搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用非传统螺旋相位调控高阶涡旋光束的拓扑结构

王亚东 甘雪涛 俱沛 庞燕 袁林光 赵建林

引用本文:
Citation:

利用非传统螺旋相位调控高阶涡旋光束的拓扑结构

王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林

Control of topological structure in high-order optical vortices by use of noncanonical helical phase

Wang Ya-Dong, Gan Xue-Tao, Ju Pei, Pang Yan, Yuan Lin-Guang, Zhao Jian-Lin
PDF
导出引用
  • 本文提出一种利用非传统螺旋相位调控高阶涡旋光束拓扑结构的方法.数值模拟并实验研究了具有不均匀旋转梯度的非传统螺旋相位对高阶涡旋光束的调控行为.结果表明, 携带有非传统螺旋相位的高阶涡旋光束在传输过程中, 将退化为沿一条直线排列的多个一阶相位奇点, 并且, 这种非传统螺旋相位对高阶涡旋光束的调控特性, 可抑制相位噪声等扰动所引起的拓扑结构随机退化现象.本文的结论为涡旋光束拓扑结构的调控提供了一种可行的新途径, 在基于涡旋光束的光学通信、光学操控等方面具有潜在应用.
    This paper proposes a method for controlling the topological structures in high-order optical vortices by employing a noncanonical phase structure. The control of the evolutions in high-order optical vortices by using a noncanonical phase structure with a nonuniform azimuthal gradient is studied numerically and experimentally. Results show that the propagation of high-order optical vortices along with a noncanonical phase structure becomes a decayed optical distribution with multiple one-charged singularities along a line. In addition, the control from the noncanonical phase structure can suppress random evolutions of topological structures resulted from the phase noise. These conclusions may indicate a new method to control the decay of high-order optical vortices, and promising potential applications in many fields, such as optical vortices-based optical communications and optical tweezers.
    • 基金项目: 国家重点基础研究发展计划(973)计划(批准号: 2012CB921900)和国家自然科学基金(批准号: 61377035, 61205001)资助的课题.
    • Funds: Project supported by the 973 Program (Grant No. 2012CB921900), and the National Natural Science Foundation of China (Grant Nos. 61377035, 61205001).
    [1]

    Cullet P, Gil L, Rocca F 1989 Opt. Commun. 73 403

    [2]

    Kivshar Y S, Ostrovskaya E A 2001 Opt. Photon. News 12 24

    [3]

    Nye J F, Berry M V 1974 Phys. Engin. Sci. 336 165

    [4]

    Ding P F, Pu J X 2012 Acta Phys. Sin. 61 174201 (in Chinese) [丁攀峰, 蒲继雄 2012 物理学报 61 174201]

    [5]

    Fang G J, Sun S H, Pu J X 2012 Acta Phys. Sin. 61 064210 (in Chinese) [方桂娟, 孙顺红, 蒲继雄 2012 物理学报 61 064210]

    [6]

    Gecevičius M, Drevinskas R, Beresna M, Kazansky P 2014 Appl. Phys. Lett. 104 231110

    [7]

    Chen C R, Yeh C H, Shih M F 2014 Opt. Express 22 3180

    [8]

    Dholakia K, Čžmár T 2011 Nature Photon. 5 335

    [9]

    Fickler R, Lapkiewicz R, Plick W N, Krenn M, Schaeff C, Ramelow S, Zeilinger A 2012 Science 338 640

    [10]

    Rodenburg B, Mirhosseini M, Malik M, Rodenburg B, Mirhosseini M, Malik M, Magaña-LoaizaO, Yanakas M, Maher L, Steinhoff N, Tyler G, Boyd R 2014 New Journal of Phys. 16 033020

    [11]

    Lehmuskero A, Li Y, Johansson P 2014 Opt. Express 22 434

    [12]

    Liu Y, Li H N, Hu Y, Du A 2014 Chin. Phys. B 23 087501

    [13]

    Zhou Z H, Guo Y K, Zhu L 2014 Chin. Phys. B 23 044201

    [14]

    Yarmchuk E J, Cordon M J V, Packard R E 1979 Phys. Rev. Lett. 43 214

    [15]

    Gan X, Zhao J, Liu S, Fang L 2009 Chin. Opt. Lett. 7 1142

    [16]

    Mamaev A V, Saffman M, Zozulya A 1997 Phys. Rev. Lett. 78 2108

    [17]

    Gan X, Zhang P, Liu S, Zheng Y, Zhao J, Chen Z G 2009 Opt. Express 17 23130

    [18]

    Vaity P, Singh R P 2012 Opt. Lett. 37 1301

    [19]

    Denisenko V, Shvedov V, Desyatnikov A S, Neshev D, Krolikowski W, Volyar A, Soskin M, Kivshar Y S 2009 Opt. Express 17 23374

    [20]

    Vuong L, Grow T, Ishaaya A, Gaeta A, Eliel E, Fibich G 2006 Phys. Rev. Lett. 96 133901

    [21]

    Ouyang S G 2013 Acta Phys. Sin. 62 040504 (in Chinese) [欧阳世根 2013 物理学报 62 040504]

    [22]

    Malik M, O'Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery M P, Padgett M J, Boyd R W 2012 Opt. Express 20 13195

    [23]

    Reddy S G, Prabhakar S, Aadhi A, Banerji J, Singh R P 2014 JOSA A 31 1295

    [24]

    Anguita J A, Rodriguez H, Quezada C 2014 Aerospace Conference IEEE 2014 p1

    [25]

    Cui Q, Li M, Yu Z 2014 Opt. Commun. 329 10

    [26]

    Dennis M R, O'Holleran K, Padgett M J 2009 Progress in Opt. 53 293

    [27]

    Molina-Terriza G, Wright E M, Torner L 2001 Opt. Lett. 26 163

    [28]

    Kim G H, Lee H J, Kim J U 2003 JOSA B 20 351

    [29]

    Basistiy I V, Soskin M S, Vasnetsov M V 1995 Opt. Commun. 119 604

    [30]

    Sacks Z S, Rozas D, Swartzlander G A 1998 JOSA B 15 2226

    [31]

    Ostrovsky A S, Rickenstorff-Parrao C, Arrizon V 2013 Opt. Lett. 38 534

    [32]

    Palacios D, Rozas D, Swartzlander Jr G A 2002 Phys. Rev. Lett. 88 103902

    [33]

    Nye J F, Berry M V 1974 Mathematical and Physical Sciences 336 165

    [34]

    Cui Q, Li M, Yu Z 2014 Opt. Commun. 329 10

  • [1]

    Cullet P, Gil L, Rocca F 1989 Opt. Commun. 73 403

    [2]

    Kivshar Y S, Ostrovskaya E A 2001 Opt. Photon. News 12 24

    [3]

    Nye J F, Berry M V 1974 Phys. Engin. Sci. 336 165

    [4]

    Ding P F, Pu J X 2012 Acta Phys. Sin. 61 174201 (in Chinese) [丁攀峰, 蒲继雄 2012 物理学报 61 174201]

    [5]

    Fang G J, Sun S H, Pu J X 2012 Acta Phys. Sin. 61 064210 (in Chinese) [方桂娟, 孙顺红, 蒲继雄 2012 物理学报 61 064210]

    [6]

    Gecevičius M, Drevinskas R, Beresna M, Kazansky P 2014 Appl. Phys. Lett. 104 231110

    [7]

    Chen C R, Yeh C H, Shih M F 2014 Opt. Express 22 3180

    [8]

    Dholakia K, Čžmár T 2011 Nature Photon. 5 335

    [9]

    Fickler R, Lapkiewicz R, Plick W N, Krenn M, Schaeff C, Ramelow S, Zeilinger A 2012 Science 338 640

    [10]

    Rodenburg B, Mirhosseini M, Malik M, Rodenburg B, Mirhosseini M, Malik M, Magaña-LoaizaO, Yanakas M, Maher L, Steinhoff N, Tyler G, Boyd R 2014 New Journal of Phys. 16 033020

    [11]

    Lehmuskero A, Li Y, Johansson P 2014 Opt. Express 22 434

    [12]

    Liu Y, Li H N, Hu Y, Du A 2014 Chin. Phys. B 23 087501

    [13]

    Zhou Z H, Guo Y K, Zhu L 2014 Chin. Phys. B 23 044201

    [14]

    Yarmchuk E J, Cordon M J V, Packard R E 1979 Phys. Rev. Lett. 43 214

    [15]

    Gan X, Zhao J, Liu S, Fang L 2009 Chin. Opt. Lett. 7 1142

    [16]

    Mamaev A V, Saffman M, Zozulya A 1997 Phys. Rev. Lett. 78 2108

    [17]

    Gan X, Zhang P, Liu S, Zheng Y, Zhao J, Chen Z G 2009 Opt. Express 17 23130

    [18]

    Vaity P, Singh R P 2012 Opt. Lett. 37 1301

    [19]

    Denisenko V, Shvedov V, Desyatnikov A S, Neshev D, Krolikowski W, Volyar A, Soskin M, Kivshar Y S 2009 Opt. Express 17 23374

    [20]

    Vuong L, Grow T, Ishaaya A, Gaeta A, Eliel E, Fibich G 2006 Phys. Rev. Lett. 96 133901

    [21]

    Ouyang S G 2013 Acta Phys. Sin. 62 040504 (in Chinese) [欧阳世根 2013 物理学报 62 040504]

    [22]

    Malik M, O'Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery M P, Padgett M J, Boyd R W 2012 Opt. Express 20 13195

    [23]

    Reddy S G, Prabhakar S, Aadhi A, Banerji J, Singh R P 2014 JOSA A 31 1295

    [24]

    Anguita J A, Rodriguez H, Quezada C 2014 Aerospace Conference IEEE 2014 p1

    [25]

    Cui Q, Li M, Yu Z 2014 Opt. Commun. 329 10

    [26]

    Dennis M R, O'Holleran K, Padgett M J 2009 Progress in Opt. 53 293

    [27]

    Molina-Terriza G, Wright E M, Torner L 2001 Opt. Lett. 26 163

    [28]

    Kim G H, Lee H J, Kim J U 2003 JOSA B 20 351

    [29]

    Basistiy I V, Soskin M S, Vasnetsov M V 1995 Opt. Commun. 119 604

    [30]

    Sacks Z S, Rozas D, Swartzlander G A 1998 JOSA B 15 2226

    [31]

    Ostrovsky A S, Rickenstorff-Parrao C, Arrizon V 2013 Opt. Lett. 38 534

    [32]

    Palacios D, Rozas D, Swartzlander Jr G A 2002 Phys. Rev. Lett. 88 103902

    [33]

    Nye J F, Berry M V 1974 Mathematical and Physical Sciences 336 165

    [34]

    Cui Q, Li M, Yu Z 2014 Opt. Commun. 329 10

  • [1] 海迪且木⋅阿布都吾甫尔, 谭乐韬, 于涛, 谢文科, 刘静, 邵铮铮. 基于相干合成涡旋光束的离轴入射转速测量. 物理学报, 2024, 73(16): 168701. doi: 10.7498/aps.73.20240655
    [2] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [3] 覃俭. 光源相位噪声对高斯玻色采样的影响. 物理学报, 2023, 72(5): 050302. doi: 10.7498/aps.72.20221766
    [4] 朱雪松, 刘星雨, 张岩. 涡旋光束在双拉盖尔-高斯旋转腔中的非互易传输. 物理学报, 2022, 71(15): 150701. doi: 10.7498/aps.71.20220191
    [5] 范钰婷, 朱恩旭, 赵超樱, 谭维翰. 基于电光晶体平板部分相位调制动态产生涡旋光束. 物理学报, 2022, 71(20): 207801. doi: 10.7498/aps.71.20220835
    [6] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [7] 吴文兵, 圣宗强, 吴宏伟. 平板式螺旋相位板的设计与应用. 物理学报, 2019, 68(5): 054102. doi: 10.7498/aps.68.20181677
    [8] 彭一鸣, 薛煜, 肖光宗, 于涛, 谢文科, 夏辉, 刘爽, 陈欣, 陈芳琳, 孙学成. 相干合成涡旋光束的螺旋谱分析及应用研究. 物理学报, 2019, 68(21): 214206. doi: 10.7498/aps.68.20190880
    [9] 于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣. 贝塞尔-高斯涡旋光束相干合成研究. 物理学报, 2018, 67(13): 134203. doi: 10.7498/aps.67.20180325
    [10] 项晓, 王少锋, 侯飞雁, 权润爱, 翟艺伟, 王盟盟, 周聪华, 许冠军, 董瑞芳, 刘涛, 张首刚. 利用共振无源腔分析和抑制飞秒脉冲激光噪声的理论和实验研究. 物理学报, 2016, 65(13): 134203. doi: 10.7498/aps.65.134203
    [11] 施建珍, 许田, 周巧巧, 纪宪明, 印建平. 用波晶片相位板产生角动量可调的无衍射涡旋空心光束. 物理学报, 2015, 64(23): 234209. doi: 10.7498/aps.64.234209
    [12] 施建珍, 杨深, 邹亚琪, 纪宪明, 印建平. 用四台阶相位板产生涡旋光束. 物理学报, 2015, 64(18): 184202. doi: 10.7498/aps.64.184202
    [13] 黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云. 多环涡旋光束的实验研究. 物理学报, 2014, 63(24): 244103. doi: 10.7498/aps.63.244103
    [14] 王林, 袁操今, 聂守平, 李重光, 张慧力, 赵应春, 张秀英, 冯少彤. 数字全息术测定涡旋光束拓扑电荷数. 物理学报, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [15] 丁学利, 李玉叶. 相位噪声诱发神经放电的单次或两次相干共振. 物理学报, 2014, 63(24): 248701. doi: 10.7498/aps.63.248701
    [16] 陈伟, 孟洲, 周会娟, 罗洪. 远程干涉型光纤传感系统的非线性相位噪声分析. 物理学报, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [17] 冯博, 甘雪涛, 刘圣, 赵建林. 光波场中多边位错向螺旋位错的转化. 物理学报, 2011, 60(9): 094203. doi: 10.7498/aps.60.094203
    [18] 丁攀峰, 蒲继雄. 拉盖尔高斯涡旋光束的传输. 物理学报, 2011, 60(9): 094204. doi: 10.7498/aps.60.094204
    [19] 陈卫东, 徐华, 郭琦. 国际石油价格复杂网络的动力学拓扑性质. 物理学报, 2010, 59(7): 4514-4523. doi: 10.7498/aps.59.4514
    [20] 李阳月, 陈子阳, 刘辉, 蒲继雄. 涡旋光束的产生与干涉. 物理学报, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
计量
  • 文章访问数:  6488
  • PDF下载量:  4669
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-25
  • 修回日期:  2014-08-10
  • 刊出日期:  2015-02-05

/

返回文章
返回