搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合光模式阵列的自由空间编码通信

解万财 黄素娟 邵蔚 朱福全 陈木生

引用本文:
Citation:

基于混合光模式阵列的自由空间编码通信

解万财, 黄素娟, 邵蔚, 朱福全, 陈木生

Free-space optical communication based on hybrid optical mode array encoding

Xie Wan-Cai, Huang Su-Juan, Shao Wei, Zhu Fu-Quan, Chen Mu-Sheng
PDF
导出引用
  • 光学涡旋的产生、传输与应用是当前光学领域的研究热点之一.光学涡旋具有轨道角动量,作为一种全新的自由度,丰富了目前光通信的方式.利用面向目标的共轭对称延拓傅里叶计算全息技术,基于空间光调制器,用单束激光直接产生混合光模式阵列进行编码通信.采用由单光涡和复合光涡构成的4种易于识别的模式组成22混合光模式阵列,进行灰度图像的编码传输.在接收端提取混合光模式阵列图的信息并进行解码,实现零误码的灰度图像再现.以传输一幅Lena图像为例,使用22混合光模式阵列进行编码通信,相对于传统单光涡编码通信,其信息容量可增加4倍.该方法光路简单易行,可扩展性强,进一步拓展使用44混合光模式阵列进行编码通信,信息容量提升16倍.提出的混合光模式阵列编码通信方法对于提高信息传输容量具有重要价值.
    The generation, propagation and application of optical vortex have been hot research topics in recent years. Optical vortex carries orbital angular momentum (OAM) that potentially increases the capacity and the spectral efficiency of optical communication system as a new degree of freedom. The optical vortex can be used not only as information carrier for space-division multiplexing, but also for encoding/decoding. We present a novel free-space optical communication system based on hybrid optical mode array encoding/decoding. The array includes four modes that can easily be identified by image processing. The four modes are Gaussian beam, single optical vortex, and two different composite optical vortices. In this paper, the computer generated hologram (CGH) of the hybrid optical mode array is generated based on the object-oriented conjugate-symmetric extension Fourier holography. When the CGH is loaded onto the electronic addressing reflection-type spatial light modulator (SLM), a single light beam illuminates the SLM, and the desired hybrid optical mode array is generated. In the experiment, a m 32 pixel32 pixel Lena gray image is transferred. At the transmitter, the Lena gray image is scanned line by line. The gray value (0-255) of each pixel with 8-bit information is extracted from the image and converted into a 22 hybrid optical mode array, which is encoded into the CGH. Hence, the m 32 pixel32 pixel Lena gray image is corresponding to a sequence with 1024 CGHs. By switching the CGHs loaded onto the SLM, the Lena gray image is transmitted in the form of the hybrid optical mode array. At the receiver, each hybrid optical mode array is decoded to a pixel value. To distinguish different modes conveniently, two cross lines are set at the center of each mode. By counting the peaks of two intensity distribution lines, the modes can easily be identified. We demonstrate the image reproduction of Lena with zero bit error rate (BER). The experimental result shows the favorable performance of the free-space optical communication link based on hybrid optical mode array encoding/decoding. Compared to that of the traditional single-vortex encoding communication system, the information capacity of our system with 22 hybrid optical mode array increases by four times. In addition, the presented experimental system is feasible and has strong expansibility. The information capacity can increase by 16 times with a 44 hybrid optical mode array based on the same experimental setup. Therefore, the presented free-space optical communication system using hybrid optical mode array encoding/decoding has great significance for improving the capacity of free-space optical communication system.
      通信作者: 黄素娟, sjhuang@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61475098)和上海市科委科研计划(批准号14440500100)资助的课题.
      Corresponding author: Huang Su-Juan, sjhuang@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61475098) and the Shanghai Science and Technology Commission Research Plan, China (Grant No. 14440500100).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

    [2]

    Heckenberg N R, McDuff R, Smith C P, Rubinsztein-Dunlop H, Wegener M J 1992 Opt. Quant. Electron. 24 S951

    [3]

    Ding P F, Pu J X 2011 Acta Phys. Sin. 60 094204 (in Chinese) [丁攀峰, 蒲继雄 2011 物理学报 60 094204]

    [4]

    Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161

    [5]

    He Y L, Liu Z X, Liu Y C, Zhou J X, Ke Y G, Luo H L, Wen S C 2015 Opt. Lett. 40 5506

    [6]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488

    [7]

    Fazal I M, Ahmed N, Wang J, Yang J Y, Yan Y, Shamee B, Huang H, Yue Y, Dolinar S, Tur M, Willner A E 2012 Opt. Lett. 37 4753

    [8]

    Huang H, Xie G D, Yan Y, Ahmed N, Ren Y X, Yue Y, Rogawski D, Willner M J, Erkmen B I, Birnbaum K M, Dolinar S J, Lavery M P J, Padgett M J, Tur M, Willner A E 2014 Opt. Lett. 39 197

    [9]

    Zhu Y X, Zou K H, Zheng Z N, Zhang F 2016 Opt. Express 24 3967

    [10]

    Li S H, Wang J 2017 Sci. Rep. 7 43233

    [11]

    Wang J, Li S, Luo M, Liu J, Zhu L, Li C, Xie D Q, Yang Q, Yu S H, Sun J Q, Zhang X L, Shieh W, Willner A E 2014 The European Conference on Optical Communication Cannes, France, September 21-25, Mo.4.5.1

    [12]

    Ramachandran S, Kristensen P 2013 Nanophotonics 2 455

    [13]

    Wang A D, Zhu L, Chen S, Du C, Mo Q, Wang J 2016 Opt. Express 24 11716

    [14]

    Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas'ko V, Barnett S M, Franke-Arnold S 2004 Opt. Express 12 5448

    [15]

    L H, Ke X Z 2009 Acta Opt. Sin. 29 331 (in Chinese) [吕宏, 柯熙政 2009 光学学报 29 331]

    [16]

    Krenn M, Fickler R, Fink M, Handsteiner J, Malik M, Scheidl T, Ursin R, Zeilinger A 2014 New. J. Phys. 16 113028

    [17]

    Zhao Y, Wang J 2015 Opt. Lett. 40 4843

    [18]

    Brning R, Ndagano B, McLaren M, Schroter S, Kobelke J, Duparre M, Forbes A 2016 J. Opt. 18 03LT01

    [19]

    Zhu L, Liu J, Mo Q, Cheng D, Wang J 2016 Opt. Express 24 16934

    [20]

    Xin J T, Gao C Q, Li C, Wang Z 2012 Acta Phys. Sin. 61 174202 (in Chinese) [辛璟焘, 高春清, 李辰, 王铮 2012 物理学报 61 174202]

    [21]

    Fu D Z, Jia J L, Zhou Y N, Chen D X, Gao H, Li F L, Zhang P 2015 Acta Phys. Sin. 64 130704 (in Chinese) [付栋之, 贾俊亮, 周英男, 陈东旭, 高宏, 李福利, 张沛 2015 物理学报 64 130704]

    [22]

    Li S, Xu Z, Liu J, Zhou N, Zhao Y F, Zhu L, Xia F, Wang J 2015 Conference on Lasers and Electro-Optics San Jose, USA, May 10-15, JTh2A.67

    [23]

    Huang S J, Wang S Z, Yu Y J 2009 Acta Phys. Sin. 58 952 (in Chinese) [黄素娟, 王朔中, 于瀛洁 2009 物理学报 58 952]

    [24]

    Huang S J, He C, Wang T W 2014 J. Opt. 16 035402

    [25]

    Huang S J, Gu T T, Miao Z, He C, Wang T Y 2014 Acta Phys. Sin. 63 244103 (in Chinese) [黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云 2014 物理学报 63 244103]

  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

    [2]

    Heckenberg N R, McDuff R, Smith C P, Rubinsztein-Dunlop H, Wegener M J 1992 Opt. Quant. Electron. 24 S951

    [3]

    Ding P F, Pu J X 2011 Acta Phys. Sin. 60 094204 (in Chinese) [丁攀峰, 蒲继雄 2011 物理学报 60 094204]

    [4]

    Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161

    [5]

    He Y L, Liu Z X, Liu Y C, Zhou J X, Ke Y G, Luo H L, Wen S C 2015 Opt. Lett. 40 5506

    [6]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488

    [7]

    Fazal I M, Ahmed N, Wang J, Yang J Y, Yan Y, Shamee B, Huang H, Yue Y, Dolinar S, Tur M, Willner A E 2012 Opt. Lett. 37 4753

    [8]

    Huang H, Xie G D, Yan Y, Ahmed N, Ren Y X, Yue Y, Rogawski D, Willner M J, Erkmen B I, Birnbaum K M, Dolinar S J, Lavery M P J, Padgett M J, Tur M, Willner A E 2014 Opt. Lett. 39 197

    [9]

    Zhu Y X, Zou K H, Zheng Z N, Zhang F 2016 Opt. Express 24 3967

    [10]

    Li S H, Wang J 2017 Sci. Rep. 7 43233

    [11]

    Wang J, Li S, Luo M, Liu J, Zhu L, Li C, Xie D Q, Yang Q, Yu S H, Sun J Q, Zhang X L, Shieh W, Willner A E 2014 The European Conference on Optical Communication Cannes, France, September 21-25, Mo.4.5.1

    [12]

    Ramachandran S, Kristensen P 2013 Nanophotonics 2 455

    [13]

    Wang A D, Zhu L, Chen S, Du C, Mo Q, Wang J 2016 Opt. Express 24 11716

    [14]

    Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas'ko V, Barnett S M, Franke-Arnold S 2004 Opt. Express 12 5448

    [15]

    L H, Ke X Z 2009 Acta Opt. Sin. 29 331 (in Chinese) [吕宏, 柯熙政 2009 光学学报 29 331]

    [16]

    Krenn M, Fickler R, Fink M, Handsteiner J, Malik M, Scheidl T, Ursin R, Zeilinger A 2014 New. J. Phys. 16 113028

    [17]

    Zhao Y, Wang J 2015 Opt. Lett. 40 4843

    [18]

    Brning R, Ndagano B, McLaren M, Schroter S, Kobelke J, Duparre M, Forbes A 2016 J. Opt. 18 03LT01

    [19]

    Zhu L, Liu J, Mo Q, Cheng D, Wang J 2016 Opt. Express 24 16934

    [20]

    Xin J T, Gao C Q, Li C, Wang Z 2012 Acta Phys. Sin. 61 174202 (in Chinese) [辛璟焘, 高春清, 李辰, 王铮 2012 物理学报 61 174202]

    [21]

    Fu D Z, Jia J L, Zhou Y N, Chen D X, Gao H, Li F L, Zhang P 2015 Acta Phys. Sin. 64 130704 (in Chinese) [付栋之, 贾俊亮, 周英男, 陈东旭, 高宏, 李福利, 张沛 2015 物理学报 64 130704]

    [22]

    Li S, Xu Z, Liu J, Zhou N, Zhao Y F, Zhu L, Xia F, Wang J 2015 Conference on Lasers and Electro-Optics San Jose, USA, May 10-15, JTh2A.67

    [23]

    Huang S J, Wang S Z, Yu Y J 2009 Acta Phys. Sin. 58 952 (in Chinese) [黄素娟, 王朔中, 于瀛洁 2009 物理学报 58 952]

    [24]

    Huang S J, He C, Wang T W 2014 J. Opt. 16 035402

    [25]

    Huang S J, Gu T T, Miao Z, He C, Wang T Y 2014 Acta Phys. Sin. 63 244103 (in Chinese) [黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云 2014 物理学报 63 244103]

  • [1] 高乾程, 何泽浩, 刘珂瑄, 韩超, 曹良才. 面向纯相位型全息显示的自适应混合约束迭代算法. 物理学报, 2023, 72(2): 024203. doi: 10.7498/aps.72.20221690
    [2] 王良伟, 刘方德, 李云达, 韩伟, 孟增明, 张靖. 基于空间光调制器构建二维任意形状的87Rb原子阵列. 物理学报, 2023, 72(6): 064201. doi: 10.7498/aps.72.20222096
    [3] 赵健, 陈昭昀, 庄希宁, 薛程, 吴玉椿, 郭国平. 量子态制备及其在量子机器学习中的前景. 物理学报, 2021, 70(14): 140307. doi: 10.7498/aps.70.20210958
    [4] 喻欢欢, 张晨爽, 林丹樱, 于斌, 屈军乐. 基于高速相位型空间光调制器的双光子多焦点结构光显微技术. 物理学报, 2021, 70(9): 098701. doi: 10.7498/aps.70.20201797
    [5] 齐淑霞, 刘圣, 李鹏, 韩磊, 程华超, 吴东京, 赵建林. 高效产生任意矢量光场的一种方法. 物理学报, 2019, 68(2): 024201. doi: 10.7498/aps.68.20181816
    [6] 汤明玉, 武梦婷, 臧瑞环, 荣腾达, 杜艳丽, 马凤英, 段智勇, 弓巧侠. 菲涅耳非相干数字全息大视场研究. 物理学报, 2019, 68(10): 104204. doi: 10.7498/aps.68.20182216
    [7] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制. 物理学报, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [8] 白云鹤, 臧瑞环, 汪盼, 荣腾达, 马凤英, 杜艳丽, 段智勇, 弓巧侠. 基于空间光调制器的非相干数字全息单次曝光研究. 物理学报, 2018, 67(6): 064202. doi: 10.7498/aps.67.20172127
    [9] 陈巍, 高军, 张广, 曹祥玉, 杨欢欢, 郑月军. 一种编码式宽带多功能反射屏. 物理学报, 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [10] 杨欢欢, 杨帆, 许慎恒, 李懋坤, 曹祥玉, 高军. Ku波段编码式电控超薄周期单元设计与验证. 物理学报, 2016, 65(5): 054102. doi: 10.7498/aps.65.054102
    [11] 张昊, 常琛亮, 夏军. 单环多段光强分布检测光学涡旋拓扑荷值. 物理学报, 2016, 65(6): 064101. doi: 10.7498/aps.65.064101
    [12] 席思星, 王晓雷, 黄帅, 常胜江, 林列. 基于光学全息的任意矢量光的生成方法. 物理学报, 2015, 64(12): 124202. doi: 10.7498/aps.64.124202
    [13] 黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云. 多环涡旋光束的实验研究. 物理学报, 2014, 63(24): 244103. doi: 10.7498/aps.63.244103
    [14] 周巧巧, 徐淑武, 陆俊发, 周琦, 纪宪明, 印建平. 液晶空间光调制器产生可调三光学势阱. 物理学报, 2013, 62(15): 153701. doi: 10.7498/aps.62.153701
    [15] 方桂娟, 孙顺红, 蒲继雄. 分数阶双涡旋光束的实验研究. 物理学报, 2012, 61(6): 064210. doi: 10.7498/aps.61.064210
    [16] 辛璟焘, 高春清, 李辰, 王铮. 螺旋光束经过振幅型衍射光学元件的传输特性及其拓扑电荷数的测量. 物理学报, 2012, 61(17): 174202. doi: 10.7498/aps.61.174202
    [17] 顾宋博, 徐淑武, 陆俊发, 纪宪明, 印建平. 用液晶空间光调制器产生光阱阵列. 物理学报, 2012, 61(15): 153701. doi: 10.7498/aps.61.153701
    [18] 徐淑武, 周巧巧, 顾宋博, 纪宪明, 印建平. 用空间光调制器产生三维光阱阵列. 物理学报, 2012, 61(22): 223702. doi: 10.7498/aps.61.223702
    [19] 甘甜, 冯少彤, 聂守平, 朱竹青. 基于分块DCT变换编码的小波域多幅图像融合算法. 物理学报, 2011, 60(11): 114205. doi: 10.7498/aps.60.114205
    [20] 葛爱明, 隋 展, 徐克璹. 反射型LCOS器件纯相位调制特性的研究. 物理学报, 2003, 52(10): 2481-2485. doi: 10.7498/aps.52.2481
计量
  • 文章访问数:  5363
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-09
  • 修回日期:  2017-04-06
  • 刊出日期:  2017-07-05

/

返回文章
返回