搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相位型三头薛定谔猫态的量子统计属性

林惇庆 朱泽群 王祖俭 徐学翔

引用本文:
Citation:

相位型三头薛定谔猫态的量子统计属性

林惇庆, 朱泽群, 王祖俭, 徐学翔

Quantum statistical properties of phase-type three-headed Schrodinger cat state

Lin Dun-Qing, Zhu Ze-Qun, Wang Zu-Jian, Xu Xue-Xiang
PDF
导出引用
  • 本文详细研究了一种相位型三头薛定谔猫态的一些量子统计属性,包括光子数分布、平均光子数、亚泊松分布、压缩效应以及Wigner函数等.我们发现,三头猫态的Wigner函数都可以出现负值,与二、四头猫态一样,说明它们都可以体现出非经典特性.与二头猫态不同,三头猫态在一定参数范围内可以呈现亚泊松分布,这点与四头猫态相类似,但弱于四头猫态.另外,三头猫态和四头猫态都没有压缩属性,但二头猫态具有压缩属性.
    Quantum superposition is a fundamental principle of quantum mechanics, which provides a crucial basis to observe phenomena beyond the predictions of classical physics. For example, a quantum entangled state can exhibit stronger correlation than classically possible one. In quantum state engineering, many new quantum states can be obtained from the superposition of many known states. In recent decades, the superposition of coherent states (CSs) with the same amplitude but two different phases has been a subject of great interest. This superposition state was often called Schrodinger cat state (here, we also name it 2-headed cat state (2HCS)), which becomes an important tool to study a lot of fundamental issues. Surprisingly, some studies have extended the quantum superposition to involving more than two component coherent states. In order to produce the superposition of three photons, people have considered the superposition of coherent states with three different phases (here, we also name it 3-headed cat state (3HCS)). Furthermore, in microwave cavity quantum electrodynamics of bang-bang quantum Zeno dynamics control, people have proposed the superposition of coherent states with four different phases (here, we also name it 4-headed cat state (4HCS)). In this paper, we make a detailed investigation on the quantum statistical properties of a phase-type 3HCS. These properties include photon number distribution, average photon number, sub-Poissionian distribution, squeezing effect, and Wigner function, etc. We derive their analytical expressions and make numerical simulations for these properties. The results are compared with the counterparts of the CS, the 2HCS and the 4HCS. The conclusions are obtained as follows. 1) The CS, the 2HCS, the 3HCS and the 4HCS have k, 2k, 3k and 4k photon number components, respectively (k is an integer); 2) small difference in average photon number among these quantum states in small-amplitude range can be observed, while their average photon numbers become almost equal in large-amplitude range; 3) the CS exhibits Poisson distribution, and the 2HCS, the 3HCS and the 4HCS exhibit super-Poisson distributions in most amplitude ranges, however, sub-Poisson distribution can be seen for the 3HCS and the 4HCS in some specific amplitude ranges; 4) except for the 2HCS that may have the squeezing property, no squeezing properties can be found in the CS, the 3HCS and the 4HCS; 5) negative values can exist in the Wigner functions for the 2HCS, the 3HCS and the 4HCS, while it is not found in the CS. Similar to the 2HCS and 4HCS, the Wigner function of the 3HCS has negative component, which implies its nonclassicality. Different from the 2HCS, the 3HCS exhibits sub-Poisson photon number distribution in a certain amplitude range, it is weaker than that of the 4HCS. At the same time, no squeezing is found in the 3 or 4HCS, which is another difference from the 2HCS.
      通信作者: 徐学翔, xuxuexiang@jxnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11665013)、江西省高等学校教学改革研究课题(批准号:JXJG-16-2-2)和江西师范大学团队高原计划项目资助的课题.
      Corresponding author: Xu Xue-Xiang, xuxuexiang@jxnu.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 11665013), Research on Teaching Reform of Jiangxi Higher Education, China (Grant No. JXJG-16-2-2) and the Gaoyuan Plan Project of Jiangxi Normal University, China.
    [1]

    Dirac P A M 1958 The Principles of Quantum Mechanics (4th Ed.) (Oxford: Oxford University Press) pp1-22

    [2]

    Zeng J Y 2007 Quantum Mechanics (4th Ed.) (Beijing: Science Press) pp52-54 [曾谨言 2007 量子力学(第四版) (北京: 科学出版社)] pp52-54

    [3]

    Dell'Anno F, de Siena S, Illuminati F 2006 Phys. Rep. 428 53

    [4]

    Kok P, Lovett B W 2010 Introduction to Optical Quantum Information Processing (Cambridge: Cambridge University Press) pp183-187

    [5]

    Polkinghorne J C 1985 The Quantum World (Princeton: Princeton University Press) p67

    [6]

    John G 2011 In Search of Schrodinger's Cat: Quantum Physics and Reality (Berlin: Random House Publishing Group) pp234

    [7]

    Glauber R J 1963 Phys. Rev. 131 2766

    [8]

    Gerry C C, Knight P 2005 Introductory Quantum Optics (Cambridge: Cambridge University Press) pp174-181

    [9]

    Yukawa M, Miyata K, Mizuta T, Yonezawa H, Marek P, Filip R, Furusawa A 2013 Opt. Express 21 5529

    [10]

    Vlastakis B, Kirchmair G, Leghtas Z, Nigg S E, Frunzio L, Girvin S M, Mirrahimi M, Devoret M H, Schoelkopf R J 2013 Science 342 607

    [11]

    Raimond J M, Facchi P, Peaudecerf B, Pascazio S, Sayrin C, Dotsenko I, Gleyzes S, Brune M, Haroche S 2012 Phys. Rev. A 86 032120

    [12]

    Lee S Y, Lee C W, Nha H, Kaszlikowski D 2015 J. Opt. Soc. Am. B 32 1186

    [13]

    Mandel L 1979 Opt. Lett. 4 205

    [14]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag) pp81-82

    [15]

    Wigner E P 1932 Phys. Rev. 40 749

    [16]

    Xu X X, Yuan H C, Hu L Y 2010 Acta Phys. Sin. 59 4661

    [17]

    Xu X X, Yuan H C 2016 Phys. Lett. A 380 2342

    [18]

    Lutterbach L, Davidovich L 1997 Phys. Rev. Lett. 78 2547

    [19]

    Kenfack A, Zyczkowski K 2004 J. Opt. B: Quantum Semi-Class. Opt. 6 396

    [20]

    Gerry C C, Mimih J 2010 Contemp. Phys. 51 497

    [21]

    Leghtas Z, Kirchmair G, Vlastakis B, Schoelkopf R J, Devorett M H, Mirrahimi M 2013 Phys. Rev. Lett. 111 120501

    [22]

    Ralph T C, Gilchrist A, Milburn G J, Munro W J, Glancy S 2003 Phys. Rev. A 68 042319

  • [1]

    Dirac P A M 1958 The Principles of Quantum Mechanics (4th Ed.) (Oxford: Oxford University Press) pp1-22

    [2]

    Zeng J Y 2007 Quantum Mechanics (4th Ed.) (Beijing: Science Press) pp52-54 [曾谨言 2007 量子力学(第四版) (北京: 科学出版社)] pp52-54

    [3]

    Dell'Anno F, de Siena S, Illuminati F 2006 Phys. Rep. 428 53

    [4]

    Kok P, Lovett B W 2010 Introduction to Optical Quantum Information Processing (Cambridge: Cambridge University Press) pp183-187

    [5]

    Polkinghorne J C 1985 The Quantum World (Princeton: Princeton University Press) p67

    [6]

    John G 2011 In Search of Schrodinger's Cat: Quantum Physics and Reality (Berlin: Random House Publishing Group) pp234

    [7]

    Glauber R J 1963 Phys. Rev. 131 2766

    [8]

    Gerry C C, Knight P 2005 Introductory Quantum Optics (Cambridge: Cambridge University Press) pp174-181

    [9]

    Yukawa M, Miyata K, Mizuta T, Yonezawa H, Marek P, Filip R, Furusawa A 2013 Opt. Express 21 5529

    [10]

    Vlastakis B, Kirchmair G, Leghtas Z, Nigg S E, Frunzio L, Girvin S M, Mirrahimi M, Devoret M H, Schoelkopf R J 2013 Science 342 607

    [11]

    Raimond J M, Facchi P, Peaudecerf B, Pascazio S, Sayrin C, Dotsenko I, Gleyzes S, Brune M, Haroche S 2012 Phys. Rev. A 86 032120

    [12]

    Lee S Y, Lee C W, Nha H, Kaszlikowski D 2015 J. Opt. Soc. Am. B 32 1186

    [13]

    Mandel L 1979 Opt. Lett. 4 205

    [14]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag) pp81-82

    [15]

    Wigner E P 1932 Phys. Rev. 40 749

    [16]

    Xu X X, Yuan H C, Hu L Y 2010 Acta Phys. Sin. 59 4661

    [17]

    Xu X X, Yuan H C 2016 Phys. Lett. A 380 2342

    [18]

    Lutterbach L, Davidovich L 1997 Phys. Rev. Lett. 78 2547

    [19]

    Kenfack A, Zyczkowski K 2004 J. Opt. B: Quantum Semi-Class. Opt. 6 396

    [20]

    Gerry C C, Mimih J 2010 Contemp. Phys. 51 497

    [21]

    Leghtas Z, Kirchmair G, Vlastakis B, Schoelkopf R J, Devorett M H, Mirrahimi M 2013 Phys. Rev. Lett. 111 120501

    [22]

    Ralph T C, Gilchrist A, Milburn G J, Munro W J, Glancy S 2003 Phys. Rev. A 68 042319

  • [1] 李桑丫, 张艾霖, 徐欣, 吕涛, 王世康, 罗箐. 基于强流离子源的离子束溅射镀膜设备均匀性优化. 物理学报, 2024, 73(5): 058101. doi: 10.7498/aps.73.20231491
    [2] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [3] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [4] 马聪, 刘斌, 梁宏. 耦合界面张力的三维流体界面不稳定性的格子Boltzmann模拟. 物理学报, 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [5] 曹春蕾, 徐进良, 叶文力. 周期性爆沸诱导的液滴自驱动. 物理学报, 2021, 70(24): 244703. doi: 10.7498/aps.70.20211386
    [6] 刘尚阔, 王涛, 李坤, 曹昆, 张玺斌, 周艳, 赵建科, 姚保利. 光源光谱特性对空间相机调制传递函数检测的影响. 物理学报, 2021, 70(13): 134208. doi: 10.7498/aps.70.20201575
    [7] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性的安全量子通讯. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210907
    [8] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计. 物理学报, 2020, 69(23): 234204. doi: 10.7498/aps.69.20200890
    [9] 翟泽辉, 郝温静, 刘建丽, 段西亚. 用于光学薛定谔猫态制备的滤波设计与滤波腔腔长测量. 物理学报, 2020, 69(18): 184204. doi: 10.7498/aps.69.20200589
    [10] 胡伟达, 李庆, 陈效双, 陆卫. 具有变革性特征的红外光电探测器. 物理学报, 2019, 68(12): 120701. doi: 10.7498/aps.68.20190281
    [11] 武瑞琪, 郭迎春, 王兵兵. SF6分子最高占据轨道对称性的判断. 物理学报, 2019, 68(8): 080201. doi: 10.7498/aps.68.20182231
    [12] 丁学利, 贾冰, 李玉叶. 利用相位响应曲线解释抑制性反馈增强神经电活动. 物理学报, 2019, 68(18): 180502. doi: 10.7498/aps.68.20190197
    [13] 原青云, 孙永卫, 张希军. 基于电荷守恒定律的航天器内带电三维仿真简化模型. 物理学报, 2019, 68(19): 195201. doi: 10.7498/aps.68.20190631
    [14] 马堃, 陈展斌, 黄时中. 等离子体屏蔽效应对Ar16+基态和激发态能级的影响. 物理学报, 2019, 68(2): 023102. doi: 10.7498/aps.68.20181915
计量
  • 文章访问数:  4768
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-25
  • 修回日期:  2017-03-08
  • 刊出日期:  2017-05-05

/

返回文章
返回