储能性能的影响. 物理学报, 2020, 69(21): 218101. doi: 10.7498/aps.69.20200592
    [15] 李栋, 董生智, 李磊, 徐吉元, 陈红升, 李卫. 核((Nd0.7, Ce0.3)2Fe14B)-壳(Nd2Fe14B)型磁体反磁化的微磁学模拟. 物理学报, 2020, 69(14): 147501. doi: 10.7498/aps.69.20200435
    [16] 王朝辉, 李勇祥, 朱帅. 基于超表面的旋向选择吸波体. 物理学报, 2020, 69(23): 234103. doi: 10.7498/aps.69.20200511
    [17] 王丹, 叶鸣, 冯鹏, 贺永宁, 崔万照. 激光刻蚀对镀金表面二次电子发射的有效抑制. 物理学报, 2019, 68(6): 067901. doi: 10.7498/aps.68.20181547
    [18] 蔡梦圆, 唐春梅, 张秋月. Li离子电池负极材料石墨炔在B, N掺杂调控下的储Li性能优化. 物理学报, 2019, 68(21): 213601. doi: 10.7498/aps.68.20191161
    [19] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱. 物理学报, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [20] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
计量
  • 文章访问数:  5222
  • PDF下载量:  958
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-19
  • 修回日期:  2014-03-12
  • 刊出日期:  2014-06-05

/

返回文章
返回