搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于光学薛定谔猫态制备的滤波设计与滤波腔腔长测量

翟泽辉 郝温静 刘建丽 段西亚

引用本文:
Citation:

用于光学薛定谔猫态制备的滤波设计与滤波腔腔长测量

翟泽辉, 郝温静, 刘建丽, 段西亚

Filter cavity design and length measurement for preparing Schrödinger cat state

Zhai Ze-Hui, Hao Wen-Jing, Liu Jian-Li, Duan Xi-Ya
PDF
HTML
导出引用
  • 光学薛定谔猫态不仅是量子力学基本问题的主要研究对象之一, 也是连续变量量子信息的重要资源. 在其实验制备中, 对触发光路进行滤波操作是决定猫态的纯度、产率等重要参数的关键环节. 本文介绍实验中的滤波设计以及滤波腔腔长的测量方法. 依据设计要求, 腔长$ {l_{{\rm{FC}}}}$应满足条件$ 189 \;{\text{μm}}> {l_{{\rm{FC}}}} > 119\;{\text{μm}}$, 如此短的腔长用常规方法难以较准确地测量. 利用高阶横模的古依相移测得腔长为$ 141 \;{\text{μm}}$, 满足设计要求. 该测量方法不依赖于腔内任何介质的色散等特性, 具有一定的普遍性.
    Optical Schrödinger cat state is not only one of the basic elements of quantum mechanics, but also a pivotal resource of continuous-variable quantum information. The non-Gaussian operation in its preparation can also be a key technology in distilling continuous-variable squeezing and entanglement. In the experimental preparation, a small part of a beam of vacuum squeezing is separated and detected as the trigger of appearance of Schrödinger cat state. Filter operation in the trigger optical path is important since it affects dark counts of single photon detector, frequency mode matching of trigger mode and signal mode, and preparing rate of the Schrödinger cat state, etc. In this paper, we describe the design of optical filter in the trigger path and the measurement of the filter cavity length. According to the design, filter cavity length $ {l_{{\rm{FC}}}}$ should satisfy $ {\rm{189}}\;{\text{μm}} > {l_{{\rm{FC}}}} > {\rm{119}}\;{\text{μm}}$. This cavity length is too small to be measured with a ruler. To measure the cavity length, we introduce an optical method, in which Gouy phases of Hermite Gaussian transverse modes TEM00 and TEM10 are used. When the cavity length is scanned, resonant peaks and the corresponding scanning voltages are recorded. From theoretical derivation, the cavity length is related to the filter cavity piezo response to the scanning voltage $ {\varPsi '_{\rm{G}}}$, the slope rate of piezo scanning voltage $ U'$, and the time distance between TEM00 and TEM10 resonant peaks $ \Delta t$. The finally measured cavity length is ${l_{{\rm{FC}}}} = ({\rm{141}} \pm 28)~{\text{μm}}$, which satisfies the design requirement. The measurement error mainly originates from inaccurate fitting of $ {\varPsi '_{\rm{G}}}$ and $ U'$, and readout error of $ \Delta t$. It is shown that the error of $ {\varPsi '_{\rm{G}}}$ is dominant since less data are used in the curve fitting. The measurement error is expected to be reduced if much more data of piezo response to scanning voltage are collected and used to fit $ {\varPsi '_{\rm{G}}}$ with higher order polynomials. The proposed measurement method of short cavity length needs neither wide tuning laser nor any peculiar instrument, and does not depend on any dispersion property of the cavity, and hence it has a certain generality. It can be hopefully used in many other optical systems, such as cavity quantum electrodynamics, where ultrashort cavity plays a central role.
      通信作者: 翟泽辉, zhzehui@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFA0301404)和国家自然科学基金(批准号: 11504217)资助的课题
      Corresponding author: Zhai Ze-Hui, zhzehui@sxu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301404) and the National Natural Science Foundation of China (Grant No. 11504217)
    [1]

    Yurke B, Stoler D 1986 Phys. Rev. Lett. 57 13Google Scholar

    [2]

    Shang S, Caves C M, Yurke B 1990 Phys. Rev. A 41 5261Google Scholar

    [3]

    Dakna M, Anhut T, Opatrny T, Knoll L, Welsch D G 1997 Phys. Rev. A 55 3184Google Scholar

    [4]

    Wenger J, Tualle-Brouri R, Grangier P 2004 Phys. Rev. Lett. 92 153601Google Scholar

    [5]

    Ourjoumtsev A, Tualle-Brouri R, Laurat J, Grangier P 2006 Science 312 83Google Scholar

    [6]

    Neergaard-Nielsen J S, Nielsen B M, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604Google Scholar

    [7]

    Wakui K, Takahashi H, Furusawa A, Sasaki M 2007 Opt. Express 15 3568Google Scholar

    [8]

    Ourjoumtsev A, Jeong H, Tualle-Brouri R, Grangier P 2007 Nature 448 784Google Scholar

    [9]

    Takahashi H, Wakui K, Suzuki S, Takeoka M, Hayasaka K, Furusawa A, Sasaki M 2008 Phys. Rev. Lett. 101 233605Google Scholar

    [10]

    Dong R F, Tipsmark A, Laghaout A, Krivitsky L A, Ježek M, Andersen U L 2014 J. Opt. Soc. Am. B 31 1192Google Scholar

    [11]

    张娜娜, 李淑静, 闫红梅, 何亚亚, 王海 2018 物理学报 67 234203Google Scholar

    Zhang N N, Li S J, Yan H M, He Y Y, Wang H 2018 Acta Phys. Sin. 67 234203Google Scholar

    [12]

    何亚亚, 邓琦琦, 李淑静, 徐忠孝, 王海 2019 量子光学学报 25 372

    He Y Y, Deng Q Q, Li S J, Xu Z X, Wang H 2019 Journal of Quantum Optics 25 372

    [13]

    王美红 2018 博士学位论文(太原: 山西大学)

    Wang M H 2018 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [14]

    Yoshikawa J, Asavanant W, Furusawa A 2017 Phys. Rev. A 96 052304Google Scholar

    [15]

    Suzuki S, Takeoka M, Sasaki M, Andersen U L, Kannari F 2006 Phys. Rev. A 73 042304Google Scholar

    [16]

    Asavanant W, Nakashima K, Shiozawa Y, Yoshikawa J, Furusawa A 2017 Opt. Express 25 32227Google Scholar

    [17]

    DeVoe R G, Fabre C, Jungmann K, Hoffnagle J, Brewer R G 1988 Phys. Rev. A 37 1802(R)Google Scholar

    [18]

    Lichten W 1985 J. Opt. Soc. Am. A 2 1869Google Scholar

    [19]

    Layer H P, Deslattes R D, Schewietzer W G 1976 Appl. Opt. 15 734Google Scholar

    [20]

    Hood C J, Kimble H J, Ye J 2001 Phys. Rev. A 64 033804Google Scholar

    [21]

    杜金锦, 李文芳, 文瑞娟, 李刚, 张天才 2013 物理学报 62 194203Google Scholar

    Du J J, Li W F, Wen R J, Gang L, Zhang T C 2013 Acta Phys. Sin. 62 194203Google Scholar

    [22]

    Zhang P F, Zhang Y C, Li G, Du J J, Zhang Y F, Guo Y Q, Wang J M, Zhang T C, Li W D 2011 Chin. Phys. Lett. 28 044203Google Scholar

    [23]

    Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J, Kimble H J 2004 Phys. Rev. Lett. 93 233603Google Scholar

  • 图 1  OPO输出的压缩光谱线(红色), 以及滤波腔(绿色)和干涉滤波片(蓝色)的透射谱线(横轴是光频率$\nu $与压缩光中心频率${\nu _0}$的差, 单位是OPO的自由光谱范围ΔνFSR,OPO)

    Fig. 1.  Spectrum of squeezing from OPO (red), and transmission spectra of filter cavity (green) and interference filter (blue). Horizontal axis is difference of optical frequency and central frequency of squeezing, the unit is ΔνFSR,OPO.

    图 2  实验装置图(OPO, 光学参量振荡器; FC, 滤波腔; HV, 高压放大器; PD, 光探测器; IF, 干涉滤波片; SPD, 单光子探测器; PID, 比例积分微分控制器; lock-in amplifier, 锁相放大器)

    Fig. 2.  Experimental setup of Schrödinger cat. OPO, optical parametric oscillator; FC, filter cavity; PD, photon detector; SPD, single-photon detector; PID, proportional-integral-differential amplifier.

    图 3  光探测器探测到的滤波腔透射光强(绿色曲线)和腔扫描电压(蓝色曲线) (a)在同一个扫描方向上扫出三个FSR; (b)将(a)中的第二个透射峰展开

    Fig. 3.  Cavity transmission (green line) and the corresponding scanning voltage (blue line): (a) Three FSR is scanned; (b) expansion of the second transmission peak.

    图 4  压电陶瓷响应曲线拟合(圆圈是实验数据, 实线是拟合曲线)

    Fig. 4.  Fitting of Piezo response (circles correspond to experimental data, solid line is fitting curve).

  • [1]

    Yurke B, Stoler D 1986 Phys. Rev. Lett. 57 13Google Scholar

    [2]

    Shang S, Caves C M, Yurke B 1990 Phys. Rev. A 41 5261Google Scholar

    [3]

    Dakna M, Anhut T, Opatrny T, Knoll L, Welsch D G 1997 Phys. Rev. A 55 3184Google Scholar

    [4]

    Wenger J, Tualle-Brouri R, Grangier P 2004 Phys. Rev. Lett. 92 153601Google Scholar

    [5]

    Ourjoumtsev A, Tualle-Brouri R, Laurat J, Grangier P 2006 Science 312 83Google Scholar

    [6]

    Neergaard-Nielsen J S, Nielsen B M, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604Google Scholar

    [7]

    Wakui K, Takahashi H, Furusawa A, Sasaki M 2007 Opt. Express 15 3568Google Scholar

    [8]

    Ourjoumtsev A, Jeong H, Tualle-Brouri R, Grangier P 2007 Nature 448 784Google Scholar

    [9]

    Takahashi H, Wakui K, Suzuki S, Takeoka M, Hayasaka K, Furusawa A, Sasaki M 2008 Phys. Rev. Lett. 101 233605Google Scholar

    [10]

    Dong R F, Tipsmark A, Laghaout A, Krivitsky L A, Ježek M, Andersen U L 2014 J. Opt. Soc. Am. B 31 1192Google Scholar

    [11]

    张娜娜, 李淑静, 闫红梅, 何亚亚, 王海 2018 物理学报 67 234203Google Scholar

    Zhang N N, Li S J, Yan H M, He Y Y, Wang H 2018 Acta Phys. Sin. 67 234203Google Scholar

    [12]

    何亚亚, 邓琦琦, 李淑静, 徐忠孝, 王海 2019 量子光学学报 25 372

    He Y Y, Deng Q Q, Li S J, Xu Z X, Wang H 2019 Journal of Quantum Optics 25 372

    [13]

    王美红 2018 博士学位论文(太原: 山西大学)

    Wang M H 2018 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [14]

    Yoshikawa J, Asavanant W, Furusawa A 2017 Phys. Rev. A 96 052304Google Scholar

    [15]

    Suzuki S, Takeoka M, Sasaki M, Andersen U L, Kannari F 2006 Phys. Rev. A 73 042304Google Scholar

    [16]

    Asavanant W, Nakashima K, Shiozawa Y, Yoshikawa J, Furusawa A 2017 Opt. Express 25 32227Google Scholar

    [17]

    DeVoe R G, Fabre C, Jungmann K, Hoffnagle J, Brewer R G 1988 Phys. Rev. A 37 1802(R)Google Scholar

    [18]

    Lichten W 1985 J. Opt. Soc. Am. A 2 1869Google Scholar

    [19]

    Layer H P, Deslattes R D, Schewietzer W G 1976 Appl. Opt. 15 734Google Scholar

    [20]

    Hood C J, Kimble H J, Ye J 2001 Phys. Rev. A 64 033804Google Scholar

    [21]

    杜金锦, 李文芳, 文瑞娟, 李刚, 张天才 2013 物理学报 62 194203Google Scholar

    Du J J, Li W F, Wen R J, Gang L, Zhang T C 2013 Acta Phys. Sin. 62 194203Google Scholar

    [22]

    Zhang P F, Zhang Y C, Li G, Du J J, Zhang Y F, Guo Y Q, Wang J M, Zhang T C, Li W D 2011 Chin. Phys. Lett. 28 044203Google Scholar

    [23]

    Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J, Kimble H J 2004 Phys. Rev. Lett. 93 233603Google Scholar

  • [1] 郭状, 欧阳峰, 卢志舟, 王梦宇, 谭庆贵, 谢成峰, 魏斌, 何兴道. 氟化镁微瓶腔光频梳光谱分析及优化. 物理学报, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [2] 朱栋, 徐晗, 周寅, 吴彬, 程冰, 王凯楠, 陈佩军, 高世腾, 翁堪兴, 王河林, 彭树萍, 乔中坤, 王肖隆, 林强. 基于扩展卡尔曼滤波算法的船载绝对重力测量数据处理. 物理学报, 2022, 71(13): 133702. doi: 10.7498/aps.71.20220071
    [3] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [4] 朱进进, 吴雨祥, 邵晓鹏. 基于利萨茹椭圆拟合的两步相移轮廓技术. 物理学报, 2021, 70(17): 170602. doi: 10.7498/aps.70.20210644
    [5] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性的安全量子通讯. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210907
    [6] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [7] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计. 物理学报, 2020, 69(23): 234204. doi: 10.7498/aps.69.20200890
    [8] 马堃, 陈展斌, 黄时中. 等离子体屏蔽效应对Ar16+基态和激发态能级的影响. 物理学报, 2019, 68(2): 023102. doi: 10.7498/aps.68.20181915
计量
  • 文章访问数:  4934
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-22
  • 修回日期:  2020-05-09
  • 上网日期:  2020-06-05
  • 刊出日期:  2020-09-20

/

返回文章
返回