搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相干合成涡旋光束的螺旋谱分析及应用研究

彭一鸣 薛煜 肖光宗 于涛 谢文科 夏辉 刘爽 陈欣 陈芳琳 孙学成

引用本文:
Citation:

相干合成涡旋光束的螺旋谱分析及应用研究

彭一鸣, 薛煜, 肖光宗, 于涛, 谢文科, 夏辉, 刘爽, 陈欣, 陈芳琳, 孙学成

Spiral spectrum analysis and application ofcoherent synthetic vortex beams

Peng Yi-Ming, Xue Yu, Xiao Guang-Zong, Yu Tao, Xie Wen-Ke, Xia Hui, Liu Shuang, Chen Xin, Chen Fang-Lin, Sun Xue-Cheng
PDF
HTML
导出引用
  • 应用螺旋谱分析理论, 推导了相干合成涡旋光束螺旋谱分量的位置和大小, 数值分析验证了理论推导的正确性. 基于上述谱分析理论, 可将螺旋谱分析结果作为相干合成涡旋光束质量评价函数并指导相干合成参数优化. 结果表明: 随着子光束数量和束腰半径的增加、组束环半径的减少可提高目标合成拓扑荷的模式纯度, 同时获得高质量涡旋光束. 这与采用桶中功率等传统评价函数得到的结论具有一致性.
    The vortex beam is a ring-shaped beam whose center intensity or axial intensity is zero in the propagation direction and whose phase has a spiral rising or falling gradient distribution, which is also called a dark hollow beam. Vortex beams have important applications in free-space optical communication, optical micromanipulation, quantum information processing, optical measurement, super-resolution imaging, laser processing, and material processing. In recent years, with the in-depth research on vortex beams, the application requirements for high-power vortex beams also increase. High-power and high-quality vortex beam can be obtained by coherent combining technology. However, the spiral spectrum characteristics of the vortex beam generated by coherent combining technology need further exploring. In this paper, based on the theory of spectral analysis, we derive the position and magnitude of the spiral phase spectral component of the coherent synthetic vortex beam. The numerical results verify the correctness of the theoretical derivation. Based on the above spectral analysis theory, the mode purity of the target synthesis topology charge can be used as the evaluation function to evaluate quality and optimize the parameters for the coherent synthetic vortex beam, and then to quantitatively guide the coherent synthesis of the vortex beam. The results show that with the increase of the number of sub-beams and the radius of the beam waist of the source plane, the reduction of the radius of the bundle ring and the mode purity of the target synthesis topology charge can be improved, and then we can obtain the high-quality vortex beam. This is consistent with the conclusion obtained by using traditional evaluation functions such as power in the bucket. The spiral spectrum analysis of the coherent synthetic vortex beam not only makes up for the lack of evaluation of the spiral phase synthesis effect by the traditional evaluation function, but also has certain reference significance for understanding the nature of the coherent synthesis technique.
      通信作者: 谢文科, wenkexiedan@163.com
    • 基金项目: 装备预研领域基金(批准号: 6140415020311)、高能激光技术湖南省重点实验室开放基金(批准号: GNJGJS04)和湖南省光电惯性工程技术研究中心开放基金(批准号: HN-NUDT1908)资助的课题
      Corresponding author: Xie Wen-Ke, wenkexiedan@163.com
    • Funds: Project supported by the Equipment Pre-research Field Fund, China (Grant No. 6140415020311), the Hunan Provincial Key Laboratory of High Energy Laser Technology Fund, China (Grant No. GNJGJS04), and the Hunan Engineering Research Center of Optoelectronic Inertial Technology, China (Grant No. HN-NUDT1908)
    [1]

    Liu P S, Yang H J, Rong J, Wang G, Yan Y M 2010 Opt. Laser Technol. 42 99Google Scholar

    [2]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar

    [3]

    Zhu J, Zhu K C, Tang H Q, Xia H 2017 J. Mod. Opt. 64 1915

    [4]

    Cheng S B, Tao S H 2016 J. Optics-Uk 18 105603Google Scholar

    [5]

    Cheng S B, Tao S H, Zhou C H, Wu L 2015 J. Optics-Uk 17 105613Google Scholar

    [6]

    Xiao G Z, Yang K Y, Luo H, Chen X L, Xiong W 2016 IEEE Photonics J. 8 6100108Google Scholar

    [7]

    Vaziri A, Pan J W, Jennewein T, Weihs G, Zeilinger A 2003 Phys. Rev. Lett. 91 227902Google Scholar

    [8]

    Lavery M P J, Speirits F C, Barnett S M, Padgett M J 2013 Science 341 537Google Scholar

    [9]

    Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C 2006 Phys. Rev. Lett. 97 163903Google Scholar

    [10]

    Allegre O J, Jin Y, Perrie W, Ouyang J, Fearon E, Edwardson S P, Dearden G 2013 Opt. Express 21 21198Google Scholar

    [11]

    Cheng S B, Tao S H, Zhang X Y, Ma W Z 2016 IEEE Photonics J. 8 6100407Google Scholar

    [12]

    Tao S H, Yu W X 2015 Opt. Express 23 1052Google Scholar

    [13]

    Zhu K C, Li S X, Tang Y, Yu Y, Tang H Q 2012 J. Opt. Soc. Am. A 29 251Google Scholar

    [14]

    齐晓庆, 高春清, 刘义东 2010 物理学报 59 264Google Scholar

    Qi X Q, Gao C Q, Liu Y D 2010 Acta Phys. Sin. 59 264Google Scholar

    [15]

    Algorri J F, Urruchi V, Garcia-Camara B, Sanchez-Pena J M 2014 IEEE Electron Device Lett. 35 856Google Scholar

    [16]

    Kumar A, Vaity P, Bhatt J, Singh R P 2013 J. Mod. Opt. 60 1696Google Scholar

    [17]

    Brzobohaty O, Cizmar T, Zemanek P 2008 Opt. Express 16 12688Google Scholar

    [18]

    朱开成, 唐慧琴, 郑小娟, 唐英 2014 物理学报 63 104210Google Scholar

    Zhu K C, Tang H Q, Zheng X J, Tang Y 2014 Acta Phys. Sin. 63 104210Google Scholar

    [19]

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X, Chu X X 2019 Opt. Commun. 436 14Google Scholar

    [20]

    Xie W K, Zhang P, Wang H, Chu X X 2018 Opt. Commun. 427 288Google Scholar

    [21]

    Fu Y Q, Feng G Y, Zhang D Y, Chen J G, Zhou S H 2010 Optik 121 452Google Scholar

    [22]

    Xiong W, Xiao G Z, Han X, Zhou J H, Chen X L, Luo H 2017 Opt. Express 25 9449Google Scholar

    [23]

    Ishaaya A A, Eckhouse V, Shimshi L, Davidson N, Friesem A A 2005 Opt. Express 13 2722Google Scholar

    [24]

    于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣 2018 物理学报 67 134203Google Scholar

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X 2018 Acta Phys. Sin. 67 134203Google Scholar

  • 图 1  M = 12, n = 2, R = 1.2 mm, w0 = 0.24 mm时的高斯光束阵列 (a)源平面空间分布; (b)源平面相位分布; (c)传输 2 m后合成涡旋光束强度分布; (d)传输2 m后合成涡旋光束相位分布; (e)标准2阶BG涡旋光束强度分布; (f)标准2阶BG涡旋光束相位分布

    Fig. 1.  Gaussian beam array with M = 12, n = 2, R = 1.2 mm, w0 = 0.24 mm: (a) Source plane spatial distribution; (b) source plane phase distribution; (c) light field distribution of synthetic vortex beam after 2 m transmission; (d) phase distribution of synthetic vortex beam after 2 m transmission; (e) light field distribution of standard 2nd order BG vortex beam; (f) phase distribution of standard 2nd order BG vortex beam.

    图 2  z = 10 m处相干合成涡旋光束的(a)强度分布和(b)光束相位分布; 螺旋谐波重建的(c)强度分布和(d)相位分布

    Fig. 2.  Target plane at z = 10 m: (a) Light field distribution of coherent synthetic vortex beam; (b) phase distribution of coherent synthetic vortex beam; (c) light field distribution of spiral harmonic reconstruction light field; (d) phase distribution of spiral harmonic reconstruction light field.

    图 3  相干合成涡旋光束螺旋谱分布及大小(其中n = 1, z = 10 m, w0 = 0.2 mm, R = 2.1 mm) (a) M = 8; (b) M = 12; (c) M = 16

    Fig. 3.  Coherent synthetic vortex beam spiral spectrum distribution and size (n = 1, z = 10 m, w0 = 0.2 mm, R = 2.1 mm): (a) M = 8; (b) M = 12; (c) M = 16.

    图 4  相干合成BG涡旋光束(n = 1, z = 10 m, w0 = 0.2 mm, R = 2.1 mm) (a) M = 8时强度分布; (b) M = 16时强度分布; (c) M = 8时相位分布; (d) M = 16时相位分布; (e) M = 8时螺旋谱分布; (f) M = 16时螺旋谱分布

    Fig. 4.  Coherently synthesized BG vortex beam (n = 1, z = 10 m, w0 = 0.2 mm, R = 2.1 mm): (a) M = 8, light intensity distribution; (b) M =16, light intensity distribution; (c) M = 8, phase distribution; (d) M = 16, phase distribution; (e) M = 8, spiral distribution; (f) M = 16, spiral distribution.

    图 5  不同阶合成涡旋光束拓扑荷模式纯度Pl随子光束数量M的变化趋势(w0 = 0.2 mm, R = 2.1 mm, z = 10 m)

    Fig. 5.  Variation trend of the spectral purity Pl of the different order synthetic vortex beams with the number of sub-beams M (w0 = 0.2 mm, R = 2.1 mm, z = 10 m).

    图 6  相干合成BG涡旋光束(n = 1, z = 10 m, M = 12, R = 2.1 mm) (a) w0 = 0.15 mm时强度分布; (b) w0 = 0.3 mm时强度分布; (c) w0 = 0.15 mm时相位分布; (d) w0 = 0.3 mm时相位分布; (e) w0 = 0.15 mm时螺旋谱分布; (f) w0 = 0.3 mm时螺旋谱分布

    Fig. 6.  Coherently synthesized BG vortex beam (n = 1, z = 10 m, M = 12, R = 2.1 mm): (a) w0 = 0.15 mm, light intensity distribution; (b) w0 = 0.3 mm, light intensity distribution; (c) w0 = 0.15 mm, phase distribution; (d) w0 = 0.3 mm, phase distribution; (e) w0 = 0.15 mm, spiral distribution; (f) w0 = 0.3 mm, spiral distribution.

    图 7  不同阶合成涡旋光束拓扑荷模式纯度Pl随子光束束腰半径w0的变化(M = 12, R = 2.1 mm, z = 10 m)

    Fig. 7.  Variation trend of the spectral purity Pl of the different order synthetic vortex beams with sub beam waist radius w0 (M = 12, R = 2.1 mm, z = 10 m).

    图 8  相干合成BG涡旋光束(n = 1, z = 10 m, M = 12, w0 = 0.2 mm) (a) R = 1 mm时强度分布; (b) R = 2.2 mm时强度分布; (c) R = 1 mm时相位分布; (d) R = 2.2 mm时相位分布; (e) R = 1 mm时螺旋谱分布; (f) R = 2.2 mm时螺旋谱分布

    Fig. 8.  Coherently synthesized BG vortex beam (n = 1, z = 10 m, M = 12, w0 = 0.2 mm): (a) R = 1 mm, light intensity distribution; (b) R = 2.2 mm, light intensity distribution; (c) R = 1 mm, phase distribution; (d) R = 2.2 mm, phase distribution; (e) R = 1 mm, spiral distribution; (f) R = 2.2 mm, spiral distribution.

    图 9  不同阶合成涡旋光束拓扑荷模式纯度Pl随组束环半径R的变化(M = 12, w0 = 0.2 mm, z = 10 m)

    Fig. 9.  Variation trend of the spectral purity Pl of the different order synthetic vortex beams with beam ring radius R (M = 12, w0 = 0.2 mm, z = 10 m).

  • [1]

    Liu P S, Yang H J, Rong J, Wang G, Yan Y M 2010 Opt. Laser Technol. 42 99Google Scholar

    [2]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar

    [3]

    Zhu J, Zhu K C, Tang H Q, Xia H 2017 J. Mod. Opt. 64 1915

    [4]

    Cheng S B, Tao S H 2016 J. Optics-Uk 18 105603Google Scholar

    [5]

    Cheng S B, Tao S H, Zhou C H, Wu L 2015 J. Optics-Uk 17 105613Google Scholar

    [6]

    Xiao G Z, Yang K Y, Luo H, Chen X L, Xiong W 2016 IEEE Photonics J. 8 6100108Google Scholar

    [7]

    Vaziri A, Pan J W, Jennewein T, Weihs G, Zeilinger A 2003 Phys. Rev. Lett. 91 227902Google Scholar

    [8]

    Lavery M P J, Speirits F C, Barnett S M, Padgett M J 2013 Science 341 537Google Scholar

    [9]

    Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C 2006 Phys. Rev. Lett. 97 163903Google Scholar

    [10]

    Allegre O J, Jin Y, Perrie W, Ouyang J, Fearon E, Edwardson S P, Dearden G 2013 Opt. Express 21 21198Google Scholar

    [11]

    Cheng S B, Tao S H, Zhang X Y, Ma W Z 2016 IEEE Photonics J. 8 6100407Google Scholar

    [12]

    Tao S H, Yu W X 2015 Opt. Express 23 1052Google Scholar

    [13]

    Zhu K C, Li S X, Tang Y, Yu Y, Tang H Q 2012 J. Opt. Soc. Am. A 29 251Google Scholar

    [14]

    齐晓庆, 高春清, 刘义东 2010 物理学报 59 264Google Scholar

    Qi X Q, Gao C Q, Liu Y D 2010 Acta Phys. Sin. 59 264Google Scholar

    [15]

    Algorri J F, Urruchi V, Garcia-Camara B, Sanchez-Pena J M 2014 IEEE Electron Device Lett. 35 856Google Scholar

    [16]

    Kumar A, Vaity P, Bhatt J, Singh R P 2013 J. Mod. Opt. 60 1696Google Scholar

    [17]

    Brzobohaty O, Cizmar T, Zemanek P 2008 Opt. Express 16 12688Google Scholar

    [18]

    朱开成, 唐慧琴, 郑小娟, 唐英 2014 物理学报 63 104210Google Scholar

    Zhu K C, Tang H Q, Zheng X J, Tang Y 2014 Acta Phys. Sin. 63 104210Google Scholar

    [19]

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X, Chu X X 2019 Opt. Commun. 436 14Google Scholar

    [20]

    Xie W K, Zhang P, Wang H, Chu X X 2018 Opt. Commun. 427 288Google Scholar

    [21]

    Fu Y Q, Feng G Y, Zhang D Y, Chen J G, Zhou S H 2010 Optik 121 452Google Scholar

    [22]

    Xiong W, Xiao G Z, Han X, Zhou J H, Chen X L, Luo H 2017 Opt. Express 25 9449Google Scholar

    [23]

    Ishaaya A A, Eckhouse V, Shimshi L, Davidson N, Friesem A A 2005 Opt. Express 13 2722Google Scholar

    [24]

    于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣 2018 物理学报 67 134203Google Scholar

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X 2018 Acta Phys. Sin. 67 134203Google Scholar

  • [1] 郭状, 欧阳峰, 卢志舟, 王梦宇, 谭庆贵, 谢成峰, 魏斌, 何兴道. 氟化镁微瓶腔光频梳光谱分析及优化. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231126
    [2] 杨鑫宇, 叶华朋, 李佩芸, 廖鹤麟, 袁冬, 周国富. 小型化涡旋光模式解复用器: 原理、制备及应用. 物理学报, 2023, 72(20): 204207. doi: 10.7498/aps.72.20231521
    [3] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [4] 蒋驰, 耿滔. 角向偏振涡旋光的紧聚焦特性研究以及超长超分辨光针的实现. 物理学报, 2023, 72(12): 124201. doi: 10.7498/aps.72.20230304
    [5] 宋凯欣, 闵书刚, 高俊奇, 张双捷, 毛智能, 沈莹, 储昭强. 磁电机械天线的阻抗特性分析. 物理学报, 2022, 71(24): 247502. doi: 10.7498/aps.71.20220591
    [6] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收. 物理学报, 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [7] 李大为, 王韬, 尹晓蕾, 李佳美, 王利, 张腾, 张天雄, 崔勇, 卢兴强, 王丽, 张杰, 徐光. 皮秒拍瓦激光系统宽带激光放大的精确模型和性能分析. 物理学报, 2021, 70(10): 104202. doi: 10.7498/aps.70.20201830
    [8] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211549
    [9] 李子龙, 万源. 强关联电子体系二维相干光谱的理论研究评述. 物理学报, 2021, 70(23): 230308. doi: 10.7498/aps.70.20211556
    [10] 刘强, 何军, 王军民. 室温铯原子气室窄线宽相干布居振荡光谱. 物理学报, 2021, 70(16): 163202. doi: 10.7498/aps.70.20210405
    [11] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置. 物理学报, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [12] 刘尚阔, 王涛, 李坤, 曹昆, 张玺斌, 周艳, 赵建科, 姚保利. 光源光谱特性对空间相机调制传递函数检测的影响. 物理学报, 2021, 70(13): 134208. doi: 10.7498/aps.70.20201575
    [13] 王行政, 杨晨静, 蔡历恒, 陈东. 基于香蕉形液晶分子自组装的纳米螺旋丝有机凝胶及其流变特性. 物理学报, 2020, 69(8): 086102. doi: 10.7498/aps.69.20200332
    [14] 周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼. 上海光源硬X射线相干衍射成像实验方法初探. 物理学报, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [15] 彭林峰, 曾子琪, 孙玉龙, 贾欢欢, 谢佳. 富钠反钙钛矿型固态电解质的简易合成与电化学性能. 物理学报, 2020, 69(22): 228201. doi: 10.7498/aps.69.20201227
    [16] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [17] 陈志鹏, 於文静, 高雷. 非局域颗粒复合介质的相干完美吸收效应. 物理学报, 2019, 68(5): 051101. doi: 10.7498/aps.68.20182108
    [18] 王鹏, 沈赤兵. 等离子体合成射流对超声速混合层的混合增强. 物理学报, 2019, 68(17): 174701. doi: 10.7498/aps.68.20190683
    [19] 麻艳娜, 王文睿, 宋开臣, 于晋龙, 马闯, 张华芳. 基于双波长时域合成技术的微波光子波形产生. 物理学报, 2019, 68(17): 174203. doi: 10.7498/aps.68.20190151
    [20] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析. 物理学报, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
计量
  • 文章访问数:  8034
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-06
  • 修回日期:  2019-07-08
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回