- 
				量子计算机在解决某些复杂问题方面具有经典计算机无法比拟的优势. 实现大规模量子计算需建立具有通用性、可扩展性和容错性的硬件平台. 连续变量光学系统具有独特的优势, 是实现大规模量子计算的一种可行途径, 近年来受到了广泛关注. 基于测量的连续变量量子计算通过对大规模高斯簇态(cluster态)的测量和测量结果的前馈来实现计算, 为实现量子计算提供了一条可行的途径. 量子纠错是量子计算和量子通信中保护量子信息的重要环节. 本文简要介绍了基于cluster态的单向量子计算、基于光学薛定谔猫态的量子计算和连续变量量子纠错的基本原理和研究进展, 并讨论了连续变量量子计算面临的问题和挑战.Quantum computation presents incomparable advantages over classical computer in solving some complex problems. To realize large-scale quantum computation, it is required to establish a hardware platform that is universal, scalable and fault tolerant. Continuous-variable optical system, which has unique advantages, is a feasible way to realize large-scale quantum computation and has attracted much attention in recent years. Measurement-based continuous-variable quantum computation realizes the computation by performing the measurement and feedforward of measurement results in large-scale Gaussian cluster states, and it provides an efficient method to realize quantum computation. Quantum error correction is an important part in quantum computation and quantum communication to protect quantum information. This review briefly introduces the basic principles and research advances in one-way quantum computation based on cluster states, quantum computation based on optical Schrödinger cat states and quantum error correction with continuous variables, and discusses the problems and challenges that the continuous-variable quantum computation is facing.- 
													Keywords:
													
- quantum computation /
- continuous variables /
- cluster states /
- Schrödinger cat states /
- quantum error correction
 [1] Shor P W 1994 Proceedings 35th Annual Symposium on Foundations of Computer Science Santa Fe, American, November 20–22, 1994 [2] Feynman R P 1982 Int. J. Theor. Phys. 21 467  Google Scholar Google Scholar[3] Lloyd S 1993 Science 261 1569  Google Scholar Google Scholar[4] Lloyd S 1994 Science 263 695  Google Scholar Google Scholar[5] Rarity J G, Ownes P C M, Tapster P R 1994 J. Mod. Opt. 41 2435  Google Scholar Google Scholar[6] Devoret M H, Schoelkopf R J 2013 Science 339 1169  Google Scholar Google Scholar[7] Gambetta J M, Chow J M, Steffen M 2017 NPJ Quantum Inf. 3 2  Google Scholar Google Scholar[8] Li Z Y, Yu H F, Tan X S, Zhao S P, Yu Y 2019 Chin. Phys. B 28 098505  Google Scholar Google Scholar[9] Gong M, Wang S, Zha C, et al. 2021 Science 372 948  Google Scholar Google Scholar[10] Huang H L, Wu D, Fan D, Zhu X 2020 Sci. Chin. Inf. Sci. 63 180501  Google Scholar Google Scholar[11] Pagano G, Bapat A, Becker P, Collins K S, De A, Hess P W, Kaplan H B, Kyprianidis A, Tan W L, Baldwin C, Brady L T, Deshpande A, Liu F, Jordan S, Gorshkov A V, Monroe C 2020 Proc. Natl. Acad. Sci. 117 25396  Google Scholar Google Scholar[12] Pino J M, Dreiling J M, Figgatt C, et al. 2021 Nature 592 209  Google Scholar Google Scholar[13] Watson T F, Philips S G J, Kawakami E, et al. 2018 Nature 555 633  Google Scholar Google Scholar[14] Hendrickx N W, Lawrie W I L, Russ M, et al. 2021 Nature 591 580  Google Scholar Google Scholar[15] Arrazola J M, Bergholm V, Brádler K, et al. 2021 Nature 591 54  Google Scholar Google Scholar[16] Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N, Eriksson M A 2013 Rev. Mod. Phys. 85 961  Google Scholar Google Scholar[17] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505  Google Scholar Google Scholar[18] Yan Z, Zhang Y R, Gong M, et al. 2019 Science 364 753  Google Scholar Google Scholar[19] Wu Y, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501  Google Scholar Google Scholar[20] Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460  Google Scholar Google Scholar[21] Zhong H S, Deng Y H, Qin J, et al. 2021 Phys. Rev. Lett. 127 180502  Google Scholar Google Scholar[22] van Loock P 2011 Laser Photonics Rev. 5 167  Google Scholar Google Scholar[23] Andersen U L, Neergaard-Nielsen J S, van Loock P, Furusawa A 2015 Nat. Phys. 11 713  Google Scholar Google Scholar[24] Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513  Google Scholar Google Scholar[25] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621  Google Scholar Google Scholar[26] Huh J, Guerreschi G G, Peropadre B, McClean J R, Aspuru-Guzik A 2015 Nat. Photonics 9 615  Google Scholar Google Scholar[27] Hamilton C S, Kruse R, Sansoni L, Barkhofen S, Silberhorn C, Jex I 2017 Phys. Rev. Lett. 119 170501  Google Scholar Google Scholar[28] Arrazola J M, Bromley T R 2018 Phys. Rev. Lett. 121 030503  Google Scholar Google Scholar[29] Banchi L, Fingerhuth M, Babej T, Ing C, Arrazola J M 2020 Sci. Adv. 6 eaax1950  Google Scholar Google Scholar[30] Lau H K, Pooser R, Siopsis G, Weedbrook C 2017 Phys. Rev. Lett. 118 080501  Google Scholar Google Scholar[31] Schuld M, Killoran N 2019 Phys. Rev. Lett. 122 040504  Google Scholar Google Scholar[32] Killoran N, Bromley T R, Arrazola J M, Schuld M, Quesada N, Lloyd S 2019 Phys. Rev. Res. 1 033063  Google Scholar Google Scholar[33] Kalajdzievski T, Weedbrook C, Rebentrost P 2018 Phys. Rev. A 97 062311  Google Scholar Google Scholar[34] Arrazola J M, Kalajdzievski T, Weedbrook C, Lloyd S 2019 Phys. Rev. A 100 032306  Google Scholar Google Scholar[35] Adesso G, Illuminati F 2007 J. Phys. A:Math. Theor. 40 7821  Google Scholar Google Scholar[36] 苏晓龙, 贾晓军, 彭堃墀 2016 物理学进展 36 101 Su X L, Jia X J, Peng K C 2016 Process phys. 36 101 (in Chinese) [37] Fukui K, Takeda S 2022 J. Phys. B:At. Mol. Opt. Phys. 55 012001  Google Scholar Google Scholar[38] Gu M, Weedbrook C, Menicucci N C, Ralph T C, van Loock P 2009 Phys. Rev. A 79 062318  Google Scholar Google Scholar[39] Furusawa A, van Loock P 2011 Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Hoboken: Wiley) p16 [40] Lloyd S, Braunstein S L 1999 Phys. Rev. Lett. 82 1784  Google Scholar Google Scholar[41] Furusawa A, van Loock P 2011 Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Hoboken: Wiley) p58 [42] Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188  Google Scholar Google Scholar[43] Menicucci N C, van Loock P, Gu M, Weedbrook C, Ralph T C, Nielsen M A 2006 Phys. Rev. Lett. 97 110501  Google Scholar Google Scholar[44] Zhang J, Braunstein S L 2006 Phys. Rev. A 73 032318  Google Scholar Google Scholar[45] Hao S, Deng X, Liu Y, Su X, Xie C, Peng K 2021 Chin. Phys. B 30 060312  Google Scholar Google Scholar[46] 苏晓龙, 贾晓军, 谢常德, 彭堃墀 2010 物理 39 746 Su X L, Jia X J, Xie C D, Peng K C 2010 Physics 39 746 [47] 彭堃墀, 苏晓龙, 贾晓军, 谢常德 2012 山西大学学报 35 231  Google Scholar Google ScholarPeng K C, Su X L, Jia X J, Xie C D 2012 J. Shanxi Univ. 35 231  Google Scholar Google Scholar[48] Wang Y, Tian C, Su Q, Wang M, Su X 2019 Sci. Chin. Inf. Sci. 62 72501  Google Scholar Google Scholar[49] Su X, Wang M, Yan Z, Jia X, Xie C, Peng K 2020 Sci. Chin. Inf. Sci. 63 180503  Google Scholar Google Scholar[50] Menicucci N C, Flammia S T, van Loock P 2011 Phys. Rev. A 83 042335  Google Scholar Google Scholar[51] Su X, Tan A, Jia X, Zhang J, Xie C, Peng K 2007 Phys. Rev. Lett. 98 070502  Google Scholar Google Scholar[52] Yukawa M, Ukai R, van Loock P, Furusawa A 2008 Phys. Rev. A 78 012301  Google Scholar Google Scholar[53] Tan A, Wang Y, Jin X, Su X, Jia X, Zhang J, Xie C, Peng K 2008 Phys. Rev. A 78 013828  Google Scholar Google Scholar[54] Su X, Zhao Y, Hao S, Jia X, Xie C, Peng K 2012 Opt. Lett. 37 5178  Google Scholar Google Scholar[55] Pysher M, Miwa Y, Shahrokhshahi R, Bloomer R, Pfister O 2011 Phys. Rev. Lett. 107 030505  Google Scholar Google Scholar[56] Chen M, Menicucci N C, Pfister O 2014 Phys. Rev. Lett. 112 120505  Google Scholar Google Scholar[57] Roslund J, de Araújo R M, Jiang S, Fabre C, Treps N 2014 Nat. Photonics. 8 109  Google Scholar Google Scholar[58] Cai Y, Roslund J, Ferrini G, Arzani F, Xu X, Fabre C, Treps N 2017 Nat. Commun. 8 15645  Google Scholar Google Scholar[59] Menicucci N C 2011 Phys. Rev. A 83 062314  Google Scholar Google Scholar[60] Yokoyama S, Ukai R, Armstrong S C, Sornphiphatphong C, Kaji T, Suzuki S, Yoshikawa J I, Yonezawa H, Menicucci N C, Furusawa A 2013 Nat. Photonics 7 982  Google Scholar Google Scholar[61] Yoshikawa J I, Yokoyama S, Kaji T, Sornphiphatphong C, Shiozawa Y, Makino K, Furusawa A 2016 APL Photonics 1 060801  Google Scholar Google Scholar[62] Larsen M V, Guo X, Breum C R, Neergaard-Nielsen J S, Andersen U L 2019 Science 366 369  Google Scholar Google Scholar[63] Asavanant W, Shiozawa Y, Yokoyama S, et al. 2019 Science 366 373  Google Scholar Google Scholar[64] Raussendorf R, Harrington J 2007 Phys. Rev. Lett. 98 190504  Google Scholar Google Scholar[65] Raussendorf R, Harrington J, Goyal K 2007 New J. Phys. 9 199  Google Scholar Google Scholar[66] Fukui K, Asavanant W, Furusawa A 2020 Phys. Rev. A 102 032614  Google Scholar Google Scholar[67] Yoshikawa J I, Hayashi T, Akiyama T, Takei N, Huck A, Andersen U L, Furusawa A 2007 Phys. Rev. A 76 060301  Google Scholar Google Scholar[68] Yoshikawa J I, Miwa Y, Huck A, Andersen U L, van Loock P, Furusawa A 2008 Phys. Rev. Lett. 101 250501  Google Scholar Google Scholar[69] Miwa Y, Yoshikawa J I, van Loock P, Furusawa A 2009 Phys. Rev. A 80 050303  Google Scholar Google Scholar[70] Ukai R, Yokoyama S, Yoshikawa J I, van Loock P, Furusawa A 2011 Phys. Rev. Lett. 107 250501  Google Scholar Google Scholar[71] Ukai R, Iwata N, Shimokawa Y, Armstrong S C, Politi A, Yoshikawa J I, van Loock P, Furusawa A 2011 Phys. Rev. Lett. 106 240504  Google Scholar Google Scholar[72] Wang Y, Su X, Shen H, Tan A, Xie C, Peng K 2010 Phys. Rev. A 81 022311  Google Scholar Google Scholar[73] Hao S, Deng X, Su X, Jia X, Xie C, Peng K 2014 Phys. Rev. A 89 032311  Google Scholar Google Scholar[74] Su X, Hao S, Deng X, Ma L, Wang M, Jia X, Xie C, Peng K 2013 Nat. Commun. 4 2828  Google Scholar Google Scholar[75] Asavanant W, Charoensombutamon B, Yokoyama S, et al. 2021 Phys. Rev. Appl. 16 034005  Google Scholar Google Scholar[76] Larsen M V, Guo X, Breum C R, Neergaard-Nielsen J S, Andersen U L 2021 Nat. Phys. 17 1018  Google Scholar Google Scholar[77] Gottesman D, Kitaev A, Preskill J 2001 Phys. Rev. A 64 012310  Google Scholar Google Scholar[78] Miyata K, Ogawa H, Marek P, Filip R, Yonezawa H, Yoshikawa J I, Furusawa A 2016 Phys. Rev. A 93 022301  Google Scholar Google Scholar[79] Sabapathy K K, Weedbrook C 2018 Phys. Rev. A 97 062315  Google Scholar Google Scholar[80] Yukawa M, Miyata K, Yonezawa H, Marek P, Filip R, Furusawa A 2013 Phys. Rev. A 88 053816  Google Scholar Google Scholar[81] Masada G, Miyata K, Politi A, Hashimoto T, O’Brien J L, Furusawa A 2015 Nat. Photonics 9 316  Google Scholar Google Scholar[82] Yang Z, Jahanbozorgi M, Jeong D, Sun S, Pfister O, Lee H, Yi X 2021 Nat. Commun. 12 4781  Google Scholar Google Scholar[83] Dutt A, Luke K, Manipatruni S, Gaeta A L, Nussenzveig P, Lipson M 2015 Phys. Rev. Appl. 3 044005  Google Scholar Google Scholar[84] Zhao Y, Okawachi Y, Jang J K, Ji X, Lipson M, Gaeta A L 2020 Phys. Rev. Lett. 124 193601  Google Scholar Google Scholar[85] Vaidya V D, Morrison B, Helt L G, et al. 2020 Sci. Adv. 6 eaba9186  Google Scholar Google Scholar[86] Zhang Q Y, Xu P, Zhu S N 2018 Chin. Phys. B 27 054207  Google Scholar Google Scholar[87] Kaiser F, Fedrici B, Zavatta A, D’Auria V, Tanzilli S 2016 Optica 3 362  Google Scholar Google Scholar[88] Fürst J U, Strekalov D V, Elser D, Aiello A, Andersen U L, Marquardt Ch, Leuchs G 2011 Phys. Rev. Lett. 106 113901  Google Scholar Google Scholar[89] Lenzini F, Janousek J, Thearle O, Villa M, Haylock B, Kasture S, Cui L, Phan H P, Dao D V, Yonezawa H, Lam P K, Huntington E H, Lobino M 2018 Sci. Adv. 4 eaat9331  Google Scholar Google Scholar[90] Qi Y, Li Y 2020 Nanophotonics 9 1287  Google Scholar Google Scholar[91] Chen P K, Briggs I, Hou S, Fan L 2022 Opt. Lett. 47 1506  Google Scholar Google Scholar[92] Schrödinger E 1935 Naturwissenschaften 23 807  Google Scholar Google Scholar[93] Haroche S 2013 Rev. Mod. Phys. 85 1083  Google Scholar Google Scholar[94] Arndt M, Hornberger K 2014 Nat. Phys. 10 271  Google Scholar Google Scholar[95] Ralph T C, Gilchrist A, Milburn G J, Munro W J, Glancy S 2003 Phys. Rev. A 68 042319  Google Scholar Google Scholar[96] Jeong H, Kim M S 2002 Phys. Rev. A 65 042305  Google Scholar Google Scholar[97] Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503  Google Scholar Google Scholar[98] Sychev D V, Ulanov A E, Tiunov E S, Pushkina A A, Kuzhamuratov A, Novikov V, Lvovsky A I 2018 Nat. Commun. 9 3672  Google Scholar Google Scholar[99] Dakna M, Anhut T, Opatrnýn T, Knöll L, Welsch D G 1997 Phys. Rev. A 55 3184  Google Scholar Google Scholar[100] Ourjoumtsev A, Tualle-Brouri R, Laurat J, Grangier P 2006 Science 312 83  Google Scholar Google Scholar[101] Neergaard-Nielsen J S, Melholt Nielsen B, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604  Google Scholar Google Scholar[102] Wakui K, Takahashi H, Furusawa A, Sasaki M 2007 Opt. Express 15 3568  Google Scholar Google Scholar[103] Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E, Furusawa A 2011 Science 332 330  Google Scholar Google Scholar[104] Marek P, Fiurášek J 2010 Phys. Rev. A 82 014304  Google Scholar Google Scholar[105] Tipsmark A, Dong R, Laghaout A, Marek P, Ježek M, Andersen U L 2011 Phys. Rev. A 84 050301  Google Scholar Google Scholar[106] Blandino R, Ferreyrol F, Barbieri M, Grangier P, Tualle-Brouri R 2012 New J. Phys. 14 013017  Google Scholar Google Scholar[107] Ourjoumtsev A, Ferreyrol F, Tualle-Brouri R, Grangier P 2009 Nat. Phys. 5 189  Google Scholar Google Scholar[108] Sychev D V, Novikov V A, Pirov K K, Simon C, Lvovsky A I 2019 Optica 6 1425  Google Scholar Google Scholar[109] Braunstein S L 1998 Nature 394 47  Google Scholar Google Scholar[110] Lloyd S, Slotine J J E 1998 Phys. Rev. Lett. 80 4088  Google Scholar Google Scholar[111] Braunstein S L 1998 Phys. Rev. Lett. 80 4084  Google Scholar Google Scholar[112] Walker T A, Braunstein S L 2010 Phys. Rev. A 81 062305  Google Scholar Google Scholar[113] Wilde M M, Krovi H, Brun T A 2007 Phys. Rev. A 76 052308  Google Scholar Google Scholar[114] Niset J, Andersen U L, Cerf N J 2008 Phys. Rev. Lett. 101 130503  Google Scholar Google Scholar[115] Niset J, Fiurášek J, Cerf N J 2009 Phys. Rev. Lett. 102 120501  Google Scholar Google Scholar[116] Aoki T, Takahashi G, Kajiya T, Yoshikawa J I, Braunstein S L, van Loock P, Furusawa A 2009 Nat. Phys. 5 541  Google Scholar Google Scholar[117] Lassen M, Berni A, Madsen L S, Filip R, Andersen U L 2013 Phys. Rev. Lett. 111 180502  Google Scholar Google Scholar[118] Hao S, Su X, Tian C, Xie C, Peng K 2015 Sci. Rep. 5 15462  Google Scholar Google Scholar[119] Ralph T C 2011 Phys. Rev. A 84 022339  Google Scholar Google Scholar[120] Glancy S, Knill E 2006 Phys. Rev. A 73 012325  Google Scholar Google Scholar[121] Albert V V, Noh K, Duivenvoorden K, Young D J, Brierley R T, Reinhold P, Vuillot C, Li L, Shen C, Girvin S M, Terhal B M, Jiang L 2018 Phys. Rev. A 97 032346  Google Scholar Google Scholar[122] Flühmann C, Nguyen T L, Marinelli M, Negnevitsky V, Mehta K, Home J P 2019 Nature 566 513  Google Scholar Google Scholar[123] Campagne-Ibarcq P, Eickbusch A, Touzard S, Zalys-Geller E, Frattini N E, Sivak V V, Reinhold P, Puri S, Shankar S, Schoelkopf R J, Frunzio L, Mirrahimi M, Devoret M H 2020 Nature 584 368  Google Scholar Google Scholar[124] Vasconcelos H M, Sanz L, Glancy S 2010 Opt. Lett. 35 3261  Google Scholar Google Scholar[125] Fukui K, Takeda S, Endo M, Asavanant W, Yoshikawa J I, van Loock P, Furusawa A 2022 Phys. Rev. Lett. 128 240503  Google Scholar Google Scholar[126] Su D, Myers C R, Sabapathy K K 2019 Phys. Rev. A 100 052301  Google Scholar Google Scholar[127] Fowler A G, Goyal K 2009 Quantum Inf. Comput. 9 727  Google Scholar Google Scholar[128] Raussendorf R, Harrington J, Goyal K 2006 Ann. Phys. 321 2242  Google Scholar Google Scholar[129] Stern A, Lindner N H 2013 Science 339 1179  Google Scholar Google Scholar[130] Zhang J, Xie C, Peng K, van Loock P 2008 Phys. Rev. A 78 052121  Google Scholar Google Scholar[131] Morimae T 2013 Phys. Rev. A 88 042311  Google Scholar Google Scholar[132] Menicucci N C, Baragiola B Q, Demarie T F, Brennen G K 2018 Phys. Rev. A 97 032345  Google Scholar Google Scholar[133] Milne D F, Korolkova N V, van Loock P 2012 Phys. Rev. A 85 052325  Google Scholar Google Scholar[134] Menicucci N C 2014 Phys. Rev. Lett. 112 120504  Google Scholar Google Scholar[135] Hao S, Wang M, Wang D, Su X 2021 Phys. Rev. A 103 052407  Google Scholar Google Scholar
- 
				
    
    
    
    图 10 基于cluster态的连续变量拓扑误差修正方案 (a) 八组份拓扑结构连续变量cluster 纠缠态的图态表示[135]; (b) 产生八组份连续变量cluster 纠缠态的分束器网络[135] Fig. 10. Scheme of topological error correction with CV a Gaussian cluster state: (a) The graph structure of the topological eight-partite CV cluster state; (b) the beam-splitter network for the preparation of the cluster state[135]. 表 1 离散变量和连续变量量子逻辑门的比较[37] Table 1. Comparison between quantum logical gates with describe variables and continuous variables[37]. 离散变量 (qubits) 连续变量 (qumodes) 计算基矢 $ \{{ |0 \rangle }_{\mathrm{L}}, { |1 \rangle }_{\mathrm{L}} \} $ $ \{{{ |s \rangle }_{x}\}}_{\mathrm{s}\in \mathbb{R}} $ 共轭基矢 $ \big\{{{ |\pm \rangle }_{\mathrm{L}}=( |0 \rangle }_{\mathrm{L}}\pm { |1 \rangle }_{\mathrm{L}})/\sqrt{2} \big \} $ ${ \bigg\{ { |t \rangle }_{p}=\dfrac{1}{\sqrt{2\mathrm{\pi } } } \displaystyle\int_{-\infty }^{\infty }\mathrm{d}s{\mathrm{e} }^{\mathrm{i}st}{ |s \rangle }_{x} \bigg\} }_{t\in \mathbb{R} }$ 编码 $ { |\psi \rangle =\alpha |0 \rangle }_{\mathrm{L}}+\beta { |1 \rangle }_{\mathrm{L}} $$ ({ |\alpha |}^{2}+{ |\beta |}^{2}=1 $) $|\psi \rangle = \displaystyle\int_{-\infty }^{\infty }\mathrm{d}s\psi (s ){ |s \rangle }_{x} \bigg(\displaystyle\int_{-\infty }^{\infty }\mathrm{d}s{ |\psi (s ) |}^{2}=1 \bigg)$ 探测方式 光子探测 平衡零拍探测 量子逻辑门 Bit-flip: $ {\widehat{X} |0 \rangle }_{\mathrm{L}}={ |1 \rangle }_{\mathrm{L}}, {\widehat{X} |1 \rangle }_{\mathrm{L}}={ |0 \rangle }_{\mathrm{L}} $ x方向平移: $ \widehat{X} (v ){ |s \rangle }_{x}={ |s+v \rangle }_{x} $ Phase-flip: $ {\widehat{Z} |0 \rangle }_{\mathrm{L}}={ |0 \rangle }_{\mathrm{L}}, {\widehat{Z} |1 \rangle }_{\mathrm{L}}={- |1 \rangle }_{\mathrm{L}} $ p方向平移: $ \widehat{Z} (u ){ |t \rangle }_{p}={ |t+u \rangle }_{p} $ Hadamard门:$ {\widehat{H} |0 \rangle }_{\mathrm{L}}={ |+ \rangle }_{\mathrm{L}}, {\widehat{H} |1 \rangle }_{\mathrm{L}}={ |- \rangle }_{\mathrm{L}} $ 傅立叶变换: $\widehat{R} ( {\mathrm{\pi } }/{2} ){ |s \rangle }_{x}={ |s \rangle }_{p}, \widehat{R} ( {\mathrm{\pi } }/{2} ){ |t \rangle }_{p}={ |-t \rangle }_{x}$ 可控非门: $ {\widehat{CX} |0 \rangle }_{\mathrm{L}}{ |0 (1 ) \rangle }_{\mathrm{L}}={ |0 \rangle }_{\mathrm{L}}{ |0 (1 ) \rangle }_{\mathrm{L}} $ 可控X门: $ {\widehat{CX} |{s}_{1} \rangle }_{{q}_{1}}{ |{s}_{2} \rangle }_{{q}_{2}}={ |{s}_{1} \rangle }_{{q}_{1}}{ |{s}_{2}+{s}_{1} \rangle }_{{q}_{2}} $ $ {\widehat{CX} |1 \rangle }_{\mathrm{L}}{ |0 (1 ) \rangle }_{\mathrm{L}}={ |1 \rangle }_{\mathrm{L}}{ |1 (0 ) \rangle }_{\mathrm{L}} $ $ {\widehat{CX} |{t}_{1} \rangle }_{{p}_{1}}{ |{t}_{2} \rangle }_{{p}_{2}}={ |{t}_{1}-{t}_{2} \rangle }_{{p}_{1}}{ |{t}_{2} \rangle }_{{p}_{2}} $ 
- 
				
[1] Shor P W 1994 Proceedings 35th Annual Symposium on Foundations of Computer Science Santa Fe, American, November 20–22, 1994 [2] Feynman R P 1982 Int. J. Theor. Phys. 21 467  Google Scholar Google Scholar[3] Lloyd S 1993 Science 261 1569  Google Scholar Google Scholar[4] Lloyd S 1994 Science 263 695  Google Scholar Google Scholar[5] Rarity J G, Ownes P C M, Tapster P R 1994 J. Mod. Opt. 41 2435  Google Scholar Google Scholar[6] Devoret M H, Schoelkopf R J 2013 Science 339 1169  Google Scholar Google Scholar[7] Gambetta J M, Chow J M, Steffen M 2017 NPJ Quantum Inf. 3 2  Google Scholar Google Scholar[8] Li Z Y, Yu H F, Tan X S, Zhao S P, Yu Y 2019 Chin. Phys. B 28 098505  Google Scholar Google Scholar[9] Gong M, Wang S, Zha C, et al. 2021 Science 372 948  Google Scholar Google Scholar[10] Huang H L, Wu D, Fan D, Zhu X 2020 Sci. Chin. Inf. Sci. 63 180501  Google Scholar Google Scholar[11] Pagano G, Bapat A, Becker P, Collins K S, De A, Hess P W, Kaplan H B, Kyprianidis A, Tan W L, Baldwin C, Brady L T, Deshpande A, Liu F, Jordan S, Gorshkov A V, Monroe C 2020 Proc. Natl. Acad. Sci. 117 25396  Google Scholar Google Scholar[12] Pino J M, Dreiling J M, Figgatt C, et al. 2021 Nature 592 209  Google Scholar Google Scholar[13] Watson T F, Philips S G J, Kawakami E, et al. 2018 Nature 555 633  Google Scholar Google Scholar[14] Hendrickx N W, Lawrie W I L, Russ M, et al. 2021 Nature 591 580  Google Scholar Google Scholar[15] Arrazola J M, Bergholm V, Brádler K, et al. 2021 Nature 591 54  Google Scholar Google Scholar[16] Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N, Eriksson M A 2013 Rev. Mod. Phys. 85 961  Google Scholar Google Scholar[17] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505  Google Scholar Google Scholar[18] Yan Z, Zhang Y R, Gong M, et al. 2019 Science 364 753  Google Scholar Google Scholar[19] Wu Y, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501  Google Scholar Google Scholar[20] Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460  Google Scholar Google Scholar[21] Zhong H S, Deng Y H, Qin J, et al. 2021 Phys. Rev. Lett. 127 180502  Google Scholar Google Scholar[22] van Loock P 2011 Laser Photonics Rev. 5 167  Google Scholar Google Scholar[23] Andersen U L, Neergaard-Nielsen J S, van Loock P, Furusawa A 2015 Nat. Phys. 11 713  Google Scholar Google Scholar[24] Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513  Google Scholar Google Scholar[25] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621  Google Scholar Google Scholar[26] Huh J, Guerreschi G G, Peropadre B, McClean J R, Aspuru-Guzik A 2015 Nat. Photonics 9 615  Google Scholar Google Scholar[27] Hamilton C S, Kruse R, Sansoni L, Barkhofen S, Silberhorn C, Jex I 2017 Phys. Rev. Lett. 119 170501  Google Scholar Google Scholar[28] Arrazola J M, Bromley T R 2018 Phys. Rev. Lett. 121 030503  Google Scholar Google Scholar[29] Banchi L, Fingerhuth M, Babej T, Ing C, Arrazola J M 2020 Sci. Adv. 6 eaax1950  Google Scholar Google Scholar[30] Lau H K, Pooser R, Siopsis G, Weedbrook C 2017 Phys. Rev. Lett. 118 080501  Google Scholar Google Scholar[31] Schuld M, Killoran N 2019 Phys. Rev. Lett. 122 040504  Google Scholar Google Scholar[32] Killoran N, Bromley T R, Arrazola J M, Schuld M, Quesada N, Lloyd S 2019 Phys. Rev. Res. 1 033063  Google Scholar Google Scholar[33] Kalajdzievski T, Weedbrook C, Rebentrost P 2018 Phys. Rev. A 97 062311  Google Scholar Google Scholar[34] Arrazola J M, Kalajdzievski T, Weedbrook C, Lloyd S 2019 Phys. Rev. A 100 032306  Google Scholar Google Scholar[35] Adesso G, Illuminati F 2007 J. Phys. A:Math. Theor. 40 7821  Google Scholar Google Scholar[36] 苏晓龙, 贾晓军, 彭堃墀 2016 物理学进展 36 101 Su X L, Jia X J, Peng K C 2016 Process phys. 36 101 (in Chinese) [37] Fukui K, Takeda S 2022 J. Phys. B:At. Mol. Opt. Phys. 55 012001  Google Scholar Google Scholar[38] Gu M, Weedbrook C, Menicucci N C, Ralph T C, van Loock P 2009 Phys. Rev. A 79 062318  Google Scholar Google Scholar[39] Furusawa A, van Loock P 2011 Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Hoboken: Wiley) p16 [40] Lloyd S, Braunstein S L 1999 Phys. Rev. Lett. 82 1784  Google Scholar Google Scholar[41] Furusawa A, van Loock P 2011 Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Hoboken: Wiley) p58 [42] Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188  Google Scholar Google Scholar[43] Menicucci N C, van Loock P, Gu M, Weedbrook C, Ralph T C, Nielsen M A 2006 Phys. Rev. Lett. 97 110501  Google Scholar Google Scholar[44] Zhang J, Braunstein S L 2006 Phys. Rev. A 73 032318  Google Scholar Google Scholar[45] Hao S, Deng X, Liu Y, Su X, Xie C, Peng K 2021 Chin. Phys. B 30 060312  Google Scholar Google Scholar[46] 苏晓龙, 贾晓军, 谢常德, 彭堃墀 2010 物理 39 746 Su X L, Jia X J, Xie C D, Peng K C 2010 Physics 39 746 [47] 彭堃墀, 苏晓龙, 贾晓军, 谢常德 2012 山西大学学报 35 231  Google Scholar Google ScholarPeng K C, Su X L, Jia X J, Xie C D 2012 J. Shanxi Univ. 35 231  Google Scholar Google Scholar[48] Wang Y, Tian C, Su Q, Wang M, Su X 2019 Sci. Chin. Inf. Sci. 62 72501  Google Scholar Google Scholar[49] Su X, Wang M, Yan Z, Jia X, Xie C, Peng K 2020 Sci. Chin. Inf. Sci. 63 180503  Google Scholar Google Scholar[50] Menicucci N C, Flammia S T, van Loock P 2011 Phys. Rev. A 83 042335  Google Scholar Google Scholar[51] Su X, Tan A, Jia X, Zhang J, Xie C, Peng K 2007 Phys. Rev. Lett. 98 070502  Google Scholar Google Scholar[52] Yukawa M, Ukai R, van Loock P, Furusawa A 2008 Phys. Rev. A 78 012301  Google Scholar Google Scholar[53] Tan A, Wang Y, Jin X, Su X, Jia X, Zhang J, Xie C, Peng K 2008 Phys. Rev. A 78 013828  Google Scholar Google Scholar[54] Su X, Zhao Y, Hao S, Jia X, Xie C, Peng K 2012 Opt. Lett. 37 5178  Google Scholar Google Scholar[55] Pysher M, Miwa Y, Shahrokhshahi R, Bloomer R, Pfister O 2011 Phys. Rev. Lett. 107 030505  Google Scholar Google Scholar[56] Chen M, Menicucci N C, Pfister O 2014 Phys. Rev. Lett. 112 120505  Google Scholar Google Scholar[57] Roslund J, de Araújo R M, Jiang S, Fabre C, Treps N 2014 Nat. Photonics. 8 109  Google Scholar Google Scholar[58] Cai Y, Roslund J, Ferrini G, Arzani F, Xu X, Fabre C, Treps N 2017 Nat. Commun. 8 15645  Google Scholar Google Scholar[59] Menicucci N C 2011 Phys. Rev. A 83 062314  Google Scholar Google Scholar[60] Yokoyama S, Ukai R, Armstrong S C, Sornphiphatphong C, Kaji T, Suzuki S, Yoshikawa J I, Yonezawa H, Menicucci N C, Furusawa A 2013 Nat. Photonics 7 982  Google Scholar Google Scholar[61] Yoshikawa J I, Yokoyama S, Kaji T, Sornphiphatphong C, Shiozawa Y, Makino K, Furusawa A 2016 APL Photonics 1 060801  Google Scholar Google Scholar[62] Larsen M V, Guo X, Breum C R, Neergaard-Nielsen J S, Andersen U L 2019 Science 366 369  Google Scholar Google Scholar[63] Asavanant W, Shiozawa Y, Yokoyama S, et al. 2019 Science 366 373  Google Scholar Google Scholar[64] Raussendorf R, Harrington J 2007 Phys. Rev. Lett. 98 190504  Google Scholar Google Scholar[65] Raussendorf R, Harrington J, Goyal K 2007 New J. Phys. 9 199  Google Scholar Google Scholar[66] Fukui K, Asavanant W, Furusawa A 2020 Phys. Rev. A 102 032614  Google Scholar Google Scholar[67] Yoshikawa J I, Hayashi T, Akiyama T, Takei N, Huck A, Andersen U L, Furusawa A 2007 Phys. Rev. A 76 060301  Google Scholar Google Scholar[68] Yoshikawa J I, Miwa Y, Huck A, Andersen U L, van Loock P, Furusawa A 2008 Phys. Rev. Lett. 101 250501  Google Scholar Google Scholar[69] Miwa Y, Yoshikawa J I, van Loock P, Furusawa A 2009 Phys. Rev. A 80 050303  Google Scholar Google Scholar[70] Ukai R, Yokoyama S, Yoshikawa J I, van Loock P, Furusawa A 2011 Phys. Rev. Lett. 107 250501  Google Scholar Google Scholar[71] Ukai R, Iwata N, Shimokawa Y, Armstrong S C, Politi A, Yoshikawa J I, van Loock P, Furusawa A 2011 Phys. Rev. Lett. 106 240504  Google Scholar Google Scholar[72] Wang Y, Su X, Shen H, Tan A, Xie C, Peng K 2010 Phys. Rev. A 81 022311  Google Scholar Google Scholar[73] Hao S, Deng X, Su X, Jia X, Xie C, Peng K 2014 Phys. Rev. A 89 032311  Google Scholar Google Scholar[74] Su X, Hao S, Deng X, Ma L, Wang M, Jia X, Xie C, Peng K 2013 Nat. Commun. 4 2828  Google Scholar Google Scholar[75] Asavanant W, Charoensombutamon B, Yokoyama S, et al. 2021 Phys. Rev. Appl. 16 034005  Google Scholar Google Scholar[76] Larsen M V, Guo X, Breum C R, Neergaard-Nielsen J S, Andersen U L 2021 Nat. Phys. 17 1018  Google Scholar Google Scholar[77] Gottesman D, Kitaev A, Preskill J 2001 Phys. Rev. A 64 012310  Google Scholar Google Scholar[78] Miyata K, Ogawa H, Marek P, Filip R, Yonezawa H, Yoshikawa J I, Furusawa A 2016 Phys. Rev. A 93 022301  Google Scholar Google Scholar[79] Sabapathy K K, Weedbrook C 2018 Phys. Rev. A 97 062315  Google Scholar Google Scholar[80] Yukawa M, Miyata K, Yonezawa H, Marek P, Filip R, Furusawa A 2013 Phys. Rev. A 88 053816  Google Scholar Google Scholar[81] Masada G, Miyata K, Politi A, Hashimoto T, O’Brien J L, Furusawa A 2015 Nat. Photonics 9 316  Google Scholar Google Scholar[82] Yang Z, Jahanbozorgi M, Jeong D, Sun S, Pfister O, Lee H, Yi X 2021 Nat. Commun. 12 4781  Google Scholar Google Scholar[83] Dutt A, Luke K, Manipatruni S, Gaeta A L, Nussenzveig P, Lipson M 2015 Phys. Rev. Appl. 3 044005  Google Scholar Google Scholar[84] Zhao Y, Okawachi Y, Jang J K, Ji X, Lipson M, Gaeta A L 2020 Phys. Rev. Lett. 124 193601  Google Scholar Google Scholar[85] Vaidya V D, Morrison B, Helt L G, et al. 2020 Sci. Adv. 6 eaba9186  Google Scholar Google Scholar[86] Zhang Q Y, Xu P, Zhu S N 2018 Chin. Phys. B 27 054207  Google Scholar Google Scholar[87] Kaiser F, Fedrici B, Zavatta A, D’Auria V, Tanzilli S 2016 Optica 3 362  Google Scholar Google Scholar[88] Fürst J U, Strekalov D V, Elser D, Aiello A, Andersen U L, Marquardt Ch, Leuchs G 2011 Phys. Rev. Lett. 106 113901  Google Scholar Google Scholar[89] Lenzini F, Janousek J, Thearle O, Villa M, Haylock B, Kasture S, Cui L, Phan H P, Dao D V, Yonezawa H, Lam P K, Huntington E H, Lobino M 2018 Sci. Adv. 4 eaat9331  Google Scholar Google Scholar[90] Qi Y, Li Y 2020 Nanophotonics 9 1287  Google Scholar Google Scholar[91] Chen P K, Briggs I, Hou S, Fan L 2022 Opt. Lett. 47 1506  Google Scholar Google Scholar[92] Schrödinger E 1935 Naturwissenschaften 23 807  Google Scholar Google Scholar[93] Haroche S 2013 Rev. Mod. Phys. 85 1083  Google Scholar Google Scholar[94] Arndt M, Hornberger K 2014 Nat. Phys. 10 271  Google Scholar Google Scholar[95] Ralph T C, Gilchrist A, Milburn G J, Munro W J, Glancy S 2003 Phys. Rev. A 68 042319  Google Scholar Google Scholar[96] Jeong H, Kim M S 2002 Phys. Rev. A 65 042305  Google Scholar Google Scholar[97] Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503  Google Scholar Google Scholar[98] Sychev D V, Ulanov A E, Tiunov E S, Pushkina A A, Kuzhamuratov A, Novikov V, Lvovsky A I 2018 Nat. Commun. 9 3672  Google Scholar Google Scholar[99] Dakna M, Anhut T, Opatrnýn T, Knöll L, Welsch D G 1997 Phys. Rev. A 55 3184  Google Scholar Google Scholar[100] Ourjoumtsev A, Tualle-Brouri R, Laurat J, Grangier P 2006 Science 312 83  Google Scholar Google Scholar[101] Neergaard-Nielsen J S, Melholt Nielsen B, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604  Google Scholar Google Scholar[102] Wakui K, Takahashi H, Furusawa A, Sasaki M 2007 Opt. Express 15 3568  Google Scholar Google Scholar[103] Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E, Furusawa A 2011 Science 332 330  Google Scholar Google Scholar[104] Marek P, Fiurášek J 2010 Phys. Rev. A 82 014304  Google Scholar Google Scholar[105] Tipsmark A, Dong R, Laghaout A, Marek P, Ježek M, Andersen U L 2011 Phys. Rev. A 84 050301  Google Scholar Google Scholar[106] Blandino R, Ferreyrol F, Barbieri M, Grangier P, Tualle-Brouri R 2012 New J. Phys. 14 013017  Google Scholar Google Scholar[107] Ourjoumtsev A, Ferreyrol F, Tualle-Brouri R, Grangier P 2009 Nat. Phys. 5 189  Google Scholar Google Scholar[108] Sychev D V, Novikov V A, Pirov K K, Simon C, Lvovsky A I 2019 Optica 6 1425  Google Scholar Google Scholar[109] Braunstein S L 1998 Nature 394 47  Google Scholar Google Scholar[110] Lloyd S, Slotine J J E 1998 Phys. Rev. Lett. 80 4088  Google Scholar Google Scholar[111] Braunstein S L 1998 Phys. Rev. Lett. 80 4084  Google Scholar Google Scholar[112] Walker T A, Braunstein S L 2010 Phys. Rev. A 81 062305  Google Scholar Google Scholar[113] Wilde M M, Krovi H, Brun T A 2007 Phys. Rev. A 76 052308  Google Scholar Google Scholar[114] Niset J, Andersen U L, Cerf N J 2008 Phys. Rev. Lett. 101 130503  Google Scholar Google Scholar[115] Niset J, Fiurášek J, Cerf N J 2009 Phys. Rev. Lett. 102 120501  Google Scholar Google Scholar[116] Aoki T, Takahashi G, Kajiya T, Yoshikawa J I, Braunstein S L, van Loock P, Furusawa A 2009 Nat. Phys. 5 541  Google Scholar Google Scholar[117] Lassen M, Berni A, Madsen L S, Filip R, Andersen U L 2013 Phys. Rev. Lett. 111 180502  Google Scholar Google Scholar[118] Hao S, Su X, Tian C, Xie C, Peng K 2015 Sci. Rep. 5 15462  Google Scholar Google Scholar[119] Ralph T C 2011 Phys. Rev. A 84 022339  Google Scholar Google Scholar[120] Glancy S, Knill E 2006 Phys. Rev. A 73 012325  Google Scholar Google Scholar[121] Albert V V, Noh K, Duivenvoorden K, Young D J, Brierley R T, Reinhold P, Vuillot C, Li L, Shen C, Girvin S M, Terhal B M, Jiang L 2018 Phys. Rev. A 97 032346  Google Scholar Google Scholar[122] Flühmann C, Nguyen T L, Marinelli M, Negnevitsky V, Mehta K, Home J P 2019 Nature 566 513  Google Scholar Google Scholar[123] Campagne-Ibarcq P, Eickbusch A, Touzard S, Zalys-Geller E, Frattini N E, Sivak V V, Reinhold P, Puri S, Shankar S, Schoelkopf R J, Frunzio L, Mirrahimi M, Devoret M H 2020 Nature 584 368  Google Scholar Google Scholar[124] Vasconcelos H M, Sanz L, Glancy S 2010 Opt. Lett. 35 3261  Google Scholar Google Scholar[125] Fukui K, Takeda S, Endo M, Asavanant W, Yoshikawa J I, van Loock P, Furusawa A 2022 Phys. Rev. Lett. 128 240503  Google Scholar Google Scholar[126] Su D, Myers C R, Sabapathy K K 2019 Phys. Rev. A 100 052301  Google Scholar Google Scholar[127] Fowler A G, Goyal K 2009 Quantum Inf. Comput. 9 727  Google Scholar Google Scholar[128] Raussendorf R, Harrington J, Goyal K 2006 Ann. Phys. 321 2242  Google Scholar Google Scholar[129] Stern A, Lindner N H 2013 Science 339 1179  Google Scholar Google Scholar[130] Zhang J, Xie C, Peng K, van Loock P 2008 Phys. Rev. A 78 052121  Google Scholar Google Scholar[131] Morimae T 2013 Phys. Rev. A 88 042311  Google Scholar Google Scholar[132] Menicucci N C, Baragiola B Q, Demarie T F, Brennen G K 2018 Phys. Rev. A 97 032345  Google Scholar Google Scholar[133] Milne D F, Korolkova N V, van Loock P 2012 Phys. Rev. A 85 052325  Google Scholar Google Scholar[134] Menicucci N C 2014 Phys. Rev. Lett. 112 120504  Google Scholar Google Scholar[135] Hao S, Wang M, Wang D, Su X 2021 Phys. Rev. A 103 052407  Google Scholar Google Scholar
计量
- 文章访问数: 10468
- PDF下载量: 471
- 被引次数: 0


 
					 
		         
	         
  
					 
										





 
							 下载:
下载: 
				 
							 
							 
							 
							 
							 
							 
							 
							 
							