搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长周期多芯手征光纤轨道角动量的调制

崔粲 王智 李强 吴重庆 王健

引用本文:
Citation:

长周期多芯手征光纤轨道角动量的调制

崔粲, 王智, 李强, 吴重庆, 王健

Modulation of orbital angular momentum in long periodchirally-coupled-cores fiber

Cui Can, Wang Zhi, Li Qiang, Wu Chong-Qing, Wang Jian
PDF
HTML
导出引用
  • 基于矢量模式耦合理论, 在多模光纤中引入手性耦合纤芯结构, 设计了一种光纤型光轨道角动量调制器. 使用单根光纤, 无需施加扭转或应力, 可以实现任意光轨道角动量的调制. 通过理论分析与数值仿真, 研究了不同结构参数对轨道角动量模式纯度、传输损耗和有效折射率的影响. 在中心纤芯和旁纤芯传播常数不变的前提下, 旁纤芯数量对损耗影响较大, 通过相位匹配条件计算得到的螺距可以在一定数值范围内浮动变化, 两种纤芯的间距受限于模式损耗和光纤集成度.
    A type of fiber-based orbital angular momentum (OAM) modulator is designed according to transformation relation between OAM beam and optical fiber vector mode, together with mode-coupling theory, which is based on the combination of multimode fiber structure and chirally-coupled-cores structure. Instead of applying external force or grating etching to the fiber in the system, chirally-coupled-cores fiber can realize the modulation of any optical OAM by using single fiber at 1550 nm. Therefore, the test system is relatively simple. From the equation ${\rm{OAM}}_{ \pm l,n}^{ \pm \sigma } = {\rm{HE}}_{l + 1,n}^{{\rm{even}}} \pm {\rm{i}} \times {\rm{HE}}_{l + 1,n}^{{\rm{odd}}}$, it can be seen that the OAM mode generated by long period chirally-coupled-cores fiber depends on the higher-order modes supported by the central fiber core. Therefore, the generation and modulation of any order OAM beam can be realized by changing the diameter of the central fiber core in theory. Through theoretical analysis and numerical simulation, the effects of different structure parameters on OAM modes are analyzed, including mode purity, mode transmission loss and effective refractive index. By keeping the propagation constants of the center core and side cores unchanged, the number of side cores has no effect on mode purity nor effective refractive index, but which is not for mode transmission loss. The loss of mode transmission increases with the increase of the number of side cores. However, it does not mean that the less number of side cores is a better case, in that the fiber symmetry and processing technology should also be considered. And the pitch calculated by the formula of phase matching condition can change in value within a certain numerical range without strongly affecting the mode purity and mode transmission loss. Pitch has a great influence on the effective refractive index of modes, therefore the pitch can be under control to change the difference in effective refractive index between OAM modes and reduce crosstalk between disparate modes. The distance between the center core and side cores of fiber has little effect on mode purity, great effect on mode transmission loss, but no effect on effective refractive index. Theoretically, the mode purity and mode transmission loss perform better with the distance between two kinds of cores increasing. But it will be limited by the fiber integration level.
      通信作者: 王健, jwang@bjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61571035, 61401017, 61775012)和集成光电子学国家重点联合实验室开放课题(批准号: IOSKL2018KF22)资助的课题.
      Corresponding author: Wang Jian, jwang@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61571035, 61401017, 61775012) and the Opened Fund of the State Key Laboratory of Integrated Optoelectronics (Grant No. IOSKL2018KF22).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Gong Y, Wang R, Deng Y, Zhang B, Nan W, Ning L, Pei W 2017 IEEE Trans. Antenn. Propag. 65 2940Google Scholar

    [3]

    Yan X, Guo L, Cheng M, Li J 2018 Opt. Express 26 12605Google Scholar

    [4]

    Bai X, Chen H, Ma Y, Yang H 2018 Progress in Electromagnetics Research Symposium-spring St. Petersburg, Russia, May 22−25, 2017 p3105

    [5]

    Xing D, Liu J, Zeng X, Lu J, Yi Z 2018 Opt. Commun. 423 200Google Scholar

    [6]

    Jiang X, Liang B, Cheng J C, Qiu C W 2018 Adv. Mater. 30 1800257Google Scholar

    [7]

    Wang A, Zhu L, Wang L, Ai J, Chen S, Wang J 2018 Opt. Express 26 10038Google Scholar

    [8]

    Donato M G, Messina E, Foti A, Smart T J, Jones P H, Iatì M A, Saija R, Gucciardi P G, Maragò O M 2018 Nanoscale 10 1245Google Scholar

    [9]

    Zhou H L, Fu D Z, Dong J J, Pei Z, Chen D X, Cai X L, Li F L, Zhang X L 2017 Light-Sci. Appl. 6 e16251Google Scholar

    [10]

    Stefani A, Lwin R, Kuhlmey B T, Fleming S C 2018 Novel Optical Materials & Applications Zurich, Switzerland, July 2−5, 2018 NoTh1D.2

    [11]

    Liang F, Padgett M J, Jian W 2017 Laser Photon. Rev. 11 1700183Google Scholar

    [12]

    Lin M, Yue G, Liu P, Liu J 2017 IEEE Trans. Antenn. Propag. 65 3510Google Scholar

    [13]

    Efron U 1994 Spatial Light Modulator Technology: Materials, Devices, and Applications (Vol. 47) (Florida: CRC Press) pp287−349

    [14]

    Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch A F, Ashrafi N, Ashrafi S 2015 Adv. Opt. Photon. 7 66Google Scholar

    [15]

    Cheng C, Zhou G, Gai Z, Xu M, Hou Z, Xia C, Yuan J J 2016 Opt. Commun. 368 27Google Scholar

    [16]

    McGloin D, Simpson N B, Padgett M J 1998 Appl. Opt. 37 469Google Scholar

    [17]

    Ramachandran S 2010 IEEE Photinic Societys Meeting Denver, CO, USA, November 7−11, 2010 p679

    [18]

    Alexeyev C N 2012 Appl. Opt. 51 6125Google Scholar

    [19]

    Swan M C, Liu C H, Guertin D, Jacobsen N, Tankala K, Galvanauskas A 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference San Diego, CA, USA, February 24−28, 2008 paper OWU2

    [20]

    Ma X, Liu C H, Chang G, Galvanauskas A 2011 Opt. Express 19 26515Google Scholar

    [21]

    杜城, 陈伟, 李诗愈, 莫琦, 张涛, 柯一礼 2013 中国专利 CN103204629B

    Du C, Chen W, Li S Y, Mo Q, Zhang T, Ke Y L 2013 CN Patent CN103204629B (in Chinese)

    [22]

    Nicolet A, Zolla F, Guenneau S 2004 Eur. Phys. J. Appl. Phys. 28 153Google Scholar

    [23]

    许华醒 2013 博士论文 (合肥: 中国科学技术大学)

    Xu H 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [24]

    Zheng S, Wang J 2017 Opt. Express 25 18492Google Scholar

    [25]

    Li S, Wang J 2014 Sci. Rep. 4 3853Google Scholar

  • 图 1  长周期手性耦合光纤结构(N = 4) (a)三维示意图; (b)横截面; (c) 折射率分布

    Fig. 1.  Structure of long-period chirally-coupled-core fiber (N = 4): (a) Three-dimensional diagram; (b) cross section; (c) refractive-index profile.

    图 2  光纤OAM模式的场强和相位分布 (a)—(g)径向拓扑荷为0, 角向拓扑荷为0, –1, –2, –3, 1, 2, 3; (h)—(j)径向拓扑荷为1, 角向拓扑荷为0, –1, 1

    Fig. 2.  Field intensity and phase distribution of fiber OAM mode: (a)−(g) Radial topological charge of 0, angular topological charge of 0, –1, –2, –3, 1, 2, 3; (h)−(j) radial topological charge of 1, angular topological charge of 0, –1, 1.

    图 3  (a) $\varLambda = 4600\;{\text{μ}}{\rm{m}}$时, 多组rhelix值下N对OAM模式的影响; (b) rhelix = 40 ${\text{μ}}{\rm{m}}$时, 多组$\varLambda $值下N对OAM模式的影响; (c) rhelix = 45 ${\text{μ}}{\rm{m}}$, $\varLambda = 4600\;{\text{μ}}{\rm{m}}$N对OAM模式的影响; 其中结构参数n1 = 1.453, n2 = 1.45, rcore = 20 ${\text{μ}}{\rm{m}}$, rside = 3.5 ${\text{μ}}{\rm{m}}$

    Fig. 3.  (a) Effect of N on OAM modes under multiple values of rhelix when $\varLambda = 4600\;{\text{μ}}{\rm{m}}$; (b) effect of N on OAM modes under multiple values of $\varLambda $ when rhelix = 40 ${\text{μ}}{\rm{m}}$; (c) effect of N on OAM modes when rhelix = 45 ${\text{μ}}{\rm{m}}$, $\varLambda = 4600\;{\text{μ}}{\rm{m}}$. n1 = 1.453, n2 = 1.45, rcore = 20 ${\text{μ}}{\rm{m}}$, rside = 3.5 ${\text{μ}}{\rm{m}}$.

    图 4  (a) rhelix = 35 ${\text{μ}}{\rm{m}}$时, 多组N值下$\varLambda $对OAM模式的影响; (b) N = 4时, 多组rhelix值下$\varLambda $对OAM模式的影响; (c) rhelix = 45 ${\text{μ}}{\rm{m}}$, N = 4下$ \varLambda$对OAM模式的影响; 其中结构参数n1 = 1.453, n2 = 1.45, rcore = 20 ${\text{μ}}{\rm{m}}$, rside = 3.5 ${\text{μ}}{\rm{m}}$

    Fig. 4.  (a) Effect of $\varLambda $ on OAM modes under multiple values of N when rhelix = 35 ${\text{μ}}{\rm{m}}$; (b) effect of $\varLambda $ on OAM modes under multiple values of rhelix when N = 4; (c) effect of $\varLambda $ on OAM modes when rhelix = 45 ${\text{μ}}{\rm{m}}$, N = 4. n1 = 1.453, n2 = 1.45, rcore = 20 ${\text{μ}}{\rm{m}}$, rside = 3.5 ${\text{μ}}{\rm{m}}$.

    图 5  (a) $\varLambda = 4600\; {\text{μ}}{\rm{m}}$时多组N值下rhelix对OAM模式的影响; (b) N = 4时, 多组$\varLambda $值下rhelix对OAM模式的影响; (c) $\varLambda = 4600\;{\text{μ}}{\rm{m}}$, N = 4下$ r_{\rm helix}$对OAM模式的影响; 其中结构参数n1 = 1.453, n2 = 1.45, rcore = 20 ${\text{μ}}{\rm{m}}$, rside = 3.5 ${\text{μ}}{\rm{m}}$

    Fig. 5.  (a) Effect of rhelix on OAM modes under multiple values of N when $\varLambda = 4600\; {\text{μ}}{\rm{m}}$; (b) effect of rhelix on OAM modes under multiple values of $\varLambda $ when N = 4; (c) effect of $r_{\rm helix} $ on OAM modes when $\varLambda = 4600\;{\text{μ}}{\rm{m}}$, N = 4. n1 = 1.453, n2 = 1.45, rcore = 20 ${\text{μ}}{\rm{m}}$, rside = 3.5 ${\text{μ}}{\rm{m}}$.

  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Gong Y, Wang R, Deng Y, Zhang B, Nan W, Ning L, Pei W 2017 IEEE Trans. Antenn. Propag. 65 2940Google Scholar

    [3]

    Yan X, Guo L, Cheng M, Li J 2018 Opt. Express 26 12605Google Scholar

    [4]

    Bai X, Chen H, Ma Y, Yang H 2018 Progress in Electromagnetics Research Symposium-spring St. Petersburg, Russia, May 22−25, 2017 p3105

    [5]

    Xing D, Liu J, Zeng X, Lu J, Yi Z 2018 Opt. Commun. 423 200Google Scholar

    [6]

    Jiang X, Liang B, Cheng J C, Qiu C W 2018 Adv. Mater. 30 1800257Google Scholar

    [7]

    Wang A, Zhu L, Wang L, Ai J, Chen S, Wang J 2018 Opt. Express 26 10038Google Scholar

    [8]

    Donato M G, Messina E, Foti A, Smart T J, Jones P H, Iatì M A, Saija R, Gucciardi P G, Maragò O M 2018 Nanoscale 10 1245Google Scholar

    [9]

    Zhou H L, Fu D Z, Dong J J, Pei Z, Chen D X, Cai X L, Li F L, Zhang X L 2017 Light-Sci. Appl. 6 e16251Google Scholar

    [10]

    Stefani A, Lwin R, Kuhlmey B T, Fleming S C 2018 Novel Optical Materials & Applications Zurich, Switzerland, July 2−5, 2018 NoTh1D.2

    [11]

    Liang F, Padgett M J, Jian W 2017 Laser Photon. Rev. 11 1700183Google Scholar

    [12]

    Lin M, Yue G, Liu P, Liu J 2017 IEEE Trans. Antenn. Propag. 65 3510Google Scholar

    [13]

    Efron U 1994 Spatial Light Modulator Technology: Materials, Devices, and Applications (Vol. 47) (Florida: CRC Press) pp287−349

    [14]

    Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch A F, Ashrafi N, Ashrafi S 2015 Adv. Opt. Photon. 7 66Google Scholar

    [15]

    Cheng C, Zhou G, Gai Z, Xu M, Hou Z, Xia C, Yuan J J 2016 Opt. Commun. 368 27Google Scholar

    [16]

    McGloin D, Simpson N B, Padgett M J 1998 Appl. Opt. 37 469Google Scholar

    [17]

    Ramachandran S 2010 IEEE Photinic Societys Meeting Denver, CO, USA, November 7−11, 2010 p679

    [18]

    Alexeyev C N 2012 Appl. Opt. 51 6125Google Scholar

    [19]

    Swan M C, Liu C H, Guertin D, Jacobsen N, Tankala K, Galvanauskas A 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference San Diego, CA, USA, February 24−28, 2008 paper OWU2

    [20]

    Ma X, Liu C H, Chang G, Galvanauskas A 2011 Opt. Express 19 26515Google Scholar

    [21]

    杜城, 陈伟, 李诗愈, 莫琦, 张涛, 柯一礼 2013 中国专利 CN103204629B

    Du C, Chen W, Li S Y, Mo Q, Zhang T, Ke Y L 2013 CN Patent CN103204629B (in Chinese)

    [22]

    Nicolet A, Zolla F, Guenneau S 2004 Eur. Phys. J. Appl. Phys. 28 153Google Scholar

    [23]

    许华醒 2013 博士论文 (合肥: 中国科学技术大学)

    Xu H 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [24]

    Zheng S, Wang J 2017 Opt. Express 25 18492Google Scholar

    [25]

    Li S, Wang J 2014 Sci. Rep. 4 3853Google Scholar

  • [1] 陆万利. 锥角调制的圆艾里涡旋光束构建光学针. 物理学报, 2024, 73(17): 174203. doi: 10.7498/aps.73.20240878
    [2] 吴航, 陈燎, 李帅, 杜禺璠, 张驰, 张新亮. 百兆赫兹重频的轨道角动量模式飞秒光纤激光器. 物理学报, 2024, 73(1): 014204. doi: 10.7498/aps.73.20231085
    [3] 杨鑫宇, 叶华朋, 李佩芸, 廖鹤麟, 袁冬, 周国富. 小型化涡旋光模式解复用器: 原理、制备及应用. 物理学报, 2023, 72(20): 204207. doi: 10.7498/aps.72.20231521
    [4] 徐梦敏, 李晓庆, 唐荣, 季小玲. 风控热晕对双模涡旋光束大气传输的轨道角动量和相位奇异性的影响. 物理学报, 2023, 72(16): 164202. doi: 10.7498/aps.72.20230684
    [5] 赵丽娟, 姜焕秋, 徐志钮. 螺旋扭曲双包层-三芯光子晶体光纤用于轨道角动量的生成. 物理学报, 2023, 72(13): 134201. doi: 10.7498/aps.72.20222405
    [6] 吴航, 陈燎, 舒学文, 张新亮. 基于飞秒激光加工长周期光栅的全光纤三阶轨道角动量模式的产生. 物理学报, 2023, 72(4): 044201. doi: 10.7498/aps.72.20221928
    [7] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [8] 赵丽娟, 赵海英, 徐志钮. 一种可用于轨道角动量的受激布里渊放大的光子晶体光纤放大器. 物理学报, 2022, 71(7): 074206. doi: 10.7498/aps.71.20211909
    [9] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性. 物理学报, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [10] 付时尧, 高春清. 利用衍射光栅探测涡旋光束轨道角动量态的研究进展. 物理学报, 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [11] 解万财, 黄素娟, 邵蔚, 朱福全, 陈木生. 基于混合光模式阵列的自由空间编码通信. 物理学报, 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [12] 张昊, 常琛亮, 夏军. 单环多段光强分布检测光学涡旋拓扑荷值. 物理学报, 2016, 65(6): 064101. doi: 10.7498/aps.65.064101
    [13] 李铁, 谌娟, 柯熙政, 吕宏. 大气信道中单光子轨道角动量纠缠特性的研究. 物理学报, 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [14] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究. 物理学报, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [15] 刘曼, 陈小艺, 李海霞, 宋洪胜, 滕树云, 程传福. 利用干涉光场的相位涡旋测量拉盖尔-高斯光束的轨道角动量. 物理学报, 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [16] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究. 物理学报, 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [17] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究. 物理学报, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [18] 高明伟, 高春清, 林志锋. 扭转对称光束的产生及其变换过程中的轨道角动量传递. 物理学报, 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
    [19] 任国斌, 王 智, 娄淑琴, 简水生. 光子晶体光纤模式的简并特性研究. 物理学报, 2004, 53(6): 1856-1861. doi: 10.7498/aps.53.1856
    [20] 任国斌, 王 智, 简水生, 娄淑琴. 双芯光子晶体光纤中的模式干涉. 物理学报, 2004, 53(8): 0-0. doi: 10.7498/aps.53.0
计量
  • 文章访问数:  8414
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-15
  • 修回日期:  2019-01-03
  • 上网日期:  2019-03-12
  • 刊出日期:  2019-03-20

/

返回文章
返回