搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相干合成涡旋光束的螺旋谱分析及应用研究

彭一鸣 薛煜 肖光宗 于涛 谢文科 夏辉 刘爽 陈欣 陈芳琳 孙学成

引用本文:
Citation:

相干合成涡旋光束的螺旋谱分析及应用研究

彭一鸣, 薛煜, 肖光宗, 于涛, 谢文科, 夏辉, 刘爽, 陈欣, 陈芳琳, 孙学成

Spiral spectrum analysis and application ofcoherent synthetic vortex beams

Peng Yi-Ming, Xue Yu, Xiao Guang-Zong, Yu Tao, Xie Wen-Ke, Xia Hui, Liu Shuang, Chen Xin, Chen Fang-Lin, Sun Xue-Cheng
PDF
HTML
导出引用
  • 应用螺旋谱分析理论, 推导了相干合成涡旋光束螺旋谱分量的位置和大小, 数值分析验证了理论推导的正确性. 基于上述谱分析理论, 可将螺旋谱分析结果作为相干合成涡旋光束质量评价函数并指导相干合成参数优化. 结果表明: 随着子光束数量和束腰半径的增加、组束环半径的减少可提高目标合成拓扑荷的模式纯度, 同时获得高质量涡旋光束. 这与采用桶中功率等传统评价函数得到的结论具有一致性.
    The vortex beam is a ring-shaped beam whose center intensity or axial intensity is zero in the propagation direction and whose phase has a spiral rising or falling gradient distribution, which is also called a dark hollow beam. Vortex beams have important applications in free-space optical communication, optical micromanipulation, quantum information processing, optical measurement, super-resolution imaging, laser processing, and material processing. In recent years, with the in-depth research on vortex beams, the application requirements for high-power vortex beams also increase. High-power and high-quality vortex beam can be obtained by coherent combining technology. However, the spiral spectrum characteristics of the vortex beam generated by coherent combining technology need further exploring. In this paper, based on the theory of spectral analysis, we derive the position and magnitude of the spiral phase spectral component of the coherent synthetic vortex beam. The numerical results verify the correctness of the theoretical derivation. Based on the above spectral analysis theory, the mode purity of the target synthesis topology charge can be used as the evaluation function to evaluate quality and optimize the parameters for the coherent synthetic vortex beam, and then to quantitatively guide the coherent synthesis of the vortex beam. The results show that with the increase of the number of sub-beams and the radius of the beam waist of the source plane, the reduction of the radius of the bundle ring and the mode purity of the target synthesis topology charge can be improved, and then we can obtain the high-quality vortex beam. This is consistent with the conclusion obtained by using traditional evaluation functions such as power in the bucket. The spiral spectrum analysis of the coherent synthetic vortex beam not only makes up for the lack of evaluation of the spiral phase synthesis effect by the traditional evaluation function, but also has certain reference significance for understanding the nature of the coherent synthesis technique.
      通信作者: 谢文科, wenkexiedan@163.com
    • 基金项目: 装备预研领域基金(批准号: 6140415020311)、高能激光技术湖南省重点实验室开放基金(批准号: GNJGJS04)和湖南省光电惯性工程技术研究中心开放基金(批准号: HN-NUDT1908)资助的课题
      Corresponding author: Xie Wen-Ke, wenkexiedan@163.com
    • Funds: Project supported by the Equipment Pre-research Field Fund, China (Grant No. 6140415020311), the Hunan Provincial Key Laboratory of High Energy Laser Technology Fund, China (Grant No. GNJGJS04), and the Hunan Engineering Research Center of Optoelectronic Inertial Technology, China (Grant No. HN-NUDT1908)
    [1]

    Liu P S, Yang H J, Rong J, Wang G, Yan Y M 2010 Opt. Laser Technol. 42 99Google Scholar

    [2]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar

    [3]

    Zhu J, Zhu K C, Tang H Q, Xia H 2017 J. Mod. Opt. 64 1915

    [4]

    Cheng S B, Tao S H 2016 J. Optics-Uk 18 105603Google Scholar

    [5]

    Cheng S B, Tao S H, Zhou C H, Wu L 2015 J. Optics-Uk 17 105613Google Scholar

    [6]

    Xiao G Z, Yang K Y, Luo H, Chen X L, Xiong W 2016 IEEE Photonics J. 8 6100108Google Scholar

    [7]

    Vaziri A, Pan J W, Jennewein T, Weihs G, Zeilinger A 2003 Phys. Rev. Lett. 91 227902Google Scholar

    [8]

    Lavery M P J, Speirits F C, Barnett S M, Padgett M J 2013 Science 341 537Google Scholar

    [9]

    Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C 2006 Phys. Rev. Lett. 97 163903Google Scholar

    [10]

    Allegre O J, Jin Y, Perrie W, Ouyang J, Fearon E, Edwardson S P, Dearden G 2013 Opt. Express 21 21198Google Scholar

    [11]

    Cheng S B, Tao S H, Zhang X Y, Ma W Z 2016 IEEE Photonics J. 8 6100407Google Scholar

    [12]

    Tao S H, Yu W X 2015 Opt. Express 23 1052Google Scholar

    [13]

    Zhu K C, Li S X, Tang Y, Yu Y, Tang H Q 2012 J. Opt. Soc. Am. A 29 251Google Scholar

    [14]

    齐晓庆, 高春清, 刘义东 2010 物理学报 59 264Google Scholar

    Qi X Q, Gao C Q, Liu Y D 2010 Acta Phys. Sin. 59 264Google Scholar

    [15]

    Algorri J F, Urruchi V, Garcia-Camara B, Sanchez-Pena J M 2014 IEEE Electron Device Lett. 35 856Google Scholar

    [16]

    Kumar A, Vaity P, Bhatt J, Singh R P 2013 J. Mod. Opt. 60 1696Google Scholar

    [17]

    Brzobohaty O, Cizmar T, Zemanek P 2008 Opt. Express 16 12688Google Scholar

    [18]

    朱开成, 唐慧琴, 郑小娟, 唐英 2014 物理学报 63 104210Google Scholar

    Zhu K C, Tang H Q, Zheng X J, Tang Y 2014 Acta Phys. Sin. 63 104210Google Scholar

    [19]

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X, Chu X X 2019 Opt. Commun. 436 14Google Scholar

    [20]

    Xie W K, Zhang P, Wang H, Chu X X 2018 Opt. Commun. 427 288Google Scholar

    [21]

    Fu Y Q, Feng G Y, Zhang D Y, Chen J G, Zhou S H 2010 Optik 121 452Google Scholar

    [22]

    Xiong W, Xiao G Z, Han X, Zhou J H, Chen X L, Luo H 2017 Opt. Express 25 9449Google Scholar

    [23]

    Ishaaya A A, Eckhouse V, Shimshi L, Davidson N, Friesem A A 2005 Opt. Express 13 2722Google Scholar

    [24]

    于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣 2018 物理学报 67 134203Google Scholar

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X 2018 Acta Phys. Sin. 67 134203Google Scholar

  • 图 1  M = 12, n = 2, R = 1.2 mm, w0 = 0.24 mm时的高斯光束阵列 (a)源平面空间分布; (b)源平面相位分布; (c)传输 2 m后合成涡旋光束强度分布; (d)传输2 m后合成涡旋光束相位分布; (e)标准2阶BG涡旋光束强度分布; (f)标准2阶BG涡旋光束相位分布

    Fig. 1.  Gaussian beam array with M = 12, n = 2, R = 1.2 mm, w0 = 0.24 mm: (a) Source plane spatial distribution; (b) source plane phase distribution; (c) light field distribution of synthetic vortex beam after 2 m transmission; (d) phase distribution of synthetic vortex beam after 2 m transmission; (e) light field distribution of standard 2nd order BG vortex beam; (f) phase distribution of standard 2nd order BG vortex beam.

    图 2  z = 10 m处相干合成涡旋光束的(a)强度分布和(b)光束相位分布; 螺旋谐波重建的(c)强度分布和(d)相位分布

    Fig. 2.  Target plane at z = 10 m: (a) Light field distribution of coherent synthetic vortex beam; (b) phase distribution of coherent synthetic vortex beam; (c) light field distribution of spiral harmonic reconstruction light field; (d) phase distribution of spiral harmonic reconstruction light field.

    图 3  相干合成涡旋光束螺旋谱分布及大小(其中n = 1, z = 10 m, w0 = 0.2 mm, R = 2.1 mm) (a) M = 8; (b) M = 12; (c) M = 16

    Fig. 3.  Coherent synthetic vortex beam spiral spectrum distribution and size (n = 1, z = 10 m, w0 = 0.2 mm, R = 2.1 mm): (a) M = 8; (b) M = 12; (c) M = 16.

    图 4  相干合成BG涡旋光束(n = 1, z = 10 m, w0 = 0.2 mm, R = 2.1 mm) (a) M = 8时强度分布; (b) M = 16时强度分布; (c) M = 8时相位分布; (d) M = 16时相位分布; (e) M = 8时螺旋谱分布; (f) M = 16时螺旋谱分布

    Fig. 4.  Coherently synthesized BG vortex beam (n = 1, z = 10 m, w0 = 0.2 mm, R = 2.1 mm): (a) M = 8, light intensity distribution; (b) M =16, light intensity distribution; (c) M = 8, phase distribution; (d) M = 16, phase distribution; (e) M = 8, spiral distribution; (f) M = 16, spiral distribution.

    图 5  不同阶合成涡旋光束拓扑荷模式纯度Pl随子光束数量M的变化趋势(w0 = 0.2 mm, R = 2.1 mm, z = 10 m)

    Fig. 5.  Variation trend of the spectral purity Pl of the different order synthetic vortex beams with the number of sub-beams M (w0 = 0.2 mm, R = 2.1 mm, z = 10 m).

    图 6  相干合成BG涡旋光束(n = 1, z = 10 m, M = 12, R = 2.1 mm) (a) w0 = 0.15 mm时强度分布; (b) w0 = 0.3 mm时强度分布; (c) w0 = 0.15 mm时相位分布; (d) w0 = 0.3 mm时相位分布; (e) w0 = 0.15 mm时螺旋谱分布; (f) w0 = 0.3 mm时螺旋谱分布

    Fig. 6.  Coherently synthesized BG vortex beam (n = 1, z = 10 m, M = 12, R = 2.1 mm): (a) w0 = 0.15 mm, light intensity distribution; (b) w0 = 0.3 mm, light intensity distribution; (c) w0 = 0.15 mm, phase distribution; (d) w0 = 0.3 mm, phase distribution; (e) w0 = 0.15 mm, spiral distribution; (f) w0 = 0.3 mm, spiral distribution.

    图 7  不同阶合成涡旋光束拓扑荷模式纯度Pl随子光束束腰半径w0的变化(M = 12, R = 2.1 mm, z = 10 m)

    Fig. 7.  Variation trend of the spectral purity Pl of the different order synthetic vortex beams with sub beam waist radius w0 (M = 12, R = 2.1 mm, z = 10 m).

    图 8  相干合成BG涡旋光束(n = 1, z = 10 m, M = 12, w0 = 0.2 mm) (a) R = 1 mm时强度分布; (b) R = 2.2 mm时强度分布; (c) R = 1 mm时相位分布; (d) R = 2.2 mm时相位分布; (e) R = 1 mm时螺旋谱分布; (f) R = 2.2 mm时螺旋谱分布

    Fig. 8.  Coherently synthesized BG vortex beam (n = 1, z = 10 m, M = 12, w0 = 0.2 mm): (a) R = 1 mm, light intensity distribution; (b) R = 2.2 mm, light intensity distribution; (c) R = 1 mm, phase distribution; (d) R = 2.2 mm, phase distribution; (e) R = 1 mm, spiral distribution; (f) R = 2.2 mm, spiral distribution.

    图 9  不同阶合成涡旋光束拓扑荷模式纯度Pl随组束环半径R的变化(M = 12, w0 = 0.2 mm, z = 10 m)

    Fig. 9.  Variation trend of the spectral purity Pl of the different order synthetic vortex beams with beam ring radius R (M = 12, w0 = 0.2 mm, z = 10 m).

  • [1]

    Liu P S, Yang H J, Rong J, Wang G, Yan Y M 2010 Opt. Laser Technol. 42 99Google Scholar

    [2]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar

    [3]

    Zhu J, Zhu K C, Tang H Q, Xia H 2017 J. Mod. Opt. 64 1915

    [4]

    Cheng S B, Tao S H 2016 J. Optics-Uk 18 105603Google Scholar

    [5]

    Cheng S B, Tao S H, Zhou C H, Wu L 2015 J. Optics-Uk 17 105613Google Scholar

    [6]

    Xiao G Z, Yang K Y, Luo H, Chen X L, Xiong W 2016 IEEE Photonics J. 8 6100108Google Scholar

    [7]

    Vaziri A, Pan J W, Jennewein T, Weihs G, Zeilinger A 2003 Phys. Rev. Lett. 91 227902Google Scholar

    [8]

    Lavery M P J, Speirits F C, Barnett S M, Padgett M J 2013 Science 341 537Google Scholar

    [9]

    Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C 2006 Phys. Rev. Lett. 97 163903Google Scholar

    [10]

    Allegre O J, Jin Y, Perrie W, Ouyang J, Fearon E, Edwardson S P, Dearden G 2013 Opt. Express 21 21198Google Scholar

    [11]

    Cheng S B, Tao S H, Zhang X Y, Ma W Z 2016 IEEE Photonics J. 8 6100407Google Scholar

    [12]

    Tao S H, Yu W X 2015 Opt. Express 23 1052Google Scholar

    [13]

    Zhu K C, Li S X, Tang Y, Yu Y, Tang H Q 2012 J. Opt. Soc. Am. A 29 251Google Scholar

    [14]

    齐晓庆, 高春清, 刘义东 2010 物理学报 59 264Google Scholar

    Qi X Q, Gao C Q, Liu Y D 2010 Acta Phys. Sin. 59 264Google Scholar

    [15]

    Algorri J F, Urruchi V, Garcia-Camara B, Sanchez-Pena J M 2014 IEEE Electron Device Lett. 35 856Google Scholar

    [16]

    Kumar A, Vaity P, Bhatt J, Singh R P 2013 J. Mod. Opt. 60 1696Google Scholar

    [17]

    Brzobohaty O, Cizmar T, Zemanek P 2008 Opt. Express 16 12688Google Scholar

    [18]

    朱开成, 唐慧琴, 郑小娟, 唐英 2014 物理学报 63 104210Google Scholar

    Zhu K C, Tang H Q, Zheng X J, Tang Y 2014 Acta Phys. Sin. 63 104210Google Scholar

    [19]

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X, Chu X X 2019 Opt. Commun. 436 14Google Scholar

    [20]

    Xie W K, Zhang P, Wang H, Chu X X 2018 Opt. Commun. 427 288Google Scholar

    [21]

    Fu Y Q, Feng G Y, Zhang D Y, Chen J G, Zhou S H 2010 Optik 121 452Google Scholar

    [22]

    Xiong W, Xiao G Z, Han X, Zhou J H, Chen X L, Luo H 2017 Opt. Express 25 9449Google Scholar

    [23]

    Ishaaya A A, Eckhouse V, Shimshi L, Davidson N, Friesem A A 2005 Opt. Express 13 2722Google Scholar

    [24]

    于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣 2018 物理学报 67 134203Google Scholar

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X 2018 Acta Phys. Sin. 67 134203Google Scholar

  • [1] 海迪且木⋅阿布都吾甫尔, 谭乐韬, 于涛, 谢文科, 刘静, 邵铮铮. 基于相干合成涡旋光束的离轴入射转速测量. 物理学报, 2024, 73(16): 168701. doi: 10.7498/aps.73.20240655
    [2] 朱雪松, 刘星雨, 张岩. 涡旋光束在双拉盖尔-高斯旋转腔中的非互易传输. 物理学报, 2022, 71(15): 150701. doi: 10.7498/aps.71.20220191
    [3] 钟哲强, 母杰, 王逍, 张彬. 基于紧聚焦方式的阵列光束相干合成特性分析. 物理学报, 2020, 69(9): 094204. doi: 10.7498/aps.69.20200034
    [4] 吴文兵, 圣宗强, 吴宏伟. 平板式螺旋相位板的设计与应用. 物理学报, 2019, 68(5): 054102. doi: 10.7498/aps.68.20181677
    [5] 于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣. 贝塞尔-高斯涡旋光束相干合成研究. 物理学报, 2018, 67(13): 134203. doi: 10.7498/aps.67.20180325
    [6] 何杰铃, 魏凌, 杨金生, 李喜琪, 何益, 张雨东. 光瞳半径对纯位相调制激光束整形系统的影响. 物理学报, 2016, 65(4): 048701. doi: 10.7498/aps.65.048701
    [7] 施建珍, 杨深, 邹亚琪, 纪宪明, 印建平. 用四台阶相位板产生涡旋光束. 物理学报, 2015, 64(18): 184202. doi: 10.7498/aps.64.184202
    [8] 王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林. 利用非传统螺旋相位调控高阶涡旋光束的拓扑结构. 物理学报, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [9] 王林, 袁操今, 聂守平, 李重光, 张慧力, 赵应春, 张秀英, 冯少彤. 数字全息术测定涡旋光束拓扑电荷数. 物理学报, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [10] 黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云. 多环涡旋光束的实验研究. 物理学报, 2014, 63(24): 244103. doi: 10.7498/aps.63.244103
    [11] 谭毅, 李新阳. 光束相干合成中填充因子对远场光强分布的影响. 物理学报, 2014, 63(9): 094202. doi: 10.7498/aps.63.094202
    [12] 耿超, 罗文, 谭毅, 刘红梅, 牟进博, 李新阳. 基于自适应桶中功率评价函数的光纤放大器相干合成实验研究. 物理学报, 2013, 62(22): 224202. doi: 10.7498/aps.62.224202
    [13] 丁攀峰, 蒲继雄. 离轴拉盖尔-高斯涡旋光束传输中的光斑演变. 物理学报, 2012, 61(6): 064103. doi: 10.7498/aps.61.064103
    [14] 李建龙, 冯国英, 周寿桓, 李玮. 单口径相干合成系统激光光束的M2因子研究. 物理学报, 2012, 61(9): 094206. doi: 10.7498/aps.61.094206
    [15] 冯博, 甘雪涛, 刘圣, 赵建林. 光波场中多边位错向螺旋位错的转化. 物理学报, 2011, 60(9): 094203. doi: 10.7498/aps.60.094203
    [16] 丁攀峰, 蒲继雄. 拉盖尔高斯涡旋光束的传输. 物理学报, 2011, 60(9): 094204. doi: 10.7498/aps.60.094204
    [17] 连天虹, 王石语, 过振, 李兵斌, 蔡德芳, 文建国. 用于激光雷达的相干合成光束研究. 物理学报, 2011, 60(12): 124208. doi: 10.7498/aps.60.124208
    [18] 李阳月, 陈子阳, 刘辉, 蒲继雄. 涡旋光束的产生与干涉. 物理学报, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
    [19] 韩伟涛, 侯蓝田, 耿鹏程. 双包层多芯光子晶体光纤自相干合成的数值分析与实验. 物理学报, 2010, 59(10): 7091-7095. doi: 10.7498/aps.59.7091
    [20] 戚巽骏, 林 斌, 曹向群, 陈钰清. 基于调制传递函数的光学低通滤波器评价模型与实验研究. 物理学报, 2008, 57(5): 2854-2859. doi: 10.7498/aps.57.2854
计量
  • 文章访问数:  10941
  • PDF下载量:  188
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-06
  • 修回日期:  2019-07-08
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回