搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

贝塞尔-高斯涡旋光束相干合成研究

于涛 夏辉 樊志华 谢文科 张盼 刘俊圣 陈欣

引用本文:
Citation:

贝塞尔-高斯涡旋光束相干合成研究

于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣

Generation of Bessel-Gaussian vortex beam by combining technology

Yu Tao, Xia Hui, Fan Zhi-Hua, Xie Wen-Ke, Zhang Pan, Liu Jun-Sheng, Chen Xin
PDF
导出引用
  • 基于相干合成技术,提出了对特定离散空间分布的高斯光束阵列加载离散涡旋相位生成二阶贝塞尔-高斯(Bessel-Gaussian,BG)涡旋光束的方案.利用干涉法、桶中功率和相关系数对合成BG涡旋光束的拓扑荷、光束质量进行了定量评价及参数优化.结果表明:基于相干合成技术能够产生特定的目标BG涡旋光束,阵列子光束紧密排布时合成BG光束的光束质量更高.该方法的提出对于其他涡旋光束的产生或者涡旋光束功率的提高具有一定的参考意义.
    Bessel beam is an important member of the family of non-diffracting beams and has some unique properties which can be used in many areas, such as micro particle manipulating, material processing and optical communication. However, the source of Bessel beam generated by the existing methods can be used only in a short distance due to its low power. In this paper, according to the coherent combining technology, we propose a method to generate a second-order Bessel-Gaussian (BG) beam by loading discrete vortex phase on specific spatially distributed Gaussian beam array. The coherent combining technology can enhance the output power by increasing the number of beams and use the phase-locking technique to maintain the beam quality. The experimental scheme is described as follows. The expanded Gaussian beam is first split by an amplitude-based spatial light modulator, then the Gaussian beam array is incident on a phase-only spatial light modulator to load the discrete vortex phase, and finally the Gaussian beam array loaded with phase can synthesize BG beam in free space. Due to the diffraction effect of the sub-beams, the optical field distribution between the adjacent sub-beams which are loaded with phase differences, are superimposed. As a result, the optical field distribution of the approximate beam can be obtained by coherent synthesis in free space. After that, the degree of similarity between simulated results and theoretical data is analyzed by correlation coefficient, including the comparison of light intensity between experiment and simulation, and the power-in-the-bucket is used to evaluate beam quality. In addition, the topological charge of the synthesized BG beams is verified by the interference method. By studying the number of beams, the waist radius and the radius of the ring, we find some interesting results which are summarized as follows. Firstly, the closed arrangement of Gaussian beam arrays can improve the quality of the synthesized BG beam. Secondly, the smaller the phase difference between the sub-beams, the more easily the discontinuous piston phase approaches to the vortex phase. Therefore, increasing the number of sub-beams can significantly improve the beam quality of the synthesized BG beam and obtain a higher order synthetic BG beam. Finally, we define the parameter k to represent the tightness of a circular array of Gaussian beams. The present study shows that when the parameter k is close to 1, the best experimental results can be obtained. Therefore, the proposed method has important guidance in generating various vortex beams or enhancing the vortex beam power.
      通信作者: 谢文科, wenkexiedan@163.com
    • 基金项目: 装备预研领域基金(编号:6140415020311)和高能激光技术湖南省重点实验室开放基金(编号:GNJGJS04)资助的课题.
      Corresponding author: Xie Wen-Ke, wenkexiedan@163.com
    • Funds: Project supported by the Equipment Pre-research Field Fund (Grant No. 6140415020311) and the Hunan Provincial Key Laboratory of High Energy Laser Technology Fund, China (Grant No. GNJGJS04).
    [1]

    Yin J P, Liu N C, Xia Y, Yun M 2004 Prog. Phys. 24 336 (in Chinese) [印建平, 刘南春, 夏勇, 恽旻 2004 物理学进展 24 336]

    [2]

    Shu W X, Ke Y G, Liu Y C, Ling X H, Luo H L, Yin X B 2016 Phys. Rev. A 93 013839

    [3]

    Liu Y C, Ke Y G, Zhou J X, Liu Y Y, Luo H L, Wen S C, Fan D Y 2017 Sci. Rep. 7 44096

    [4]

    Liu Z X, Liu Y Y, Ke Y G, Liu Y C, Shu W X, Luo H L, Wen S C 2017 Photon. Res. 5 15

    [5]

    Allegre O J, Jin Y, Perrie W, Ouyang J, Fearon E, Edwardson S P, Dearden G 2013 Opt. Express 21 21198

    [6]

    Yan Y, Xie G D, Lavery M P J, Huang H, Ahmed N, Bao C J, Ren Y X, Cao Y W, Li L, Zhao Z, Molish F, Tur M, Padgett M J, Willner A E 2014 Nat. Commun. 5 4876

    [7]

    Liu Y D, Gao C Q, Gao M W, Li F 2007 Acta Phys. Sin. 56 854 (in Chinese) [刘义东, 高春清, 高明伟, 李丰 2007 物理学报 56 854]

    [8]

    Padgett M, Bowman R 2011 Nature Photon. 5 343

    [9]

    He Y L, Liu Z X, Liu Y C, Zhou J X, Ke Y G, Luo H L, Wen S C 2015 Opt. Lett. 40 5506

    [10]

    Ngcobo S, Aameur K, Passilly N, Hasnaoui A, Forbes A 2013 Appl. Opt. 52 2093

    [11]

    Lin D, Daniel J M O, Clarkson W A 2014 Opt. Lett. 39 3903

    [12]

    Kim D J, Kim J W, Clarkson W A 2014 Appl. Phys. B 117 459

    [13]

    Li Y, Li W, Zhang Z, Miller K, Shori R 2016 Opt. Express 24 1658

    [14]

    Liu Z J, Zhou P, Hou J, Xu X J 2009 Chin. J. Lasers 36 518 (in Chinese) [刘泽金, 周朴, 侯静, 许晓军 2009 中国激光 36 518]

    [15]

    Chu X X, Liu Z J, Zhou P 2013 Laser Phys. Lett. 10 5102

    [16]

    Zhu K C, Tang H Q, Sun X M, Wang X W, Liu T N 2002 Opt. Commun. 207 29

    [17]

    Zhu K C, Tang H Q, Wang X W, Liu T N 2002 Optik 113 222

    [18]

    Zhu K C, Zhou G Q, Li X G, Zheng X J, Tang H Q 2008 Opt. Express 16 21315

    [19]

    Chu X X, Sun Q, Wang J, Lu P, Xie W K, Xu X J 2015 Sci. Rep. 5 18665

    [20]

    Feng G Y, Zhou S H 2009 Chin. J. Lasers 36 1643 (in Chinese) [冯国英, 周寿桓 2009 中国激光 36 1643]

    [21]

    Wang Q M 2008 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [王启明 2008 硕士学位论文 (杭州: 浙江大学)]

    [22]

    Li Y Y, Chen Z Y, Liu H, Pu J X 2010 Acta Phys. Sin. 59 1740 (in Chinese) [李阳月, 陈子阳, 刘辉, 蒲继雄 2010 物理学报 59 1740]

  • [1]

    Yin J P, Liu N C, Xia Y, Yun M 2004 Prog. Phys. 24 336 (in Chinese) [印建平, 刘南春, 夏勇, 恽旻 2004 物理学进展 24 336]

    [2]

    Shu W X, Ke Y G, Liu Y C, Ling X H, Luo H L, Yin X B 2016 Phys. Rev. A 93 013839

    [3]

    Liu Y C, Ke Y G, Zhou J X, Liu Y Y, Luo H L, Wen S C, Fan D Y 2017 Sci. Rep. 7 44096

    [4]

    Liu Z X, Liu Y Y, Ke Y G, Liu Y C, Shu W X, Luo H L, Wen S C 2017 Photon. Res. 5 15

    [5]

    Allegre O J, Jin Y, Perrie W, Ouyang J, Fearon E, Edwardson S P, Dearden G 2013 Opt. Express 21 21198

    [6]

    Yan Y, Xie G D, Lavery M P J, Huang H, Ahmed N, Bao C J, Ren Y X, Cao Y W, Li L, Zhao Z, Molish F, Tur M, Padgett M J, Willner A E 2014 Nat. Commun. 5 4876

    [7]

    Liu Y D, Gao C Q, Gao M W, Li F 2007 Acta Phys. Sin. 56 854 (in Chinese) [刘义东, 高春清, 高明伟, 李丰 2007 物理学报 56 854]

    [8]

    Padgett M, Bowman R 2011 Nature Photon. 5 343

    [9]

    He Y L, Liu Z X, Liu Y C, Zhou J X, Ke Y G, Luo H L, Wen S C 2015 Opt. Lett. 40 5506

    [10]

    Ngcobo S, Aameur K, Passilly N, Hasnaoui A, Forbes A 2013 Appl. Opt. 52 2093

    [11]

    Lin D, Daniel J M O, Clarkson W A 2014 Opt. Lett. 39 3903

    [12]

    Kim D J, Kim J W, Clarkson W A 2014 Appl. Phys. B 117 459

    [13]

    Li Y, Li W, Zhang Z, Miller K, Shori R 2016 Opt. Express 24 1658

    [14]

    Liu Z J, Zhou P, Hou J, Xu X J 2009 Chin. J. Lasers 36 518 (in Chinese) [刘泽金, 周朴, 侯静, 许晓军 2009 中国激光 36 518]

    [15]

    Chu X X, Liu Z J, Zhou P 2013 Laser Phys. Lett. 10 5102

    [16]

    Zhu K C, Tang H Q, Sun X M, Wang X W, Liu T N 2002 Opt. Commun. 207 29

    [17]

    Zhu K C, Tang H Q, Wang X W, Liu T N 2002 Optik 113 222

    [18]

    Zhu K C, Zhou G Q, Li X G, Zheng X J, Tang H Q 2008 Opt. Express 16 21315

    [19]

    Chu X X, Sun Q, Wang J, Lu P, Xie W K, Xu X J 2015 Sci. Rep. 5 18665

    [20]

    Feng G Y, Zhou S H 2009 Chin. J. Lasers 36 1643 (in Chinese) [冯国英, 周寿桓 2009 中国激光 36 1643]

    [21]

    Wang Q M 2008 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [王启明 2008 硕士学位论文 (杭州: 浙江大学)]

    [22]

    Li Y Y, Chen Z Y, Liu H, Pu J X 2010 Acta Phys. Sin. 59 1740 (in Chinese) [李阳月, 陈子阳, 刘辉, 蒲继雄 2010 物理学报 59 1740]

  • [1] 刘伟, 贾青, 郑坚. 弱相对论涡旋光在等离子体中传播的波前畸变及补偿. 物理学报, 2024, 73(5): 055203. doi: 10.7498/aps.73.20231635
    [2] 海迪且木⋅阿布都吾甫尔, 谭乐韬, 于涛, 谢文科, 刘静, 邵铮铮. 基于相干合成涡旋光束的离轴入射转速测量. 物理学报, 2024, 73(16): 168701. doi: 10.7498/aps.73.20240655
    [3] 范海玲, 郭志坚, 李明强, 卓红斌. 等离子体中涡旋光束自聚焦与成丝现象的模拟研究. 物理学报, 2023, 72(1): 014206. doi: 10.7498/aps.72.20221232
    [4] 朱雪松, 刘星雨, 张岩. 涡旋光束在双拉盖尔-高斯旋转腔中的非互易传输. 物理学报, 2022, 71(15): 150701. doi: 10.7498/aps.71.20220191
    [5] 陈天宇, 王长顺, 潘雨佳, 孙丽丽. 利用全息法在偶氮聚合物薄膜中记录涡旋光场. 物理学报, 2021, 70(5): 054204. doi: 10.7498/aps.70.20201496
    [6] 梁德山, 黄厚兵, 赵亚楠, 柳祝红, 王浩宇, 马星桥. 拓扑荷在圆盘状向列相液晶薄膜中的尺寸效应. 物理学报, 2021, 70(4): 044202. doi: 10.7498/aps.70.20201623
    [7] 彭一鸣, 薛煜, 肖光宗, 于涛, 谢文科, 夏辉, 刘爽, 陈欣, 陈芳琳, 孙学成. 相干合成涡旋光束的螺旋谱分析及应用研究. 物理学报, 2019, 68(21): 214206. doi: 10.7498/aps.68.20190880
    [8] 施建珍, 杨深, 邹亚琪, 纪宪明, 印建平. 用四台阶相位板产生涡旋光束. 物理学报, 2015, 64(18): 184202. doi: 10.7498/aps.64.184202
    [9] 王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林. 利用非传统螺旋相位调控高阶涡旋光束的拓扑结构. 物理学报, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [10] 黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云. 多环涡旋光束的实验研究. 物理学报, 2014, 63(24): 244103. doi: 10.7498/aps.63.244103
    [11] 王林, 袁操今, 聂守平, 李重光, 张慧力, 赵应春, 张秀英, 冯少彤. 数字全息术测定涡旋光束拓扑电荷数. 物理学报, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [12] 丁攀峰, 蒲继雄. 离轴拉盖尔-高斯涡旋光束传输中的光斑演变. 物理学报, 2012, 61(6): 064103. doi: 10.7498/aps.61.064103
    [13] 赵继芝, 江月松, 欧军, 叶继海. 球形粒子在聚焦拉盖尔-高斯光束中的散射特性研究. 物理学报, 2012, 61(6): 064202. doi: 10.7498/aps.61.064202
    [14] 丁攀峰, 蒲继雄. 拉盖尔高斯涡旋光束的传输. 物理学报, 2011, 60(9): 094204. doi: 10.7498/aps.60.094204
    [15] 欧军, 江月松, 黎芳, 刘丽. 拉盖尔-高斯光束在界面反射和折射的质心偏移特性研究. 物理学报, 2011, 60(11): 114203. doi: 10.7498/aps.60.114203
    [16] 邓小玖, 牛国鉴, 刘彩霞, 肖苏. 非傍轴高斯光束传输特性的研究. 物理学报, 2011, 60(9): 094202. doi: 10.7498/aps.60.094202
    [17] 冯博, 甘雪涛, 刘圣, 赵建林. 光波场中多边位错向螺旋位错的转化. 物理学报, 2011, 60(9): 094203. doi: 10.7498/aps.60.094203
    [18] 李阳月, 陈子阳, 刘辉, 蒲继雄. 涡旋光束的产生与干涉. 物理学报, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
    [19] 王 宁, 陆雨田, 李晓莉, 焦志勇. InnoSlab混合腔输出光束质量的理论研究. 物理学报, 2008, 57(9): 5632-5638. doi: 10.7498/aps.57.5632
    [20] 康小平, 何 仲, 吕百达. 矢量非傍轴厄米-拉盖尔-高斯光束的光束质量. 物理学报, 2006, 55(9): 4569-4574. doi: 10.7498/aps.55.4569
计量
  • 文章访问数:  9336
  • PDF下载量:  482
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-12
  • 修回日期:  2018-04-19
  • 刊出日期:  2018-07-05

/

返回文章
返回