搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高灵敏度的量子迈克耳孙干涉仪

左小杰 孙颍榕 闫智辉 贾晓军

引用本文:
Citation:

高灵敏度的量子迈克耳孙干涉仪

左小杰, 孙颍榕, 闫智辉, 贾晓军

High sensitivity quantum Michelson interferometer

Zuo Xiao-Jie, Sun Ying-Rong, Yan Zhi-Hui, Jia Xiao-Jun
PDF
导出引用
  • 迈克耳孙干涉仪不仅可以用来研究物理学的基本问题,而且能够用于精密测量,比如引力波信号的测量.因此,构建高灵敏度的迈克耳孙干涉仪是实现微弱信号测量的关键.目前,人们利用压缩态可以降低迈克耳孙干涉仪的噪声;通过光学四波混频过程能够放大马赫曾德尔干涉仪中的相位信号,从而提高干涉仪的信噪比和灵敏度.本文研究了一种用于高灵敏度相位测量的量子迈克耳孙干涉仪.在迈克耳孙干涉仪中,利用非简并光学参量放大器取代干涉仪中的线性光学分束器;并且将压缩态注入干涉仪的真空通道,可以得到高信噪比和高灵敏度的干涉仪.由于存在不可避免的光学损耗,分析了迈克耳孙干涉仪内部和外部的损耗对相位测量灵敏度的影响.通过理论计算研究了干涉仪的相位测量灵敏度随系统参数的变化关系,得到了高灵敏度的相位测量量子迈克耳孙干涉仪的实现条件,为用于精密测量的干涉仪的设计提供了直接参考.
    Michelson interferometer can be applied to not only the building block of the fundamental research of physics, but also the precise measurement, such as the direct observation of gravity wave signal. Therefore, high performance Michelson interferometer is the key step towards the implementation of direct observation of weak gravity wave signal. Recently, the vacuum noise was reduced by injecting squeezed vacuum into the unused port of Michelson interferomter, and the phase signal optical field in Mach-Zender interferometer is amplified based on the four-wave mixing in hot Rubidium atom. Here we study high sensitivity quantum Michelson interferometer. In the Michelson interferometer, the linear optical beam splitter is replaced by a non-degenerated optical parametric amplifier to realize the splitting and combining of optical fields, and the squeezed vacuum is also injected into the unused port of interferomter, so that the high signal-to-noise ratio and high sensitivity of phase measurement can be realized. Due to the inevitable optical losses, the losses inside and outside the Michelson interferometer are considered in our theoretical model. We investigate the influences of the losses inside and outside the Michelson interferometer on the sensitivity of phase measurement. By theoretical calculation, we analyze the dependence of sensitivity of phase measurement on system parameters, such as intensity of optical fields for phase sensing, gain factor of non-degenerated optical parametric amplifier, the losses inside and outside the Michelson interferometer, and the squeezing parameter of input squeezed vacuum, and thus the condition of high sensitivity nonlinear Michelson interferometer can be obtained. In a broad system parametric range, the quantum Michaleson interferometer can surpass standard quantum limit, and the nonlinear Michaleson interferometer with squeezed state injection can provide the optimal sensitivity for phase measurement. The nonlinear Michelson interferometer with squeezed state is suitable for weak signal measurement. While the gain factor of non-degenerated optical parametric amplifier is large enough, the nonlinear Michelson interferometer without injecting the squeezed vacuum can still reach the optimal sensitivity, which reduces the use of quantum resources. When the phase sensing optical field is strong, the linear Michelson interferometer with injecting the squeezed vacuum can also reach the optimal sensitivity, and the sensitivity is robust for both losses inside and outside the interferometer. All the kinds of interferometers are more sensitive to the loss inside the interferometer than outside the interferometer, and the sensitivity of phase measurement can be improved by reducing the loss inside the interferometer. Our result provides direct reference of experimental implementation of high performance interferometer for high precision quantum metrology.
      通信作者: 闫智辉, zhyan@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0301402)、国家自然科学基金(批准号:61775127,11474190,11654002)、山西青年三晋学者项目、山西省回国留学人员科研资助项目和山西省1331工程重点学科建设计划资助的课题.
      Corresponding author: Yan Zhi-Hui, zhyan@sxu.edu.cn
    • Funds: Project supported by National Key RD Program of China (Grant No. 2016YFA0301402), the National Natural Science Foundation of China (Grant Nos. 61775127, 11474190, 11654002), the Program for Sanjin Scholars of Shanxi Province, Shanxi Scholarship Council of China, and the Fund for Shanxi 1331Project Key Subjects Construction, China.
    [1]

    Einstein A 1916 Ann. Phys. 49 769

    [2]

    Sathyaprakash B S, Schutz B F 2009 Living Rev. Relativ. 2 1

    [3]

    Hinderer T J, Lackey B D, Lang R N, Read J S 2010 Phys. Rev. D 81 123016

    [4]

    Vines J, Flanagan E E, Hinderer T J 2011 Phys. Rev. D 83 084051

    [5]

    Bauswein A, Janka H T 2012 Phys. Rev. Lett. 108 011101

    [6]

    Abramovici A, Althouse W E, Drever R W P, Grsel Y, Kawamura S, Raab F J, Shoemaker D, Sievers L, Spero R E, Thorne K S, Vogt R E, Weiss R, Whitcomb S E, Zucker M E 1992 Science 256 5055

    [7]

    Aasi J, Abbott B P, Abbott R, et al. 2015 Class. Quant. Grav. 32 074001

    [8]

    Grote H 2010 Class. Quant. Grav. 27 084003

    [9]

    Acernese F, Agathos M, Agatsuma K, et al. 2015 Class. Quant. Grav. 32 024001

    [10]

    Arai K, Takahashi R, Tastumi D, et al. 2009 Class. Quant. Grav. 26 204020

    [11]

    Barriga P, Blair G D, Coward D, et al. 2010 Class. Quant. Grav. 27 084005

    [12]

    Punturo M, Abernathy M, Acernese F, et al. 2010 Class. Quant. Grav. 27 084007

    [13]

    Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 061102

    [14]

    Abbott B P, Abbott R, Abbott T D, et al. 2017 Phys. Rev. Lett. 119 161101

    [15]

    Hou Z B, Zhu H J, Xiang G Y, Li C F, Guo G C 2016 npj Quantum Information 2 16001

    [16]

    Liu F, Zhou Y Y, Yu J, Guo J L, Wu Y, Xiao S X, Wei D, Zhang Y, Jia X J, Xiao M 2017 Appl. Phys. Lett. 110 021106

    [17]

    Walls D F 1983 Nature 306 141

    [18]

    Zhang M Z 2015 Quantum Optics (Beijing: Science Press) pp72-75 (in Chinese) 张智明 2015 量子光学 (北京:科学出版社) 第7275页

    [19]

    Caves C M 1980 Phys. Rev. Lett. 45 75

    [20]

    Caves C M 1981 Phys. Rev. D 23 1693

    [21]

    Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64 234210 (in Chinese) [孙恒信, 刘奎, 张俊香, 郜江瑞 2015 物理学报 64 234210]

    [22]

    Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F 1985 Phys. Rev. Lett. 55 2409

    [23]

    Wu L A, Kimble H J, Hall J L, Wu H F 1986 Phys. Rev. Lett. 57 2520

    [24]

    Henning V, Moritz M, Karsten D, Schnabel R 2016 Phys. Rev. Lett. 117 110801

    [25]

    Wan Z J, Feng J X, Sun Z N, Yao L T, Zhang K S 2014 Acta Sin. Quantum Opt. 20 271 (in Chinese) [万振菊, 冯晋霞, 孙志妮, 要立婷, 张宽收 2014 量子光学学报 20 271]

    [26]

    Sun Z N, Feng J X, Wan Z J, Zhang K S 2016 Acta Phys. Sin. 65 044203 (in Chinese) [孙志妮, 冯晋霞, 万振菊, 张宽收 2016 物理学报 65 044203]

    [27]

    McKenzie K, Grosse N, Bowen W P, Whitcomb S E, Gray M B, McClelland D E, Lam P K 2004 Phys. Rev. Lett. 93 161105

    [28]

    Vahlbruch H, Chelkowski S, Hage B, Franzen A, Danzmann K, Schnabel R 2006 Phys. Rev. Lett. 97 011101

    [29]

    Yan Z H, Sun H X, Cai C X, Ma L, Liu K, Gao J R 2017 Acta Phys. Sin. 66 114205 (in Chinese) [闫子华, 孙恒信, 蔡春晓, 马龙, 刘奎, 郜江瑞 2017 物理学报 66 114205]

    [30]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nature Phys. 4 472

    [31]

    Schnabel R, Mavalvala N, McClelland D E, Lam P K 2010 Nature Commun. 1 121

    [32]

    Abadie J, Abbott B P, Abbott R, et al. 2011 Nature Phys. 7 962

    [33]

    Aasi J, Abadie J, Zweizi J, et al. 2013 Nature Photon. 7 613

    [34]

    Liu Y C, Xiao Y F, Chen Y L, Yu X C, Gong Q H 2013 Phys. Rev. Lett. 111 083601

    [35]

    Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 117 210502

    [36]

    Deng X W, Xiang Y, Tian C X, Adesso G, He Q Y, Gong Q H, Su X L, Xie C D, Peng K C 2017 Phys. Rev. Lett. 118 230501

    [37]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [38]

    Plick W N, Dowling J P, Agarwal 2010 New J. Phys. 12 083014

    [39]

    Ou Z Y 1997 Phys. Rev. A 55 2598

    [40]

    Tian X D, Liu Y M, Cui C L, Wu J H 2015 Phys. Rev. A 92 063411

    [41]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nature Photon. 9 332

    [42]

    Xin J, Jian Q, Jing J T 2017 Opt. Lett. 42 366

    [43]

    Jing J T, Liu C J, Zhou Z F, Ou Z Y, Zhang W P 2011 Appl. Phys. Lett. 99 011110

    [44]

    Hudelist F, Kong J, Liu C J, Jing J T, Zhou Z F, Ou Z Y, Zhang W P 2014 Nature Commun. 5 3049

    [45]

    Xin J, Liu J M, Jing J T 2017 Opt. Express 25 1350

    [46]

    Xin J, Wang H L, Jing J T 2016 Appl. Phys. Lett. 109 051107

    [47]

    Wang H L, Marino A M, Jing J T 2015 Appl. Phys. Lett. 107 121106

    [48]

    Kong J, Jing J T, Wang H L, Hudelist F, Liu C J, Zhang W P 2013 Appl. Phys. Lett. 102 011130

    [49]

    Liu S S, Jin J T 2017 Opt. Express 25 15854

  • [1]

    Einstein A 1916 Ann. Phys. 49 769

    [2]

    Sathyaprakash B S, Schutz B F 2009 Living Rev. Relativ. 2 1

    [3]

    Hinderer T J, Lackey B D, Lang R N, Read J S 2010 Phys. Rev. D 81 123016

    [4]

    Vines J, Flanagan E E, Hinderer T J 2011 Phys. Rev. D 83 084051

    [5]

    Bauswein A, Janka H T 2012 Phys. Rev. Lett. 108 011101

    [6]

    Abramovici A, Althouse W E, Drever R W P, Grsel Y, Kawamura S, Raab F J, Shoemaker D, Sievers L, Spero R E, Thorne K S, Vogt R E, Weiss R, Whitcomb S E, Zucker M E 1992 Science 256 5055

    [7]

    Aasi J, Abbott B P, Abbott R, et al. 2015 Class. Quant. Grav. 32 074001

    [8]

    Grote H 2010 Class. Quant. Grav. 27 084003

    [9]

    Acernese F, Agathos M, Agatsuma K, et al. 2015 Class. Quant. Grav. 32 024001

    [10]

    Arai K, Takahashi R, Tastumi D, et al. 2009 Class. Quant. Grav. 26 204020

    [11]

    Barriga P, Blair G D, Coward D, et al. 2010 Class. Quant. Grav. 27 084005

    [12]

    Punturo M, Abernathy M, Acernese F, et al. 2010 Class. Quant. Grav. 27 084007

    [13]

    Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 061102

    [14]

    Abbott B P, Abbott R, Abbott T D, et al. 2017 Phys. Rev. Lett. 119 161101

    [15]

    Hou Z B, Zhu H J, Xiang G Y, Li C F, Guo G C 2016 npj Quantum Information 2 16001

    [16]

    Liu F, Zhou Y Y, Yu J, Guo J L, Wu Y, Xiao S X, Wei D, Zhang Y, Jia X J, Xiao M 2017 Appl. Phys. Lett. 110 021106

    [17]

    Walls D F 1983 Nature 306 141

    [18]

    Zhang M Z 2015 Quantum Optics (Beijing: Science Press) pp72-75 (in Chinese) 张智明 2015 量子光学 (北京:科学出版社) 第7275页

    [19]

    Caves C M 1980 Phys. Rev. Lett. 45 75

    [20]

    Caves C M 1981 Phys. Rev. D 23 1693

    [21]

    Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64 234210 (in Chinese) [孙恒信, 刘奎, 张俊香, 郜江瑞 2015 物理学报 64 234210]

    [22]

    Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F 1985 Phys. Rev. Lett. 55 2409

    [23]

    Wu L A, Kimble H J, Hall J L, Wu H F 1986 Phys. Rev. Lett. 57 2520

    [24]

    Henning V, Moritz M, Karsten D, Schnabel R 2016 Phys. Rev. Lett. 117 110801

    [25]

    Wan Z J, Feng J X, Sun Z N, Yao L T, Zhang K S 2014 Acta Sin. Quantum Opt. 20 271 (in Chinese) [万振菊, 冯晋霞, 孙志妮, 要立婷, 张宽收 2014 量子光学学报 20 271]

    [26]

    Sun Z N, Feng J X, Wan Z J, Zhang K S 2016 Acta Phys. Sin. 65 044203 (in Chinese) [孙志妮, 冯晋霞, 万振菊, 张宽收 2016 物理学报 65 044203]

    [27]

    McKenzie K, Grosse N, Bowen W P, Whitcomb S E, Gray M B, McClelland D E, Lam P K 2004 Phys. Rev. Lett. 93 161105

    [28]

    Vahlbruch H, Chelkowski S, Hage B, Franzen A, Danzmann K, Schnabel R 2006 Phys. Rev. Lett. 97 011101

    [29]

    Yan Z H, Sun H X, Cai C X, Ma L, Liu K, Gao J R 2017 Acta Phys. Sin. 66 114205 (in Chinese) [闫子华, 孙恒信, 蔡春晓, 马龙, 刘奎, 郜江瑞 2017 物理学报 66 114205]

    [30]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nature Phys. 4 472

    [31]

    Schnabel R, Mavalvala N, McClelland D E, Lam P K 2010 Nature Commun. 1 121

    [32]

    Abadie J, Abbott B P, Abbott R, et al. 2011 Nature Phys. 7 962

    [33]

    Aasi J, Abadie J, Zweizi J, et al. 2013 Nature Photon. 7 613

    [34]

    Liu Y C, Xiao Y F, Chen Y L, Yu X C, Gong Q H 2013 Phys. Rev. Lett. 111 083601

    [35]

    Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 117 210502

    [36]

    Deng X W, Xiang Y, Tian C X, Adesso G, He Q Y, Gong Q H, Su X L, Xie C D, Peng K C 2017 Phys. Rev. Lett. 118 230501

    [37]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [38]

    Plick W N, Dowling J P, Agarwal 2010 New J. Phys. 12 083014

    [39]

    Ou Z Y 1997 Phys. Rev. A 55 2598

    [40]

    Tian X D, Liu Y M, Cui C L, Wu J H 2015 Phys. Rev. A 92 063411

    [41]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nature Photon. 9 332

    [42]

    Xin J, Jian Q, Jing J T 2017 Opt. Lett. 42 366

    [43]

    Jing J T, Liu C J, Zhou Z F, Ou Z Y, Zhang W P 2011 Appl. Phys. Lett. 99 011110

    [44]

    Hudelist F, Kong J, Liu C J, Jing J T, Zhou Z F, Ou Z Y, Zhang W P 2014 Nature Commun. 5 3049

    [45]

    Xin J, Liu J M, Jing J T 2017 Opt. Express 25 1350

    [46]

    Xin J, Wang H L, Jing J T 2016 Appl. Phys. Lett. 109 051107

    [47]

    Wang H L, Marino A M, Jing J T 2015 Appl. Phys. Lett. 107 121106

    [48]

    Kong J, Jing J T, Wang H L, Hudelist F, Liu C J, Zhang W P 2013 Appl. Phys. Lett. 102 011130

    [49]

    Liu S S, Jin J T 2017 Opt. Express 25 15854

  • [1] 陈大勇, 缪培贤, 史彦超, 崔敬忠, 刘志栋, 陈江, 王宽. 抽运-检测型原子磁力仪对电流源噪声的测量. 物理学报, 2022, 71(2): 024202. doi: 10.7498/aps.71.20211122
    [2] 张文杰, 刘郁松, 郭浩, 韩星程, 蔡安江, 李圣昆, 赵鹏飞, 刘俊. 双螺线圈射频共振结构增强硅空位自旋传感灵敏度方法. 物理学报, 2020, 69(23): 234206. doi: 10.7498/aps.69.20200765
    [3] 翟泽辉, 郝温静, 刘建丽, 段西亚. 用于光学薛定谔猫态制备的滤波设计与滤波腔腔长测量. 物理学报, 2020, 69(18): 184204. doi: 10.7498/aps.69.20200589
    [4] 吴彤, 孙帅帅, 王绪晖, 王吉明, 赫崇君, 顾晓蓉, 刘友文. 基于最优化线性波数光谱仪的谱域光学相干层析成像系统. 物理学报, 2018, 67(10): 104208. doi: 10.7498/aps.67.20172606
    [5] 胡泽华, 叶涛, 刘雄国, 王佳. 抽样法与灵敏度法keff不确定度量化. 物理学报, 2017, 66(1): 012801. doi: 10.7498/aps.66.012801
    [6] 汪之国, 罗晖, 樊振方, 谢元平. 极化检测型铷原子磁力仪的研究. 物理学报, 2016, 65(21): 210702. doi: 10.7498/aps.65.210702
    [7] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [8] 王俊平, 戚苏阳, 刘士钢. 基于版图优化的综合灵敏度模型. 物理学报, 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [9] 江莺, 梁大开, 曾捷, 倪晓宇. 监测点波长对高双折射光纤环镜轴向应变灵敏度的影响. 物理学报, 2013, 62(6): 064216. doi: 10.7498/aps.62.064216
    [10] 徐晋, 谢品华, 司福祺, 李昂, 周海金, 吴丰成, 王杨, 刘建国, 刘文清. 基于机载平台的NO2 垂直廓线反演灵敏度研究. 物理学报, 2013, 62(10): 104214. doi: 10.7498/aps.62.104214
    [11] 田会娟, 牛萍娟. 基于delta-P1近似模型的空间分辨漫反射一阶散射参量灵敏度研究. 物理学报, 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [12] 李巍, 王永钢, 杨伯君. 损耗对表面等离子体激元压缩态的影响. 物理学报, 2011, 60(2): 024203. doi: 10.7498/aps.60.024203
    [13] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析. 物理学报, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [14] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析. 物理学报, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [15] 任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生. 不同序列拉曼光脉冲对原子重力仪灵敏度的影响. 物理学报, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [16] 张婉娟, 王治国, 谢双媛, 羊亚平. 频率变化的压缩态光场与原子的相互作用. 物理学报, 2007, 56(4): 2168-2174. doi: 10.7498/aps.56.2168
    [17] 刘 迎, 王利军, 郭云峰, 张小娟, 高宗慧, 田会娟. 空间分辨漫反射的高阶参量灵敏度. 物理学报, 2007, 56(4): 2119-2123. doi: 10.7498/aps.56.2119
    [18] 金 硕, 解炳昊. 外磁场中海森伯反铁磁模型的代数结构和压缩态解. 物理学报, 2006, 55(8): 3880-3884. doi: 10.7498/aps.55.3880
    [19] 贾晓军, 苏晓龙, 潘 庆, 谢常德, 彭堃墀. 具有经典相干性的两组EPR纠缠态光场的实验产生. 物理学报, 2005, 54(6): 2717-2722. doi: 10.7498/aps.54.2717
    [20] 李小英, 荆杰泰, 朱士群, 张靖, 潘庆, 谢常德, 彭堃墀. 由NOPA产生高质量明亮压缩光及明亮EPR光束. 物理学报, 2002, 51(5): 966-972. doi: 10.7498/aps.51.966
计量
  • 文章访问数:  3290
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-30
  • 修回日期:  2018-04-23
  • 刊出日期:  2018-07-05

高灵敏度的量子迈克耳孙干涉仪

  • 1. 山西大学光电研究所, 量子光学与光量子器件国家重点实验室, 太原 030006;
  • 2. 山西大学, 极端光学协同创新中心, 太原 030006
  • 通信作者: 闫智辉, zhyan@sxu.edu.cn
    基金项目: 国家重点研发计划(批准号:2016YFA0301402)、国家自然科学基金(批准号:61775127,11474190,11654002)、山西青年三晋学者项目、山西省回国留学人员科研资助项目和山西省1331工程重点学科建设计划资助的课题.

摘要: 迈克耳孙干涉仪不仅可以用来研究物理学的基本问题,而且能够用于精密测量,比如引力波信号的测量.因此,构建高灵敏度的迈克耳孙干涉仪是实现微弱信号测量的关键.目前,人们利用压缩态可以降低迈克耳孙干涉仪的噪声;通过光学四波混频过程能够放大马赫曾德尔干涉仪中的相位信号,从而提高干涉仪的信噪比和灵敏度.本文研究了一种用于高灵敏度相位测量的量子迈克耳孙干涉仪.在迈克耳孙干涉仪中,利用非简并光学参量放大器取代干涉仪中的线性光学分束器;并且将压缩态注入干涉仪的真空通道,可以得到高信噪比和高灵敏度的干涉仪.由于存在不可避免的光学损耗,分析了迈克耳孙干涉仪内部和外部的损耗对相位测量灵敏度的影响.通过理论计算研究了干涉仪的相位测量灵敏度随系统参数的变化关系,得到了高灵敏度的相位测量量子迈克耳孙干涉仪的实现条件,为用于精密测量的干涉仪的设计提供了直接参考.

English Abstract

参考文献 (49)

目录

    /

    返回文章
    返回