搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续变量量子计算和量子纠错研究进展

王美红 郝树宏 秦忠忠 苏晓龙

引用本文:
Citation:

连续变量量子计算和量子纠错研究进展

王美红, 郝树宏, 秦忠忠, 苏晓龙

Research advances in continuous-variable quantum computation and quantum error correction

Wang Mei-Hong, Hao Shu-Hong, Qin Zhong-Zhong, Su Xiao-Long
PDF
HTML
导出引用
  • 量子计算机在解决某些复杂问题方面具有经典计算机无法比拟的优势. 实现大规模量子计算需建立具有通用性、可扩展性和容错性的硬件平台. 连续变量光学系统具有独特的优势, 是实现大规模量子计算的一种可行途径, 近年来受到了广泛关注. 基于测量的连续变量量子计算通过对大规模高斯簇态(cluster态)的测量和测量结果的前馈来实现计算, 为实现量子计算提供了一条可行的途径. 量子纠错是量子计算和量子通信中保护量子信息的重要环节. 本文简要介绍了基于cluster态的单向量子计算、基于光学薛定谔猫态的量子计算和连续变量量子纠错的基本原理和研究进展, 并讨论了连续变量量子计算面临的问题和挑战.
    Quantum computation presents incomparable advantages over classical computer in solving some complex problems. To realize large-scale quantum computation, it is required to establish a hardware platform that is universal, scalable and fault tolerant. Continuous-variable optical system, which has unique advantages, is a feasible way to realize large-scale quantum computation and has attracted much attention in recent years. Measurement-based continuous-variable quantum computation realizes the computation by performing the measurement and feedforward of measurement results in large-scale Gaussian cluster states, and it provides an efficient method to realize quantum computation. Quantum error correction is an important part in quantum computation and quantum communication to protect quantum information. This review briefly introduces the basic principles and research advances in one-way quantum computation based on cluster states, quantum computation based on optical Schrödinger cat states and quantum error correction with continuous variables, and discusses the problems and challenges that the continuous-variable quantum computation is facing.
      通信作者: 苏晓龙, suxl@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11834010, 62005149, 11804001, 11974227)、山西省“1331 工程”重点学科建设经费和山西省基础研究计划(批准号: 20210302121002, 20210302122002, 201901D211164)资助的课题
      Corresponding author: Su Xiao-Long, suxl@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11834010, 62005149, 11804001, 11974227), the Fund for Shanxi “1331 Project” Key Subjects Construction, China, and the Fundamental Research Program of Shanxi Province, China (Grant Nos. 20210302121002, 20210302122002, 201901D211164).
    [1]

    Shor P W 1994 Proceedings 35th Annual Symposium on Foundations of Computer Science Santa Fe, American, November 20–22, 1994

    [2]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [3]

    Lloyd S 1993 Science 261 1569Google Scholar

    [4]

    Lloyd S 1994 Science 263 695Google Scholar

    [5]

    Rarity J G, Ownes P C M, Tapster P R 1994 J. Mod. Opt. 41 2435Google Scholar

    [6]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar

    [7]

    Gambetta J M, Chow J M, Steffen M 2017 NPJ Quantum Inf. 3 2Google Scholar

    [8]

    Li Z Y, Yu H F, Tan X S, Zhao S P, Yu Y 2019 Chin. Phys. B 28 098505Google Scholar

    [9]

    Gong M, Wang S, Zha C, et al. 2021 Science 372 948Google Scholar

    [10]

    Huang H L, Wu D, Fan D, Zhu X 2020 Sci. Chin. Inf. Sci. 63 180501Google Scholar

    [11]

    Pagano G, Bapat A, Becker P, Collins K S, De A, Hess P W, Kaplan H B, Kyprianidis A, Tan W L, Baldwin C, Brady L T, Deshpande A, Liu F, Jordan S, Gorshkov A V, Monroe C 2020 Proc. Natl. Acad. Sci. 117 25396Google Scholar

    [12]

    Pino J M, Dreiling J M, Figgatt C, et al. 2021 Nature 592 209Google Scholar

    [13]

    Watson T F, Philips S G J, Kawakami E, et al. 2018 Nature 555 633Google Scholar

    [14]

    Hendrickx N W, Lawrie W I L, Russ M, et al. 2021 Nature 591 580Google Scholar

    [15]

    Arrazola J M, Bergholm V, Brádler K, et al. 2021 Nature 591 54Google Scholar

    [16]

    Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N, Eriksson M A 2013 Rev. Mod. Phys. 85 961Google Scholar

    [17]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [18]

    Yan Z, Zhang Y R, Gong M, et al. 2019 Science 364 753Google Scholar

    [19]

    Wu Y, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501Google Scholar

    [20]

    Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460Google Scholar

    [21]

    Zhong H S, Deng Y H, Qin J, et al. 2021 Phys. Rev. Lett. 127 180502Google Scholar

    [22]

    van Loock P 2011 Laser Photonics Rev. 5 167Google Scholar

    [23]

    Andersen U L, Neergaard-Nielsen J S, van Loock P, Furusawa A 2015 Nat. Phys. 11 713Google Scholar

    [24]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513Google Scholar

    [25]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [26]

    Huh J, Guerreschi G G, Peropadre B, McClean J R, Aspuru-Guzik A 2015 Nat. Photonics 9 615Google Scholar

    [27]

    Hamilton C S, Kruse R, Sansoni L, Barkhofen S, Silberhorn C, Jex I 2017 Phys. Rev. Lett. 119 170501Google Scholar

    [28]

    Arrazola J M, Bromley T R 2018 Phys. Rev. Lett. 121 030503Google Scholar

    [29]

    Banchi L, Fingerhuth M, Babej T, Ing C, Arrazola J M 2020 Sci. Adv. 6 eaax1950Google Scholar

    [30]

    Lau H K, Pooser R, Siopsis G, Weedbrook C 2017 Phys. Rev. Lett. 118 080501Google Scholar

    [31]

    Schuld M, Killoran N 2019 Phys. Rev. Lett. 122 040504Google Scholar

    [32]

    Killoran N, Bromley T R, Arrazola J M, Schuld M, Quesada N, Lloyd S 2019 Phys. Rev. Res. 1 033063Google Scholar

    [33]

    Kalajdzievski T, Weedbrook C, Rebentrost P 2018 Phys. Rev. A 97 062311Google Scholar

    [34]

    Arrazola J M, Kalajdzievski T, Weedbrook C, Lloyd S 2019 Phys. Rev. A 100 032306Google Scholar

    [35]

    Adesso G, Illuminati F 2007 J. Phys. A:Math. Theor. 40 7821Google Scholar

    [36]

    苏晓龙, 贾晓军, 彭堃墀 2016 物理学进展 36 101

    Su X L, Jia X J, Peng K C 2016 Process phys. 36 101 (in Chinese)

    [37]

    Fukui K, Takeda S 2022 J. Phys. B:At. Mol. Opt. Phys. 55 012001Google Scholar

    [38]

    Gu M, Weedbrook C, Menicucci N C, Ralph T C, van Loock P 2009 Phys. Rev. A 79 062318Google Scholar

    [39]

    Furusawa A, van Loock P 2011 Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Hoboken: Wiley) p16

    [40]

    Lloyd S, Braunstein S L 1999 Phys. Rev. Lett. 82 1784Google Scholar

    [41]

    Furusawa A, van Loock P 2011 Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Hoboken: Wiley) p58

    [42]

    Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188Google Scholar

    [43]

    Menicucci N C, van Loock P, Gu M, Weedbrook C, Ralph T C, Nielsen M A 2006 Phys. Rev. Lett. 97 110501Google Scholar

    [44]

    Zhang J, Braunstein S L 2006 Phys. Rev. A 73 032318Google Scholar

    [45]

    Hao S, Deng X, Liu Y, Su X, Xie C, Peng K 2021 Chin. Phys. B 30 060312Google Scholar

    [46]

    苏晓龙, 贾晓军, 谢常德, 彭堃墀 2010 物理 39 746

    Su X L, Jia X J, Xie C D, Peng K C 2010 Physics 39 746

    [47]

    彭堃墀, 苏晓龙, 贾晓军, 谢常德 2012 山西大学学报 35 231Google Scholar

    Peng K C, Su X L, Jia X J, Xie C D 2012 J. Shanxi Univ. 35 231Google Scholar

    [48]

    Wang Y, Tian C, Su Q, Wang M, Su X 2019 Sci. Chin. Inf. Sci. 62 72501Google Scholar

    [49]

    Su X, Wang M, Yan Z, Jia X, Xie C, Peng K 2020 Sci. Chin. Inf. Sci. 63 180503Google Scholar

    [50]

    Menicucci N C, Flammia S T, van Loock P 2011 Phys. Rev. A 83 042335Google Scholar

    [51]

    Su X, Tan A, Jia X, Zhang J, Xie C, Peng K 2007 Phys. Rev. Lett. 98 070502Google Scholar

    [52]

    Yukawa M, Ukai R, van Loock P, Furusawa A 2008 Phys. Rev. A 78 012301Google Scholar

    [53]

    Tan A, Wang Y, Jin X, Su X, Jia X, Zhang J, Xie C, Peng K 2008 Phys. Rev. A 78 013828Google Scholar

    [54]

    Su X, Zhao Y, Hao S, Jia X, Xie C, Peng K 2012 Opt. Lett. 37 5178Google Scholar

    [55]

    Pysher M, Miwa Y, Shahrokhshahi R, Bloomer R, Pfister O 2011 Phys. Rev. Lett. 107 030505Google Scholar

    [56]

    Chen M, Menicucci N C, Pfister O 2014 Phys. Rev. Lett. 112 120505Google Scholar

    [57]

    Roslund J, de Araújo R M, Jiang S, Fabre C, Treps N 2014 Nat. Photonics. 8 109Google Scholar

    [58]

    Cai Y, Roslund J, Ferrini G, Arzani F, Xu X, Fabre C, Treps N 2017 Nat. Commun. 8 15645Google Scholar

    [59]

    Menicucci N C 2011 Phys. Rev. A 83 062314Google Scholar

    [60]

    Yokoyama S, Ukai R, Armstrong S C, Sornphiphatphong C, Kaji T, Suzuki S, Yoshikawa J I, Yonezawa H, Menicucci N C, Furusawa A 2013 Nat. Photonics 7 982Google Scholar

    [61]

    Yoshikawa J I, Yokoyama S, Kaji T, Sornphiphatphong C, Shiozawa Y, Makino K, Furusawa A 2016 APL Photonics 1 060801Google Scholar

    [62]

    Larsen M V, Guo X, Breum C R, Neergaard-Nielsen J S, Andersen U L 2019 Science 366 369Google Scholar

    [63]

    Asavanant W, Shiozawa Y, Yokoyama S, et al. 2019 Science 366 373Google Scholar

    [64]

    Raussendorf R, Harrington J 2007 Phys. Rev. Lett. 98 190504Google Scholar

    [65]

    Raussendorf R, Harrington J, Goyal K 2007 New J. Phys. 9 199Google Scholar

    [66]

    Fukui K, Asavanant W, Furusawa A 2020 Phys. Rev. A 102 032614Google Scholar

    [67]

    Yoshikawa J I, Hayashi T, Akiyama T, Takei N, Huck A, Andersen U L, Furusawa A 2007 Phys. Rev. A 76 060301Google Scholar

    [68]

    Yoshikawa J I, Miwa Y, Huck A, Andersen U L, van Loock P, Furusawa A 2008 Phys. Rev. Lett. 101 250501Google Scholar

    [69]

    Miwa Y, Yoshikawa J I, van Loock P, Furusawa A 2009 Phys. Rev. A 80 050303Google Scholar

    [70]

    Ukai R, Yokoyama S, Yoshikawa J I, van Loock P, Furusawa A 2011 Phys. Rev. Lett. 107 250501Google Scholar

    [71]

    Ukai R, Iwata N, Shimokawa Y, Armstrong S C, Politi A, Yoshikawa J I, van Loock P, Furusawa A 2011 Phys. Rev. Lett. 106 240504Google Scholar

    [72]

    Wang Y, Su X, Shen H, Tan A, Xie C, Peng K 2010 Phys. Rev. A 81 022311Google Scholar

    [73]

    Hao S, Deng X, Su X, Jia X, Xie C, Peng K 2014 Phys. Rev. A 89 032311Google Scholar

    [74]

    Su X, Hao S, Deng X, Ma L, Wang M, Jia X, Xie C, Peng K 2013 Nat. Commun. 4 2828Google Scholar

    [75]

    Asavanant W, Charoensombutamon B, Yokoyama S, et al. 2021 Phys. Rev. Appl. 16 034005Google Scholar

    [76]

    Larsen M V, Guo X, Breum C R, Neergaard-Nielsen J S, Andersen U L 2021 Nat. Phys. 17 1018Google Scholar

    [77]

    Gottesman D, Kitaev A, Preskill J 2001 Phys. Rev. A 64 012310Google Scholar

    [78]

    Miyata K, Ogawa H, Marek P, Filip R, Yonezawa H, Yoshikawa J I, Furusawa A 2016 Phys. Rev. A 93 022301Google Scholar

    [79]

    Sabapathy K K, Weedbrook C 2018 Phys. Rev. A 97 062315Google Scholar

    [80]

    Yukawa M, Miyata K, Yonezawa H, Marek P, Filip R, Furusawa A 2013 Phys. Rev. A 88 053816Google Scholar

    [81]

    Masada G, Miyata K, Politi A, Hashimoto T, O’Brien J L, Furusawa A 2015 Nat. Photonics 9 316Google Scholar

    [82]

    Yang Z, Jahanbozorgi M, Jeong D, Sun S, Pfister O, Lee H, Yi X 2021 Nat. Commun. 12 4781Google Scholar

    [83]

    Dutt A, Luke K, Manipatruni S, Gaeta A L, Nussenzveig P, Lipson M 2015 Phys. Rev. Appl. 3 044005Google Scholar

    [84]

    Zhao Y, Okawachi Y, Jang J K, Ji X, Lipson M, Gaeta A L 2020 Phys. Rev. Lett. 124 193601Google Scholar

    [85]

    Vaidya V D, Morrison B, Helt L G, et al. 2020 Sci. Adv. 6 eaba9186Google Scholar

    [86]

    Zhang Q Y, Xu P, Zhu S N 2018 Chin. Phys. B 27 054207Google Scholar

    [87]

    Kaiser F, Fedrici B, Zavatta A, D’Auria V, Tanzilli S 2016 Optica 3 362Google Scholar

    [88]

    Fürst J U, Strekalov D V, Elser D, Aiello A, Andersen U L, Marquardt Ch, Leuchs G 2011 Phys. Rev. Lett. 106 113901Google Scholar

    [89]

    Lenzini F, Janousek J, Thearle O, Villa M, Haylock B, Kasture S, Cui L, Phan H P, Dao D V, Yonezawa H, Lam P K, Huntington E H, Lobino M 2018 Sci. Adv. 4 eaat9331Google Scholar

    [90]

    Qi Y, Li Y 2020 Nanophotonics 9 1287Google Scholar

    [91]

    Chen P K, Briggs I, Hou S, Fan L 2022 Opt. Lett. 47 1506Google Scholar

    [92]

    Schrödinger E 1935 Naturwissenschaften 23 807Google Scholar

    [93]

    Haroche S 2013 Rev. Mod. Phys. 85 1083Google Scholar

    [94]

    Arndt M, Hornberger K 2014 Nat. Phys. 10 271Google Scholar

    [95]

    Ralph T C, Gilchrist A, Milburn G J, Munro W J, Glancy S 2003 Phys. Rev. A 68 042319Google Scholar

    [96]

    Jeong H, Kim M S 2002 Phys. Rev. A 65 042305Google Scholar

    [97]

    Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503Google Scholar

    [98]

    Sychev D V, Ulanov A E, Tiunov E S, Pushkina A A, Kuzhamuratov A, Novikov V, Lvovsky A I 2018 Nat. Commun. 9 3672Google Scholar

    [99]

    Dakna M, Anhut T, Opatrnýn T, Knöll L, Welsch D G 1997 Phys. Rev. A 55 3184Google Scholar

    [100]

    Ourjoumtsev A, Tualle-Brouri R, Laurat J, Grangier P 2006 Science 312 83Google Scholar

    [101]

    Neergaard-Nielsen J S, Melholt Nielsen B, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604Google Scholar

    [102]

    Wakui K, Takahashi H, Furusawa A, Sasaki M 2007 Opt. Express 15 3568Google Scholar

    [103]

    Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E, Furusawa A 2011 Science 332 330Google Scholar

    [104]

    Marek P, Fiurášek J 2010 Phys. Rev. A 82 014304Google Scholar

    [105]

    Tipsmark A, Dong R, Laghaout A, Marek P, Ježek M, Andersen U L 2011 Phys. Rev. A 84 050301Google Scholar

    [106]

    Blandino R, Ferreyrol F, Barbieri M, Grangier P, Tualle-Brouri R 2012 New J. Phys. 14 013017Google Scholar

    [107]

    Ourjoumtsev A, Ferreyrol F, Tualle-Brouri R, Grangier P 2009 Nat. Phys. 5 189Google Scholar

    [108]

    Sychev D V, Novikov V A, Pirov K K, Simon C, Lvovsky A I 2019 Optica 6 1425Google Scholar

    [109]

    Braunstein S L 1998 Nature 394 47Google Scholar

    [110]

    Lloyd S, Slotine J J E 1998 Phys. Rev. Lett. 80 4088Google Scholar

    [111]

    Braunstein S L 1998 Phys. Rev. Lett. 80 4084Google Scholar

    [112]

    Walker T A, Braunstein S L 2010 Phys. Rev. A 81 062305Google Scholar

    [113]

    Wilde M M, Krovi H, Brun T A 2007 Phys. Rev. A 76 052308Google Scholar

    [114]

    Niset J, Andersen U L, Cerf N J 2008 Phys. Rev. Lett. 101 130503Google Scholar

    [115]

    Niset J, Fiurášek J, Cerf N J 2009 Phys. Rev. Lett. 102 120501Google Scholar

    [116]

    Aoki T, Takahashi G, Kajiya T, Yoshikawa J I, Braunstein S L, van Loock P, Furusawa A 2009 Nat. Phys. 5 541Google Scholar

    [117]

    Lassen M, Berni A, Madsen L S, Filip R, Andersen U L 2013 Phys. Rev. Lett. 111 180502Google Scholar

    [118]

    Hao S, Su X, Tian C, Xie C, Peng K 2015 Sci. Rep. 5 15462Google Scholar

    [119]

    Ralph T C 2011 Phys. Rev. A 84 022339Google Scholar

    [120]

    Glancy S, Knill E 2006 Phys. Rev. A 73 012325Google Scholar

    [121]

    Albert V V, Noh K, Duivenvoorden K, Young D J, Brierley R T, Reinhold P, Vuillot C, Li L, Shen C, Girvin S M, Terhal B M, Jiang L 2018 Phys. Rev. A 97 032346Google Scholar

    [122]

    Flühmann C, Nguyen T L, Marinelli M, Negnevitsky V, Mehta K, Home J P 2019 Nature 566 513Google Scholar

    [123]

    Campagne-Ibarcq P, Eickbusch A, Touzard S, Zalys-Geller E, Frattini N E, Sivak V V, Reinhold P, Puri S, Shankar S, Schoelkopf R J, Frunzio L, Mirrahimi M, Devoret M H 2020 Nature 584 368Google Scholar

    [124]

    Vasconcelos H M, Sanz L, Glancy S 2010 Opt. Lett. 35 3261Google Scholar

    [125]

    Fukui K, Takeda S, Endo M, Asavanant W, Yoshikawa J I, van Loock P, Furusawa A 2022 Phys. Rev. Lett. 128 240503Google Scholar

    [126]

    Su D, Myers C R, Sabapathy K K 2019 Phys. Rev. A 100 052301Google Scholar

    [127]

    Fowler A G, Goyal K 2009 Quantum Inf. Comput. 9 727Google Scholar

    [128]

    Raussendorf R, Harrington J, Goyal K 2006 Ann. Phys. 321 2242Google Scholar

    [129]

    Stern A, Lindner N H 2013 Science 339 1179Google Scholar

    [130]

    Zhang J, Xie C, Peng K, van Loock P 2008 Phys. Rev. A 78 052121Google Scholar

    [131]

    Morimae T 2013 Phys. Rev. A 88 042311Google Scholar

    [132]

    Menicucci N C, Baragiola B Q, Demarie T F, Brennen G K 2018 Phys. Rev. A 97 032345Google Scholar

    [133]

    Milne D F, Korolkova N V, van Loock P 2012 Phys. Rev. A 85 052325Google Scholar

    [134]

    Menicucci N C 2014 Phys. Rev. Lett. 112 120504Google Scholar

    [135]

    Hao S, Wang M, Wang D, Su X 2021 Phys. Rev. A 103 052407Google Scholar

  • 图 1  平衡零拍探测系统示意图[36]

    Fig. 1.  Schematic of balance homodyne detection[36] .

    图 2  平移算符对量子态的作用效果[39]

    Fig. 2.  Effect of displacement operation on quantum state[39]

    图 3  多组份cluster态示意图 (a) 四组份线性cluster态[45]; (b) 二维cluster态[45]; (c) 三维cluster态[45]

    Fig. 3.  Schematic of multipartite cluster entangled states: (a) Linear four-mode cluster state[45]; (b) two-dimensional cluster state[45]; (c) three-dimensional cluster state[45].

    图 4  立方位相门 (a)基于立方位相态实现立方位相门的线路图[77]; (b)立方位相态的产生方案[37]

    Fig. 4.  Cubic phase gate: (a) The cubic phase gate by the measurement-induced scheme using the cubic phase state[77]; (b) the preparation of the cubic phase state[37].

    图 5  基于光学猫态的Hadamard门方案示意图[104]

    Fig. 5.  Schematic of Hadamard gate based on optical cat state[104].

    图 6  基于光学猫态的位相旋转门方案示意图[95]

    Fig. 6.  Schematic of phase rotation gate based on optical cat state[95].

    图 7  基于光学猫态的可控位相门方案示意图[95]

    Fig. 7.  Schematic of controlled phase gate based on optical cat state[95].

    图 8  基于五波包部分编码方式的连续变量量子纠错方案[118]

    Fig. 8.  Scheme of CV quantum error correction with five-wave-packet code [118].

    图 9  GKP量子比特的编码方式[77]

    Fig. 9.  The codeword for the GKP qubit[77].

    图 10  基于cluster态的连续变量拓扑误差修正方案 (a) 八组份拓扑结构连续变量cluster 纠缠态的图态表示[135]; (b) 产生八组份连续变量cluster 纠缠态的分束器网络[135]

    Fig. 10.  Scheme of topological error correction with CV a Gaussian cluster state: (a) The graph structure of the topological eight-partite CV cluster state; (b) the beam-splitter network for the preparation of the cluster state[135].

    表 1  离散变量和连续变量量子逻辑门的比较[37]

    Table 1.  Comparison between quantum logical gates with describe variables and continuous variables[37].

    离散变量 (qubits) 连续变量 (qumodes)
    计算基矢$ \{{ |0 \rangle }_{\mathrm{L}}, { |1 \rangle }_{\mathrm{L}} \} $ $ \{{{ |s \rangle }_{x}\}}_{\mathrm{s}\in \mathbb{R}} $
    共轭基矢$ \big\{{{ |\pm \rangle }_{\mathrm{L}}=( |0 \rangle }_{\mathrm{L}}\pm { |1 \rangle }_{\mathrm{L}})/\sqrt{2} \big \} $${ \bigg\{ { |t \rangle }_{p}=\dfrac{1}{\sqrt{2\mathrm{\pi } } } \displaystyle\int_{-\infty }^{\infty }\mathrm{d}s{\mathrm{e} }^{\mathrm{i}st}{ |s \rangle }_{x} \bigg\} }_{t\in \mathbb{R} }$
    编码$ { |\psi \rangle =\alpha |0 \rangle }_{\mathrm{L}}+\beta { |1 \rangle }_{\mathrm{L}} $$ ({ |\alpha |}^{2}+{ |\beta |}^{2}=1 $)$|\psi \rangle = \displaystyle\int_{-\infty }^{\infty }\mathrm{d}s\psi (s ){ |s \rangle }_{x} \bigg(\displaystyle\int_{-\infty }^{\infty }\mathrm{d}s{ |\psi (s ) |}^{2}=1 \bigg)$
    探测方式光子探测平衡零拍探测
    量子逻辑门Bit-flip: $ {\widehat{X} |0 \rangle }_{\mathrm{L}}={ |1 \rangle }_{\mathrm{L}}, {\widehat{X} |1 \rangle }_{\mathrm{L}}={ |0 \rangle }_{\mathrm{L}} $x方向平移: $ \widehat{X} (v ){ |s \rangle }_{x}={ |s+v \rangle }_{x} $
    Phase-flip: $ {\widehat{Z} |0 \rangle }_{\mathrm{L}}={ |0 \rangle }_{\mathrm{L}}, {\widehat{Z} |1 \rangle }_{\mathrm{L}}={- |1 \rangle }_{\mathrm{L}} $p方向平移: $ \widehat{Z} (u ){ |t \rangle }_{p}={ |t+u \rangle }_{p} $
    Hadamard门:$ {\widehat{H} |0 \rangle }_{\mathrm{L}}={ |+ \rangle }_{\mathrm{L}}, {\widehat{H} |1 \rangle }_{\mathrm{L}}={ |- \rangle }_{\mathrm{L}} $傅立叶变换: $\widehat{R} ( {\mathrm{\pi } }/{2} ){ |s \rangle }_{x}={ |s \rangle }_{p}, \widehat{R} ( {\mathrm{\pi } }/{2} ){ |t \rangle }_{p}={ |-t \rangle }_{x}$
    可控非门: $ {\widehat{CX} |0 \rangle }_{\mathrm{L}}{ |0 (1 ) \rangle }_{\mathrm{L}}={ |0 \rangle }_{\mathrm{L}}{ |0 (1 ) \rangle }_{\mathrm{L}} $可控X门: $ {\widehat{CX} |{s}_{1} \rangle }_{{q}_{1}}{ |{s}_{2} \rangle }_{{q}_{2}}={ |{s}_{1} \rangle }_{{q}_{1}}{ |{s}_{2}+{s}_{1} \rangle }_{{q}_{2}} $
    $ {\widehat{CX} |1 \rangle }_{\mathrm{L}}{ |0 (1 ) \rangle }_{\mathrm{L}}={ |1 \rangle }_{\mathrm{L}}{ |1 (0 ) \rangle }_{\mathrm{L}} $$ {\widehat{CX} |{t}_{1} \rangle }_{{p}_{1}}{ |{t}_{2} \rangle }_{{p}_{2}}={ |{t}_{1}-{t}_{2} \rangle }_{{p}_{1}}{ |{t}_{2} \rangle }_{{p}_{2}} $
    下载: 导出CSV
  • [1]

    Shor P W 1994 Proceedings 35th Annual Symposium on Foundations of Computer Science Santa Fe, American, November 20–22, 1994

    [2]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [3]

    Lloyd S 1993 Science 261 1569Google Scholar

    [4]

    Lloyd S 1994 Science 263 695Google Scholar

    [5]

    Rarity J G, Ownes P C M, Tapster P R 1994 J. Mod. Opt. 41 2435Google Scholar

    [6]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar

    [7]

    Gambetta J M, Chow J M, Steffen M 2017 NPJ Quantum Inf. 3 2Google Scholar

    [8]

    Li Z Y, Yu H F, Tan X S, Zhao S P, Yu Y 2019 Chin. Phys. B 28 098505Google Scholar

    [9]

    Gong M, Wang S, Zha C, et al. 2021 Science 372 948Google Scholar

    [10]

    Huang H L, Wu D, Fan D, Zhu X 2020 Sci. Chin. Inf. Sci. 63 180501Google Scholar

    [11]

    Pagano G, Bapat A, Becker P, Collins K S, De A, Hess P W, Kaplan H B, Kyprianidis A, Tan W L, Baldwin C, Brady L T, Deshpande A, Liu F, Jordan S, Gorshkov A V, Monroe C 2020 Proc. Natl. Acad. Sci. 117 25396Google Scholar

    [12]

    Pino J M, Dreiling J M, Figgatt C, et al. 2021 Nature 592 209Google Scholar

    [13]

    Watson T F, Philips S G J, Kawakami E, et al. 2018 Nature 555 633Google Scholar

    [14]

    Hendrickx N W, Lawrie W I L, Russ M, et al. 2021 Nature 591 580Google Scholar

    [15]

    Arrazola J M, Bergholm V, Brádler K, et al. 2021 Nature 591 54Google Scholar

    [16]

    Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N, Eriksson M A 2013 Rev. Mod. Phys. 85 961Google Scholar

    [17]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [18]

    Yan Z, Zhang Y R, Gong M, et al. 2019 Science 364 753Google Scholar

    [19]

    Wu Y, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501Google Scholar

    [20]

    Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460Google Scholar

    [21]

    Zhong H S, Deng Y H, Qin J, et al. 2021 Phys. Rev. Lett. 127 180502Google Scholar

    [22]

    van Loock P 2011 Laser Photonics Rev. 5 167Google Scholar

    [23]

    Andersen U L, Neergaard-Nielsen J S, van Loock P, Furusawa A 2015 Nat. Phys. 11 713Google Scholar

    [24]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513Google Scholar

    [25]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [26]

    Huh J, Guerreschi G G, Peropadre B, McClean J R, Aspuru-Guzik A 2015 Nat. Photonics 9 615Google Scholar

    [27]

    Hamilton C S, Kruse R, Sansoni L, Barkhofen S, Silberhorn C, Jex I 2017 Phys. Rev. Lett. 119 170501Google Scholar

    [28]

    Arrazola J M, Bromley T R 2018 Phys. Rev. Lett. 121 030503Google Scholar

    [29]

    Banchi L, Fingerhuth M, Babej T, Ing C, Arrazola J M 2020 Sci. Adv. 6 eaax1950Google Scholar

    [30]

    Lau H K, Pooser R, Siopsis G, Weedbrook C 2017 Phys. Rev. Lett. 118 080501Google Scholar

    [31]

    Schuld M, Killoran N 2019 Phys. Rev. Lett. 122 040504Google Scholar

    [32]

    Killoran N, Bromley T R, Arrazola J M, Schuld M, Quesada N, Lloyd S 2019 Phys. Rev. Res. 1 033063Google Scholar

    [33]

    Kalajdzievski T, Weedbrook C, Rebentrost P 2018 Phys. Rev. A 97 062311Google Scholar

    [34]

    Arrazola J M, Kalajdzievski T, Weedbrook C, Lloyd S 2019 Phys. Rev. A 100 032306Google Scholar

    [35]

    Adesso G, Illuminati F 2007 J. Phys. A:Math. Theor. 40 7821Google Scholar

    [36]

    苏晓龙, 贾晓军, 彭堃墀 2016 物理学进展 36 101

    Su X L, Jia X J, Peng K C 2016 Process phys. 36 101 (in Chinese)

    [37]

    Fukui K, Takeda S 2022 J. Phys. B:At. Mol. Opt. Phys. 55 012001Google Scholar

    [38]

    Gu M, Weedbrook C, Menicucci N C, Ralph T C, van Loock P 2009 Phys. Rev. A 79 062318Google Scholar

    [39]

    Furusawa A, van Loock P 2011 Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Hoboken: Wiley) p16

    [40]

    Lloyd S, Braunstein S L 1999 Phys. Rev. Lett. 82 1784Google Scholar

    [41]

    Furusawa A, van Loock P 2011 Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Hoboken: Wiley) p58

    [42]

    Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188Google Scholar

    [43]

    Menicucci N C, van Loock P, Gu M, Weedbrook C, Ralph T C, Nielsen M A 2006 Phys. Rev. Lett. 97 110501Google Scholar

    [44]

    Zhang J, Braunstein S L 2006 Phys. Rev. A 73 032318Google Scholar

    [45]

    Hao S, Deng X, Liu Y, Su X, Xie C, Peng K 2021 Chin. Phys. B 30 060312Google Scholar

    [46]

    苏晓龙, 贾晓军, 谢常德, 彭堃墀 2010 物理 39 746

    Su X L, Jia X J, Xie C D, Peng K C 2010 Physics 39 746

    [47]

    彭堃墀, 苏晓龙, 贾晓军, 谢常德 2012 山西大学学报 35 231Google Scholar

    Peng K C, Su X L, Jia X J, Xie C D 2012 J. Shanxi Univ. 35 231Google Scholar

    [48]

    Wang Y, Tian C, Su Q, Wang M, Su X 2019 Sci. Chin. Inf. Sci. 62 72501Google Scholar

    [49]

    Su X, Wang M, Yan Z, Jia X, Xie C, Peng K 2020 Sci. Chin. Inf. Sci. 63 180503Google Scholar

    [50]

    Menicucci N C, Flammia S T, van Loock P 2011 Phys. Rev. A 83 042335Google Scholar

    [51]

    Su X, Tan A, Jia X, Zhang J, Xie C, Peng K 2007 Phys. Rev. Lett. 98 070502Google Scholar

    [52]

    Yukawa M, Ukai R, van Loock P, Furusawa A 2008 Phys. Rev. A 78 012301Google Scholar

    [53]

    Tan A, Wang Y, Jin X, Su X, Jia X, Zhang J, Xie C, Peng K 2008 Phys. Rev. A 78 013828Google Scholar

    [54]

    Su X, Zhao Y, Hao S, Jia X, Xie C, Peng K 2012 Opt. Lett. 37 5178Google Scholar

    [55]

    Pysher M, Miwa Y, Shahrokhshahi R, Bloomer R, Pfister O 2011 Phys. Rev. Lett. 107 030505Google Scholar

    [56]

    Chen M, Menicucci N C, Pfister O 2014 Phys. Rev. Lett. 112 120505Google Scholar

    [57]

    Roslund J, de Araújo R M, Jiang S, Fabre C, Treps N 2014 Nat. Photonics. 8 109Google Scholar

    [58]

    Cai Y, Roslund J, Ferrini G, Arzani F, Xu X, Fabre C, Treps N 2017 Nat. Commun. 8 15645Google Scholar

    [59]

    Menicucci N C 2011 Phys. Rev. A 83 062314Google Scholar

    [60]

    Yokoyama S, Ukai R, Armstrong S C, Sornphiphatphong C, Kaji T, Suzuki S, Yoshikawa J I, Yonezawa H, Menicucci N C, Furusawa A 2013 Nat. Photonics 7 982Google Scholar

    [61]

    Yoshikawa J I, Yokoyama S, Kaji T, Sornphiphatphong C, Shiozawa Y, Makino K, Furusawa A 2016 APL Photonics 1 060801Google Scholar

    [62]

    Larsen M V, Guo X, Breum C R, Neergaard-Nielsen J S, Andersen U L 2019 Science 366 369Google Scholar

    [63]

    Asavanant W, Shiozawa Y, Yokoyama S, et al. 2019 Science 366 373Google Scholar

    [64]

    Raussendorf R, Harrington J 2007 Phys. Rev. Lett. 98 190504Google Scholar

    [65]

    Raussendorf R, Harrington J, Goyal K 2007 New J. Phys. 9 199Google Scholar

    [66]

    Fukui K, Asavanant W, Furusawa A 2020 Phys. Rev. A 102 032614Google Scholar

    [67]

    Yoshikawa J I, Hayashi T, Akiyama T, Takei N, Huck A, Andersen U L, Furusawa A 2007 Phys. Rev. A 76 060301Google Scholar

    [68]

    Yoshikawa J I, Miwa Y, Huck A, Andersen U L, van Loock P, Furusawa A 2008 Phys. Rev. Lett. 101 250501Google Scholar

    [69]

    Miwa Y, Yoshikawa J I, van Loock P, Furusawa A 2009 Phys. Rev. A 80 050303Google Scholar

    [70]

    Ukai R, Yokoyama S, Yoshikawa J I, van Loock P, Furusawa A 2011 Phys. Rev. Lett. 107 250501Google Scholar

    [71]

    Ukai R, Iwata N, Shimokawa Y, Armstrong S C, Politi A, Yoshikawa J I, van Loock P, Furusawa A 2011 Phys. Rev. Lett. 106 240504Google Scholar

    [72]

    Wang Y, Su X, Shen H, Tan A, Xie C, Peng K 2010 Phys. Rev. A 81 022311Google Scholar

    [73]

    Hao S, Deng X, Su X, Jia X, Xie C, Peng K 2014 Phys. Rev. A 89 032311Google Scholar

    [74]

    Su X, Hao S, Deng X, Ma L, Wang M, Jia X, Xie C, Peng K 2013 Nat. Commun. 4 2828Google Scholar

    [75]

    Asavanant W, Charoensombutamon B, Yokoyama S, et al. 2021 Phys. Rev. Appl. 16 034005Google Scholar

    [76]

    Larsen M V, Guo X, Breum C R, Neergaard-Nielsen J S, Andersen U L 2021 Nat. Phys. 17 1018Google Scholar

    [77]

    Gottesman D, Kitaev A, Preskill J 2001 Phys. Rev. A 64 012310Google Scholar

    [78]

    Miyata K, Ogawa H, Marek P, Filip R, Yonezawa H, Yoshikawa J I, Furusawa A 2016 Phys. Rev. A 93 022301Google Scholar

    [79]

    Sabapathy K K, Weedbrook C 2018 Phys. Rev. A 97 062315Google Scholar

    [80]

    Yukawa M, Miyata K, Yonezawa H, Marek P, Filip R, Furusawa A 2013 Phys. Rev. A 88 053816Google Scholar

    [81]

    Masada G, Miyata K, Politi A, Hashimoto T, O’Brien J L, Furusawa A 2015 Nat. Photonics 9 316Google Scholar

    [82]

    Yang Z, Jahanbozorgi M, Jeong D, Sun S, Pfister O, Lee H, Yi X 2021 Nat. Commun. 12 4781Google Scholar

    [83]

    Dutt A, Luke K, Manipatruni S, Gaeta A L, Nussenzveig P, Lipson M 2015 Phys. Rev. Appl. 3 044005Google Scholar

    [84]

    Zhao Y, Okawachi Y, Jang J K, Ji X, Lipson M, Gaeta A L 2020 Phys. Rev. Lett. 124 193601Google Scholar

    [85]

    Vaidya V D, Morrison B, Helt L G, et al. 2020 Sci. Adv. 6 eaba9186Google Scholar

    [86]

    Zhang Q Y, Xu P, Zhu S N 2018 Chin. Phys. B 27 054207Google Scholar

    [87]

    Kaiser F, Fedrici B, Zavatta A, D’Auria V, Tanzilli S 2016 Optica 3 362Google Scholar

    [88]

    Fürst J U, Strekalov D V, Elser D, Aiello A, Andersen U L, Marquardt Ch, Leuchs G 2011 Phys. Rev. Lett. 106 113901Google Scholar

    [89]

    Lenzini F, Janousek J, Thearle O, Villa M, Haylock B, Kasture S, Cui L, Phan H P, Dao D V, Yonezawa H, Lam P K, Huntington E H, Lobino M 2018 Sci. Adv. 4 eaat9331Google Scholar

    [90]

    Qi Y, Li Y 2020 Nanophotonics 9 1287Google Scholar

    [91]

    Chen P K, Briggs I, Hou S, Fan L 2022 Opt. Lett. 47 1506Google Scholar

    [92]

    Schrödinger E 1935 Naturwissenschaften 23 807Google Scholar

    [93]

    Haroche S 2013 Rev. Mod. Phys. 85 1083Google Scholar

    [94]

    Arndt M, Hornberger K 2014 Nat. Phys. 10 271Google Scholar

    [95]

    Ralph T C, Gilchrist A, Milburn G J, Munro W J, Glancy S 2003 Phys. Rev. A 68 042319Google Scholar

    [96]

    Jeong H, Kim M S 2002 Phys. Rev. A 65 042305Google Scholar

    [97]

    Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503Google Scholar

    [98]

    Sychev D V, Ulanov A E, Tiunov E S, Pushkina A A, Kuzhamuratov A, Novikov V, Lvovsky A I 2018 Nat. Commun. 9 3672Google Scholar

    [99]

    Dakna M, Anhut T, Opatrnýn T, Knöll L, Welsch D G 1997 Phys. Rev. A 55 3184Google Scholar

    [100]

    Ourjoumtsev A, Tualle-Brouri R, Laurat J, Grangier P 2006 Science 312 83Google Scholar

    [101]

    Neergaard-Nielsen J S, Melholt Nielsen B, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604Google Scholar

    [102]

    Wakui K, Takahashi H, Furusawa A, Sasaki M 2007 Opt. Express 15 3568Google Scholar

    [103]

    Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E, Furusawa A 2011 Science 332 330Google Scholar

    [104]

    Marek P, Fiurášek J 2010 Phys. Rev. A 82 014304Google Scholar

    [105]

    Tipsmark A, Dong R, Laghaout A, Marek P, Ježek M, Andersen U L 2011 Phys. Rev. A 84 050301Google Scholar

    [106]

    Blandino R, Ferreyrol F, Barbieri M, Grangier P, Tualle-Brouri R 2012 New J. Phys. 14 013017Google Scholar

    [107]

    Ourjoumtsev A, Ferreyrol F, Tualle-Brouri R, Grangier P 2009 Nat. Phys. 5 189Google Scholar

    [108]

    Sychev D V, Novikov V A, Pirov K K, Simon C, Lvovsky A I 2019 Optica 6 1425Google Scholar

    [109]

    Braunstein S L 1998 Nature 394 47Google Scholar

    [110]

    Lloyd S, Slotine J J E 1998 Phys. Rev. Lett. 80 4088Google Scholar

    [111]

    Braunstein S L 1998 Phys. Rev. Lett. 80 4084Google Scholar

    [112]

    Walker T A, Braunstein S L 2010 Phys. Rev. A 81 062305Google Scholar

    [113]

    Wilde M M, Krovi H, Brun T A 2007 Phys. Rev. A 76 052308Google Scholar

    [114]

    Niset J, Andersen U L, Cerf N J 2008 Phys. Rev. Lett. 101 130503Google Scholar

    [115]

    Niset J, Fiurášek J, Cerf N J 2009 Phys. Rev. Lett. 102 120501Google Scholar

    [116]

    Aoki T, Takahashi G, Kajiya T, Yoshikawa J I, Braunstein S L, van Loock P, Furusawa A 2009 Nat. Phys. 5 541Google Scholar

    [117]

    Lassen M, Berni A, Madsen L S, Filip R, Andersen U L 2013 Phys. Rev. Lett. 111 180502Google Scholar

    [118]

    Hao S, Su X, Tian C, Xie C, Peng K 2015 Sci. Rep. 5 15462Google Scholar

    [119]

    Ralph T C 2011 Phys. Rev. A 84 022339Google Scholar

    [120]

    Glancy S, Knill E 2006 Phys. Rev. A 73 012325Google Scholar

    [121]

    Albert V V, Noh K, Duivenvoorden K, Young D J, Brierley R T, Reinhold P, Vuillot C, Li L, Shen C, Girvin S M, Terhal B M, Jiang L 2018 Phys. Rev. A 97 032346Google Scholar

    [122]

    Flühmann C, Nguyen T L, Marinelli M, Negnevitsky V, Mehta K, Home J P 2019 Nature 566 513Google Scholar

    [123]

    Campagne-Ibarcq P, Eickbusch A, Touzard S, Zalys-Geller E, Frattini N E, Sivak V V, Reinhold P, Puri S, Shankar S, Schoelkopf R J, Frunzio L, Mirrahimi M, Devoret M H 2020 Nature 584 368Google Scholar

    [124]

    Vasconcelos H M, Sanz L, Glancy S 2010 Opt. Lett. 35 3261Google Scholar

    [125]

    Fukui K, Takeda S, Endo M, Asavanant W, Yoshikawa J I, van Loock P, Furusawa A 2022 Phys. Rev. Lett. 128 240503Google Scholar

    [126]

    Su D, Myers C R, Sabapathy K K 2019 Phys. Rev. A 100 052301Google Scholar

    [127]

    Fowler A G, Goyal K 2009 Quantum Inf. Comput. 9 727Google Scholar

    [128]

    Raussendorf R, Harrington J, Goyal K 2006 Ann. Phys. 321 2242Google Scholar

    [129]

    Stern A, Lindner N H 2013 Science 339 1179Google Scholar

    [130]

    Zhang J, Xie C, Peng K, van Loock P 2008 Phys. Rev. A 78 052121Google Scholar

    [131]

    Morimae T 2013 Phys. Rev. A 88 042311Google Scholar

    [132]

    Menicucci N C, Baragiola B Q, Demarie T F, Brennen G K 2018 Phys. Rev. A 97 032345Google Scholar

    [133]

    Milne D F, Korolkova N V, van Loock P 2012 Phys. Rev. A 85 052325Google Scholar

    [134]

    Menicucci N C 2014 Phys. Rev. Lett. 112 120504Google Scholar

    [135]

    Hao S, Wang M, Wang D, Su X 2021 Phys. Rev. A 103 052407Google Scholar

  • [1] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案. 物理学报, 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [2] 范桁. 量子计算纠错取得突破性进展. 物理学报, 2023, 72(7): 070303. doi: 10.7498/aps.72.20230330
    [3] 陈子杰, 潘啸轩, 华子越, 王韦婷, 马雨玮, 李明, 邹旭波, 孙麓岩, 邹长铃. 基于超导量子系统的量子纠错研究进展. 物理学报, 2022, 71(24): 240305. doi: 10.7498/aps.71.20221824
    [4] 吴晓东, 黄端, 黄鹏, 郭迎. 基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案. 物理学报, 2022, 71(24): 240304. doi: 10.7498/aps.71.20221072
    [5] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态. 物理学报, 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [6] 丁晨, 李坦, 张硕, 郭楚, 黄合良, 鲍皖苏. 基于辅助单比特测量的量子态读取算法. 物理学报, 2021, 70(21): 210303. doi: 10.7498/aps.70.20211066
    [7] 毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体. 基于峰值补偿的连续变量量子密钥分发方案. 物理学报, 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [8] 翟泽辉, 郝温静, 刘建丽, 段西亚. 用于光学薛定谔猫态制备的滤波设计与滤波腔腔长测量. 物理学报, 2020, 69(18): 184204. doi: 10.7498/aps.69.20200589
    [9] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发. 物理学报, 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [10] 田宇玲, 冯田峰, 周晓祺. 基于冗余图态的多人协作量子计算. 物理学报, 2019, 68(11): 110302. doi: 10.7498/aps.68.20190142
    [11] 张娜娜, 李淑静, 闫红梅, 何亚亚, 王海. 实验条件不完美对薛定谔猫态制备的影响. 物理学报, 2018, 67(23): 234203. doi: 10.7498/aps.67.20180381
    [12] 林惇庆, 朱泽群, 王祖俭, 徐学翔. 相位型三头薛定谔猫态的量子统计属性. 物理学报, 2017, 66(10): 104201. doi: 10.7498/aps.66.104201
    [13] 徐兵杰, 唐春明, 陈晖, 张文政, 朱甫臣. 利用无噪线性光放大器增加连续变量量子密钥分发最远传输距离. 物理学报, 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [14] 闫智辉, 贾晓军, 谢常德, 彭堃墀. 利用非简并光学参量振荡腔产生连续变量三色三组分纠缠态. 物理学报, 2012, 61(1): 014206. doi: 10.7498/aps.61.014206
    [15] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议. 物理学报, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [16] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法. 物理学报, 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [17] 陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿. 平衡零拍测量对连续变量量子密钥分配的影响. 物理学报, 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
    [18] 嵇英华, 罗海梅, 叶志清, 吴云翼, 陈明玉. 利用介观LC电路制备薛定谔猫态. 物理学报, 2004, 53(8): 2534-2538. doi: 10.7498/aps.53.2534
    [19] 董传华. 原子薛定谔猫态中角动量的压缩及其时间演化. 物理学报, 2003, 52(2): 337-344. doi: 10.7498/aps.52.337
    [20] 刘 翔, 方卯发, 刘安玲. 光场与级联三能级原子相互作用时的熵特性和薛定谔猫态. 物理学报, 2000, 49(9): 1706-1713. doi: 10.7498/aps.49.1706
计量
  • 文章访问数:  4529
  • PDF下载量:  328
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-07
  • 修回日期:  2022-05-09
  • 上网日期:  2022-08-11
  • 刊出日期:  2022-08-20

/

返回文章
返回