搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多环涡旋光束的实验研究

黄素娟 谷婷婷 缪庄 贺超 王廷云

引用本文:
Citation:

多环涡旋光束的实验研究

黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云

Experimental study on multiple-ring vortex beams

Huang Su-Juan, Gu Ting-Ting, Miao Zhuang, He Chao, Wang Ting-Yun
PDF
导出引用
  • 涡旋光束的产生、传输与应用是当前光学领域热门的研究课题之一. 本文提出的新型多环涡旋光束, 包括双环涡旋及三环涡旋光束, 它是由多束携带不同拓扑电荷数且束腰半径不同的拉盖尔-高斯涡旋光束共轴叠加而成, 其光强分布为多环结构. 从理论上研究了多环涡旋光束的形成与分布特征, 基于共轭对称延拓Fourier计算全息方法生成了多环涡旋光束的计算全息图, 并利用一个空间光调制器实验产生了与理论一致的高质量的多环涡旋光束. 研究表明多环涡旋光束的各环携带不同的轨道角动量, 空间分布保持相互独立. 这种新型的多环涡旋光束相对于携带单一拓扑电荷数的涡旋光束, 提供了更多的控制参数和更加多样化的结构分布, 因此在光学镊子、光学捕获等微操控以及光通信领域具有潜在的应用潜力.
    The generation, propagation and application of vortex beams have been hot research topics in recent years. In this paper we introduce the novel multiple-ring vortex beams, including double-ring vortex beams and triple-ring vortex beams, which are generated by the coaxial superposition of multiple Laguerre-Gaussian vortex beams with different topological charge numbers and different waist parameters, and their intensity distribution is of multiple-ring. We study the generation and distribution characteristics of multiple-ring vortex beams theoretically, obtain the computer generated hologram of multiple-ring vortex beams based on conjugate symmetric extension Fourier computer generated holography, and experimentally generate quality multiple-ring vortex beams using a spatial light modulator. Excellent agreement between theoretical and experimental results is observed. The study indicates that each ring of multiple-ring vortex beams carries different orbital angular momentum, and the spatial distribution is independent. The novel multiple-ring vortex beams provide more controllable parameters and more diverse structure distributions, which enable their applications in the fields of micro-manipulation as optical tweezers or optical spanner. Furthermore, they also have potential applications as available encoding tools in optical communication.
    • 基金项目: 国家自然科学基金(批准号: 61178088, 61235002, 61475098)、上海市科技创新行动计划(批准号: 14511100100) 和上海市教委科研创新基金(批准号: 12YZ011)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178088, 61235002, 61475098), the Shanghai Science and Technology Innovation Action Plan, China (Grant No. 14511100100), and the Innovation Fund of Shanghai Education Committee, China (Grant No. 12YZ011).
    [1]

    Curtis J E, Grier D G 2003 Phys. Rev. Lett. 90 133901

    [2]

    Heckenberg N R, Mcduff R, Smith C P, Dunlop H R, Wegener M J 1992 Opt. Quantum Electron. 24 S951

    [3]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

    [4]

    Barnett S M, Allen L 1994 Opt. Commun. 110 670

    [5]

    Beijersbergen M W, Allen L, Vanderveen H E L O, Woerdman J P 1993 Opt. Commun. 96 123

    [6]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321

    [7]

    Turnbull G A, Robertson D A, Smith G M, Allen L, Padgett M J 1996 Opt. Commun. 127 183

    [8]

    Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169

    [9]

    Ostrovsky A S, Parrao P C, Arrizon V 2013 Opt. Lett. 38 534

    [10]

    Ding P F, Pu J X 2012 Acta Phys. Sin. 61 174201 (in Chinese) [丁攀峰, 蒲继雄 2012 物理学报 61 174201]

    [11]

    Arlt J, Padgett M J 2000 Opt. Lett. 25 191

    [12]

    Arnold S F, Leach J, Padgett M J, Lembessis V E, Ellinas D, Wright A J, Girkin J M, Girkin J M, Ohberg P, Arnold A S 2007 Opt. Express 15 8619

    [13]

    He X D, Xu P, Wang J, Zhan M S 2009 Opt. Express 17 21007

    [14]

    Vaity P, Singh R P 2011 Opt. Lett. 36 2994

    [15]

    Litvin I A, Burger L, Forbes A 2013 Opt. Lett. 38 3363

    [16]

    Baumann S M, Kalb D M, MacMillan L H, Galvez E J 2009 Opt. Express 17 9818

    [17]

    Ando T, Matsumoto N, Ohtake Y, Takiguchi Y, Inoue T 2010 J. Opt. Soc. Am. A 27 2602

    [18]

    Fang G J, Pu J X 2012 Chin. Phys. B. 21 084203

    [19]

    Guo C S, Liu X, He J L, Wang H T 2004 Opt. Express 12 4625

    [20]

    Sun S H, Pu J X 2011 Acta Opt. Sin. 31(s1) 100520 (in Chinese) [孙顺红, 蒲继雄 2011 光学学报 31(s1) 100520]

    [21]

    Fang G J, Sun S H, Pu J X 2012 Acta Phys. Sin. 61 064210 (in Chinese) [方桂娟, 孙顺红, 蒲继雄 2012 物理学报 61 064210]

    [22]

    Huang S J, Wang S Z, Yu Y J 2009 Acta Phys. Sin. 58 952 (in Chinese) [黄素娟, 王朔中, 于瀛洁 2009 物理学报 58 952]

  • [1]

    Curtis J E, Grier D G 2003 Phys. Rev. Lett. 90 133901

    [2]

    Heckenberg N R, Mcduff R, Smith C P, Dunlop H R, Wegener M J 1992 Opt. Quantum Electron. 24 S951

    [3]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

    [4]

    Barnett S M, Allen L 1994 Opt. Commun. 110 670

    [5]

    Beijersbergen M W, Allen L, Vanderveen H E L O, Woerdman J P 1993 Opt. Commun. 96 123

    [6]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321

    [7]

    Turnbull G A, Robertson D A, Smith G M, Allen L, Padgett M J 1996 Opt. Commun. 127 183

    [8]

    Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169

    [9]

    Ostrovsky A S, Parrao P C, Arrizon V 2013 Opt. Lett. 38 534

    [10]

    Ding P F, Pu J X 2012 Acta Phys. Sin. 61 174201 (in Chinese) [丁攀峰, 蒲继雄 2012 物理学报 61 174201]

    [11]

    Arlt J, Padgett M J 2000 Opt. Lett. 25 191

    [12]

    Arnold S F, Leach J, Padgett M J, Lembessis V E, Ellinas D, Wright A J, Girkin J M, Girkin J M, Ohberg P, Arnold A S 2007 Opt. Express 15 8619

    [13]

    He X D, Xu P, Wang J, Zhan M S 2009 Opt. Express 17 21007

    [14]

    Vaity P, Singh R P 2011 Opt. Lett. 36 2994

    [15]

    Litvin I A, Burger L, Forbes A 2013 Opt. Lett. 38 3363

    [16]

    Baumann S M, Kalb D M, MacMillan L H, Galvez E J 2009 Opt. Express 17 9818

    [17]

    Ando T, Matsumoto N, Ohtake Y, Takiguchi Y, Inoue T 2010 J. Opt. Soc. Am. A 27 2602

    [18]

    Fang G J, Pu J X 2012 Chin. Phys. B. 21 084203

    [19]

    Guo C S, Liu X, He J L, Wang H T 2004 Opt. Express 12 4625

    [20]

    Sun S H, Pu J X 2011 Acta Opt. Sin. 31(s1) 100520 (in Chinese) [孙顺红, 蒲继雄 2011 光学学报 31(s1) 100520]

    [21]

    Fang G J, Sun S H, Pu J X 2012 Acta Phys. Sin. 61 064210 (in Chinese) [方桂娟, 孙顺红, 蒲继雄 2012 物理学报 61 064210]

    [22]

    Huang S J, Wang S Z, Yu Y J 2009 Acta Phys. Sin. 58 952 (in Chinese) [黄素娟, 王朔中, 于瀛洁 2009 物理学报 58 952]

  • [1] 高乾程, 何泽浩, 刘珂瑄, 韩超, 曹良才. 面向纯相位型全息显示的自适应混合约束迭代算法. 物理学报, 2023, 72(2): 024203. doi: 10.7498/aps.72.20221690
    [2] 王良伟, 刘方德, 李云达, 韩伟, 孟增明, 张靖. 基于空间光调制器构建二维任意形状的87Rb原子阵列. 物理学报, 2023, 0(0): . doi: 10.7498/aps.72.20222096
    [3] 范钰婷, 朱恩旭, 赵超樱, 谭维翰. 基于电光晶体平板部分相位调制动态产生涡旋光束. 物理学报, 2022, 71(20): 207801. doi: 10.7498/aps.71.20220835
    [4] 喻欢欢, 张晨爽, 林丹樱, 于斌, 屈军乐. 基于高速相位型空间光调制器的双光子多焦点结构光显微技术. 物理学报, 2021, 70(9): 098701. doi: 10.7498/aps.70.20201797
    [5] 汤明玉, 武梦婷, 臧瑞环, 荣腾达, 杜艳丽, 马凤英, 段智勇, 弓巧侠. 菲涅耳非相干数字全息大视场研究. 物理学报, 2019, 68(10): 104204. doi: 10.7498/aps.68.20182216
    [6] 白云鹤, 臧瑞环, 汪盼, 荣腾达, 马凤英, 杜艳丽, 段智勇, 弓巧侠. 基于空间光调制器的非相干数字全息单次曝光研究. 物理学报, 2018, 67(6): 064202. doi: 10.7498/aps.67.20172127
    [7] 解万财, 黄素娟, 邵蔚, 朱福全, 陈木生. 基于混合光模式阵列的自由空间编码通信. 物理学报, 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [8] 张昊, 常琛亮, 夏军. 单环多段光强分布检测光学涡旋拓扑荷值. 物理学报, 2016, 65(6): 064101. doi: 10.7498/aps.65.064101
    [9] 席思星, 王晓雷, 黄帅, 常胜江, 林列. 基于光学全息的任意矢量光的生成方法. 物理学报, 2015, 64(12): 124202. doi: 10.7498/aps.64.124202
    [10] 王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林. 利用非传统螺旋相位调控高阶涡旋光束的拓扑结构. 物理学报, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [11] 赵娟莹, 邓冬梅, 张泽, 刘京郊, 姜东升. 自加速类贝塞尔-厄米-高斯光束的理论和实验研究. 物理学报, 2014, 63(4): 044204. doi: 10.7498/aps.63.044204
    [12] 王林, 袁操今, 聂守平, 李重光, 张慧力, 赵应春, 张秀英, 冯少彤. 数字全息术测定涡旋光束拓扑电荷数. 物理学报, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [13] 周巧巧, 徐淑武, 陆俊发, 周琦, 纪宪明, 印建平. 液晶空间光调制器产生可调三光学势阱. 物理学报, 2013, 62(15): 153701. doi: 10.7498/aps.62.153701
    [14] 顾宋博, 徐淑武, 陆俊发, 纪宪明, 印建平. 用液晶空间光调制器产生光阱阵列. 物理学报, 2012, 61(15): 153701. doi: 10.7498/aps.61.153701
    [15] 徐淑武, 周巧巧, 顾宋博, 纪宪明, 印建平. 用空间光调制器产生三维光阱阵列 . 物理学报, 2012, 61(22): 223702. doi: 10.7498/aps.61.223702
    [16] 丁攀峰, 蒲继雄. 部分相干涡旋光束传输中的光斑分析. 物理学报, 2012, 61(17): 174201. doi: 10.7498/aps.61.174201
    [17] 丁攀峰, 蒲继雄. 离轴拉盖尔-高斯涡旋光束传输中的光斑演变. 物理学报, 2012, 61(6): 064103. doi: 10.7498/aps.61.064103
    [18] 辛璟焘, 高春清, 李辰, 王铮. 螺旋光束经过振幅型衍射光学元件的传输特性及其拓扑电荷数的测量. 物理学报, 2012, 61(17): 174202. doi: 10.7498/aps.61.174202
    [19] 丁攀峰, 蒲继雄. 拉盖尔高斯涡旋光束的传输. 物理学报, 2011, 60(9): 094204. doi: 10.7498/aps.60.094204
    [20] 李阳月, 陈子阳, 刘辉, 蒲继雄. 涡旋光束的产生与干涉. 物理学报, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
计量
  • 文章访问数:  4073
  • PDF下载量:  5900
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-05
  • 修回日期:  2014-07-03
  • 刊出日期:  2014-12-05

多环涡旋光束的实验研究

  • 1. 上海大学通信与信息工程学院, 上海大学特种光纤与光接入网省部共建重点实验室, 上海 200072
    基金项目: 国家自然科学基金(批准号: 61178088, 61235002, 61475098)、上海市科技创新行动计划(批准号: 14511100100) 和上海市教委科研创新基金(批准号: 12YZ011)资助的课题.

摘要: 涡旋光束的产生、传输与应用是当前光学领域热门的研究课题之一. 本文提出的新型多环涡旋光束, 包括双环涡旋及三环涡旋光束, 它是由多束携带不同拓扑电荷数且束腰半径不同的拉盖尔-高斯涡旋光束共轴叠加而成, 其光强分布为多环结构. 从理论上研究了多环涡旋光束的形成与分布特征, 基于共轭对称延拓Fourier计算全息方法生成了多环涡旋光束的计算全息图, 并利用一个空间光调制器实验产生了与理论一致的高质量的多环涡旋光束. 研究表明多环涡旋光束的各环携带不同的轨道角动量, 空间分布保持相互独立. 这种新型的多环涡旋光束相对于携带单一拓扑电荷数的涡旋光束, 提供了更多的控制参数和更加多样化的结构分布, 因此在光学镊子、光学捕获等微操控以及光通信领域具有潜在的应用潜力.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回