搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

百兆赫兹重频的轨道角动量模式飞秒光纤激光器

吴航 陈燎 李帅 杜禺璠 张驰 张新亮

引用本文:
Citation:

百兆赫兹重频的轨道角动量模式飞秒光纤激光器

吴航, 陈燎, 李帅, 杜禺璠, 张驰, 张新亮

Orbital angular momentum mode femtosecond fiber laser with over 100 MHz repetition rate

Wu Hang, Chen Liao, Li Shuai, Du Yu-Fan, Zhang Chi, Zhang Xin-Liang
PDF
HTML
导出引用
  • 轨道角动量(orbital angular momentum, OAM)模式激光器在大容量通信系统、激光加工、微粒子操作、量子光学领域研究有潜在应用价值. OAM模式飞秒光纤激光器具有结构简单、成本低、峰值功率高等优势而被重点研究. 当前OAM模式飞秒光纤激光器在重复频率、脉冲宽度、光谱宽度等关键参数上分别都有突破, 但性能难以兼得, 且重复频率目前在数十MHz. 本文基于模式相位匹配原理, 制作了大带宽的模式耦合器, 结合非线性偏振旋转锁模机理, 通过优化腔内的色散, 搭建了百兆赫兹重复频率的OAM模式飞秒光纤激光器. 实验结果表明, 一阶OAM模式光纤激光器的重复频率可达113.6 MHz, 脉冲半高全宽98 fs, 10 dB带宽可达101 nm; 二阶OAM模式光纤激光器的重复频率可达114.9 MHz, 脉冲半高全宽60 fs, 10 dB带宽可达100 nm. 相对于已报道的方案, 本文报道的方案在重复频率、脉宽和光谱宽度等关键参数上综合性能较好, 有望更广泛地应用于OAM通信、粒子操控等研究领域.
    Orbital angular momentum (OAM) lasers have potential applications in large capacity communication systems, laser processing, particle manipulation and quantum optics. OAM mode femtosecond fiber laser has become the research focus due to the advantages of simple structure, low cost and high peak power. At present, OAM mode femtosecond fiber lasers have made some breakthroughs in key parameters such as repetition frequency, pulse width, spectrum width, but it is difficult to achieve good overall performance. Besides, the repetition rate is tens of MHz at present. In this paper, a large-bandwidth mode coupler is made based on the mode phase matching principle. In coupler, the first order mode coupler with 3 dB polarization dependent loss is made by the technology of strong fused biconical taper, and the second order mode coupler with 0.3 dB polarization dependent loss is made by the technology of weak fused biconical taper. By combining the nonlinear polarization rotation mode-locking mechanism, OAM mode femtosecond fiber laser with over 100 MHz repetition rate is built. The achievement of the key parameters is attributed to the selection of dispersion shifted fibers that can accurately adjust intracavity dispersion. Comparing with traditional dispersion compensation fibers (DCF), the group velocity dispersion is reduced by an order of magnitude, so it can better adjust intracavity dispersion to achieve the indexes of large spectral bandwidth and narrow pulse width. In addition, the diameter of the fiber is 8 μm, which is the same as that of a single mode fiber. Comparing with DCF, the fusion loss can be ignored, so only a shorter gain Erbium-doped fiber is required, which ensures a shorter overall cavity length and achieves high repetition frequency. The experimental results show that the first order OAM mode fiber laser has 113.6 MHz repetition rate, 98 fs half-height full pulse width, and 101 nm 10 dB bandwidth. Second-order OAM mode fiber laser has 114.9 MHz repetition rate, 60 fs half-height full pulse width, and 100 nm 10 dB bandwidth. Compared with the reported schemes, our scheme has good performance in key parameters such as repetition rate, pulse width and spectral width. We believe that the OAM mode fiber laser with excellent performance is expected to be widely used in OAM communication, particle manipulation and other research fields.
      通信作者: 陈燎, liaochenchina@hust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61505060, 61631166003, 61675081, 61735006, 61927817)资助的课题.
      Corresponding author: Chen Liao, liaochenchina@hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61505060, 61631166003, 61675081, 61735006, 61927817).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Wen Y, Chremmos I, Chen Y, Zhu G, Zhang J, Zhu J, Zhang Y, Liu J, Yu S 2020 Optica 7 254Google Scholar

    [3]

    Leach J, Jack B, Romero J, Jha A K, Yao A M, Frank-Arnold S, Ireland D G, Boyd R W, Barnett S M, Padgett M J 2010 Science 329 662Google Scholar

    [4]

    Grier D 2003 Nature 424 810Google Scholar

    [5]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar

    [6]

    Poynting J H 1909 Proc. R. Soc. London, Ser. A 82 560Google Scholar

    [7]

    Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino, F 2011 J. Opt. 13 064001Google Scholar

    [8]

    Zhao Z, Wang J, Li S, Willner A E 2013 Opt. Lett. 38 932Google Scholar

    [9]

    Chen Y, Fang Z X, Ren Y X, Gong L, Lu R D 2015 Appl. Opt. 54 8030Google Scholar

    [10]

    Li S, Mo Q, Hu X, Du C, Wang J 2015 Opt. Lett. 40 4376Google Scholar

    [11]

    Zhang W, Wei K, Huang L, Mao D, Jiang B, Gao F, Zhao J 2016 Opt. Express 24 19278Google Scholar

    [12]

    Shao L, Liu S, Zhou M, Huang Z, Bao W, Bai Z, Wang Y 2021 Opt. Express 29 43371Google Scholar

    [13]

    Li Y J, Jin L, Wu H, Gao S C, Feng Y H, Li Z H 2017 IEEE Photonics J. 9 7200909Google Scholar

    [14]

    Han Y, Liu Y G, Wang Z, Huang W, Chen L, Zhang H W, Yang K 2018 Nanophotonics 7 287Google Scholar

    [15]

    Wu H, Gao S, Huang B, Feng Y, Huang X, Liu W, Li Z 2017 Opt. Lett. 42 5210Google Scholar

    [16]

    Detani T, Zhao H, Wang P, Suzuki T, Li H 2021 Opt. Lett. 46 949Google Scholar

    [17]

    He X, Tu J, Wu X, Gao S, Shen L, Hao C, Li Z 2020 Opt. Lett. 45 3621Google Scholar

    [18]

    Pidishety S, Khudus M I M A, Gregg P, Ramachandran S, Srinivasan B, Brambilla G 2016 Conference on Lasers and Electro-Optics (CLEO) San Jose, CA, June 5–10, 2016 pSTu1F.2

    [19]

    Li J, Ueda K, Musha M, Zhong L, Shirakawa A 2008 Opt. Lett. 33 2686Google Scholar

    [20]

    Lin D, Xia K, Li J, Li R, Ueda K, Li G, Li X 2010 Opt. Lett. 35 2290Google Scholar

    [21]

    Lin D, Xia K, Li R, Li X, Li G, Ueda K, Li J 2010 Opt. Lett. 35 3574Google Scholar

    [22]

    Gui L, Wang C, Ding F, Chen H, Xiao X, Bozhevolnyi S, Zhang X, Xu K 2023 ACS Photonics 10 623

    [23]

    Zhou N, Liu J, Wang J 2018 Sci. Rep. 8 11394Google Scholar

    [24]

    Zhao Y, Wang T, Mao C, Yan Z, Liu Y, Wang T 2018 IEEE Photonics Technol. Lett. 30 752Google Scholar

    [25]

    Toyoda K, Miyamoto K, Aoki N, Morita R, Omatsu T 2012 Nano Lett. 12 3645Google Scholar

    [26]

    Zhang Z, Wei W, Tang L, Yang J, Guo J, Ding L, Li Y 2018 Chin. Opt. Lett. 16 110501Google Scholar

    [27]

    Wang T, Wang F, Shi F, Pang F, Huang S, Wang T, Zeng X 2017 J. Lightwave Technol. 35 2161Google Scholar

    [28]

    Deng D, Zhan L, Gu Z, Gu Y, Xia Y 2009 Opt. Express 17 4284Google Scholar

    [29]

    Park K, Song K, Kim Y, Lee J, Kim B 2016 Opt. Express 24 3543Google Scholar

    [30]

    Zhou H, Dong J, Wang J, Li S, Cai X, Yu S, Zhang X 2017 IEEE Photonics Technol. Lett. 29 86Google Scholar

    [31]

    Mao D, Feng T, Zhang W, Lu H, Jiang Y, Li P, Jiang B, Sun Z, Zhao J 2017 Appl. Phys. Lett. 110 021107Google Scholar

    [32]

    Huang Y, Shi F, Wang T, Liu X, Zeng X, Pang F, Wang T, Zhou P 2018 Opt. Express 26 19171Google Scholar

    [33]

    Tao R, Li H, Zhang Y, Yao P, Xu L, Gu C, Zhan Q 2020 Opt. Laser Technol. 123 105945Google Scholar

    [34]

    Xiao R, Tu J, Li Wei, Gao S, Wen T, Du C, Zhou J, Zhang B, Liu W, Li Z 2022 Opt. Express 30 12605Google Scholar

    [35]

    Jiang X, Yao J, Zhang S, Wang A, Zhan Q 2022 Appl. Phys. Lett. 121 131101Google Scholar

    [36]

    Zhang W, Wei K, Mao D, Wang H, Gao F, Huang L, Mei T, Zhao J 2017 Opt. Lett. 42 454Google Scholar

    [37]

    Lu J, Shi F, Meng L, Zhang L, Teng L, Luo Z, Yan P, Pang F, Zeng X 2020 Photonics Res. 8 1203Google Scholar

    [38]

    Hu H, Chen Z, Cao Q, Zhan Q 2023 IEEE Photonics J. 15 1Google Scholar

    [39]

    Xue X, Jiang Q, Pang F, Wen J, Chen W, Zeng X, Zhang L, Wei H, Wang T 2023 Opt. Express 31 24623Google Scholar

    [40]

    Fu S, Zhai Y, Zhang J, Liu X, Song R, Zhou H, Gao C 2022 Adv. Photonics Nexus 1 016003

  • 图 1  模式耦合器示意图. SMF, 单模光纤; FMF, 少模光纤; RCF, 环芯光纤

    Fig. 1.  Schematic diagram of the mode coupler. SMF, single mode fiber, FMF, few mode fiber; RCF, ring core fiber.

    图 2  模式耦合器仿真图 (a), (b) 单模光纤中基模与特种光纤中的LP11模式和LP21模式之间能量分布随耦合长度z的变化; (c)—(e) LP11模式耦合器的模场分布图在半个耦合周期内的变化; (f)—(h) LP21模式耦合器的模场分布图在半个耦合周期内的变化

    Fig. 2.  Simulation diagram of mode coupler: (a), (b) Change of energy distribution with coupling length z between fundamental mode in single-mode fiber and LP11 mode and LP21 mode in special fiber; (c)–(e) change of mode field distribution of LP11 mode coupler during a coupling period; (f)–(h) change of the mode field distribution of the LP21 mode coupler during a coupling period.

    图 3  (a) LP11模式耦合器的相位匹配图; (b) LP21模式耦合器的相位匹配图

    Fig. 3.  (a) Phase-matching diagram of the LP11 mode coupler; (b) phase-matching diagram of the LP21 mode coupler.

    图 4  (a) LP11模式耦合器中LP11模式与基模相对功率比随波长的变化; (b) LP21模式耦合器中LP21模式与基模相对功率随波长的变化

    Fig. 4.  (a) Relative power of LP11 mode to fundamental mode in LP11 mode coupler varies with wavelength; (b) relative power of LP21 mode to fundamental mode in LP21 mode coupler varies with wavelength.

    图 5  一阶OAM模式锁模激光器以及检测装置. OIM, 光学集成模块; EDF, 掺铒光纤; DSF, 色散位移光纤; SMF, 单模光纤; MSC, 模式选择耦合器; PC, 偏振控制器; ESA, 电谱仪; OSA, 光谱仪; OSC, 示波器; SLM, 空间光调制器; Obj, 物镜; Pol, 偏振器; HWP, 半波片; CCD, 电荷耦合元件

    Fig. 5.  First-order OAM mode-locked laser and detector. OIM, optical integrated module, EDF, erbium-doped fiber; DSF, dispersion-shifted fiber; SMF, single-mode fiber; MSC, mode-selective coupler; PC, polarization controller; ESA, electrical spectrum analyzer; OSA, optical spectrum analyzer; OSC, oscilloscope; SLM, spatial light modulator; Obj, objective; POL, polarizer; HWP, half-wave plate; CCD, charge-coupled device.

    图 6  一阶OAM模式锁模激光器的指标检测 (a) 激光器输出光谱; (b) 电谱仪测量下的频率成分; (c) 激光器输出锁模脉冲序列; (d) 自相关仪测量的洛伦兹拟合脉冲

    Fig. 6.  Target detection of the first-order OAM mode-locked laser: (a) Output optical spectrum of laser; (b) frequency component measured by electrical spectrum analyzer; (c) output mode-locked pulse sequence of laser; (d) Lorentz mode-locked pulse measured by autocorrelator.

    图 7  二阶OAM模式锁模激光器. OIM, 光学集成模块; EDF, 掺铒光纤; DSF, 色散位移光纤; SMF, 单模光纤; MSC, 模式选择耦合器; PC, 偏振控制器

    Fig. 7.  Second-order OAM mode-locked laser and detector. OIM, optical integrated module; EDF, erbium-doped fiber; DSF, dispersion-shifted fiber; SMF, single-mode fiber; MSC, mode-selective coupler; PC, polarization controller.

    图 8  二阶OAM模式锁模激光器的指标检测 (a) 激光器输出光谱; (b) 电谱仪测量下的频率成分; (c) 激光器输出锁模脉冲序列; (d) 自相关仪检测的洛伦兹拟合脉冲

    Fig. 8.  Target detection of the second-order OAM mode-locked laser: (a) Output optical spectrum of laser; (b) frequency component measured by electrical spectrum analyzer; (c) output mode-locked pulse sequence of laser; (d) Lorentz fitting pulse measured by autocorrelator.

    图 9  (a) 一阶OAM模式激光器输出功率与泵浦功率之间的函数关系; (b) 二阶OAM模式激光器输出功率与泵浦功率之间的函数关系

    Fig. 9.  (a) Functional relationship between the output power of the first-order OAM-mode laser and the pump power; (b) functional relationship between the output power of the second-order OAM-mode laser and the pump power.

    图 10  一阶和二阶模式激光器输出模场 (a) ${\text{LP}}_{11}^{{\text{even}}}$模式; (b) ${\text{LP}}_{11}^{{\text{odd}}}$模式; (c) ${\text{LP}}_{21}^{{\text{even}}} $模式; (d) ${\text{LP}}_{21}^{{\text{odd}}}$模式; (e) OAM–1模式; (f) OAM+1模式; (g) OAM–2模式; (h) OAM+2模式; (i)—(l) 分别代表着图(e)—(h)经过空间光调制器上加载的柱透镜相位调制后衍射的模场

    Fig. 10.  Output mode fields of first-order mode and second-order mode laser: (a) ${\text{LP}}_{11}^{{\text{even}}}$ mode; (b) ${\text{LP}}_{11}^{{\text{odd}}}$mode; (c) ${\text{LP}}_{21}^{{\text{even}}}$mode; (d) ${\text{LP}}_{21}^{{\text{odd}}}$mode; (e) OAM–1 mode; (f) OAM+1 mode; (g) OAM–2 mode; (h) OAM+2 mode; (i)–(l) represent the mode fields of panels (e)–(h) diffracted by the spatial light modulator loading phase of the cylindrical lens.

    表 1  当前其他激光器性能和指标与本文激光器的比较

    Table 1.  Performance and index of other lasers are compared with the laser in this paper.

    参考文献/
    模式耦合器
    工作机制 重复频率 中心波长/nm 输出光谱
    宽度/nm
    输出脉宽 输出功率 模式
    [31]/OSS 锁模 13.6 MHz 1550.5 0.34 6.87 ps TE01, TM01
    [27]/FBT 锁模 36.1 MHz 1547.4 56.5 273 fs 5.6 mW OAM±1
    1545.0 67.6 140 fs OAM±2
    [32]/FBT 锁模 26 MHz 1045.0 14 75 mW LP11
    15.5 65 mW LP21
    18 16 mW LP02
    [33]/LPFG 锁模 9.83 MHz 1030.0 5 168 ps 15 mW CVB
    [34]/LPFG QSW 30.7 kHz 1548.2 0.4 5.2 μs 1.3 μW OAM±3
    [35]/FBG 锁模 10.16 MHz 1549.4 0.08 52.87 ps 17.16 mW OAM0,
    OAM±1
    [36]/AIFG 锁模 4.835 MHz 1532.9 <0.1 400 ps 30 mW OAM±1
    [37]/AIFG 锁模 25 MHz 1560.0 10 384 fs OAM±1
    [38]/Space 锁模 33 MHz 1030.0 18 87 fs 108 mW OAM±1
    本文/FBT 锁模 114 MHz 1550.0 101
    100
    98 fs 40 mW OAM±1
    115 MHz 100 60 fs 4 mW OAM±2
    下载: 导出CSV
  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Wen Y, Chremmos I, Chen Y, Zhu G, Zhang J, Zhu J, Zhang Y, Liu J, Yu S 2020 Optica 7 254Google Scholar

    [3]

    Leach J, Jack B, Romero J, Jha A K, Yao A M, Frank-Arnold S, Ireland D G, Boyd R W, Barnett S M, Padgett M J 2010 Science 329 662Google Scholar

    [4]

    Grier D 2003 Nature 424 810Google Scholar

    [5]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar

    [6]

    Poynting J H 1909 Proc. R. Soc. London, Ser. A 82 560Google Scholar

    [7]

    Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino, F 2011 J. Opt. 13 064001Google Scholar

    [8]

    Zhao Z, Wang J, Li S, Willner A E 2013 Opt. Lett. 38 932Google Scholar

    [9]

    Chen Y, Fang Z X, Ren Y X, Gong L, Lu R D 2015 Appl. Opt. 54 8030Google Scholar

    [10]

    Li S, Mo Q, Hu X, Du C, Wang J 2015 Opt. Lett. 40 4376Google Scholar

    [11]

    Zhang W, Wei K, Huang L, Mao D, Jiang B, Gao F, Zhao J 2016 Opt. Express 24 19278Google Scholar

    [12]

    Shao L, Liu S, Zhou M, Huang Z, Bao W, Bai Z, Wang Y 2021 Opt. Express 29 43371Google Scholar

    [13]

    Li Y J, Jin L, Wu H, Gao S C, Feng Y H, Li Z H 2017 IEEE Photonics J. 9 7200909Google Scholar

    [14]

    Han Y, Liu Y G, Wang Z, Huang W, Chen L, Zhang H W, Yang K 2018 Nanophotonics 7 287Google Scholar

    [15]

    Wu H, Gao S, Huang B, Feng Y, Huang X, Liu W, Li Z 2017 Opt. Lett. 42 5210Google Scholar

    [16]

    Detani T, Zhao H, Wang P, Suzuki T, Li H 2021 Opt. Lett. 46 949Google Scholar

    [17]

    He X, Tu J, Wu X, Gao S, Shen L, Hao C, Li Z 2020 Opt. Lett. 45 3621Google Scholar

    [18]

    Pidishety S, Khudus M I M A, Gregg P, Ramachandran S, Srinivasan B, Brambilla G 2016 Conference on Lasers and Electro-Optics (CLEO) San Jose, CA, June 5–10, 2016 pSTu1F.2

    [19]

    Li J, Ueda K, Musha M, Zhong L, Shirakawa A 2008 Opt. Lett. 33 2686Google Scholar

    [20]

    Lin D, Xia K, Li J, Li R, Ueda K, Li G, Li X 2010 Opt. Lett. 35 2290Google Scholar

    [21]

    Lin D, Xia K, Li R, Li X, Li G, Ueda K, Li J 2010 Opt. Lett. 35 3574Google Scholar

    [22]

    Gui L, Wang C, Ding F, Chen H, Xiao X, Bozhevolnyi S, Zhang X, Xu K 2023 ACS Photonics 10 623

    [23]

    Zhou N, Liu J, Wang J 2018 Sci. Rep. 8 11394Google Scholar

    [24]

    Zhao Y, Wang T, Mao C, Yan Z, Liu Y, Wang T 2018 IEEE Photonics Technol. Lett. 30 752Google Scholar

    [25]

    Toyoda K, Miyamoto K, Aoki N, Morita R, Omatsu T 2012 Nano Lett. 12 3645Google Scholar

    [26]

    Zhang Z, Wei W, Tang L, Yang J, Guo J, Ding L, Li Y 2018 Chin. Opt. Lett. 16 110501Google Scholar

    [27]

    Wang T, Wang F, Shi F, Pang F, Huang S, Wang T, Zeng X 2017 J. Lightwave Technol. 35 2161Google Scholar

    [28]

    Deng D, Zhan L, Gu Z, Gu Y, Xia Y 2009 Opt. Express 17 4284Google Scholar

    [29]

    Park K, Song K, Kim Y, Lee J, Kim B 2016 Opt. Express 24 3543Google Scholar

    [30]

    Zhou H, Dong J, Wang J, Li S, Cai X, Yu S, Zhang X 2017 IEEE Photonics Technol. Lett. 29 86Google Scholar

    [31]

    Mao D, Feng T, Zhang W, Lu H, Jiang Y, Li P, Jiang B, Sun Z, Zhao J 2017 Appl. Phys. Lett. 110 021107Google Scholar

    [32]

    Huang Y, Shi F, Wang T, Liu X, Zeng X, Pang F, Wang T, Zhou P 2018 Opt. Express 26 19171Google Scholar

    [33]

    Tao R, Li H, Zhang Y, Yao P, Xu L, Gu C, Zhan Q 2020 Opt. Laser Technol. 123 105945Google Scholar

    [34]

    Xiao R, Tu J, Li Wei, Gao S, Wen T, Du C, Zhou J, Zhang B, Liu W, Li Z 2022 Opt. Express 30 12605Google Scholar

    [35]

    Jiang X, Yao J, Zhang S, Wang A, Zhan Q 2022 Appl. Phys. Lett. 121 131101Google Scholar

    [36]

    Zhang W, Wei K, Mao D, Wang H, Gao F, Huang L, Mei T, Zhao J 2017 Opt. Lett. 42 454Google Scholar

    [37]

    Lu J, Shi F, Meng L, Zhang L, Teng L, Luo Z, Yan P, Pang F, Zeng X 2020 Photonics Res. 8 1203Google Scholar

    [38]

    Hu H, Chen Z, Cao Q, Zhan Q 2023 IEEE Photonics J. 15 1Google Scholar

    [39]

    Xue X, Jiang Q, Pang F, Wen J, Chen W, Zeng X, Zhang L, Wei H, Wang T 2023 Opt. Express 31 24623Google Scholar

    [40]

    Fu S, Zhai Y, Zhang J, Liu X, Song R, Zhou H, Gao C 2022 Adv. Photonics Nexus 1 016003

  • [1] 张卓, 张景风, 孔令军. 基于光束偏移器的光的轨道角动量分束器. 物理学报, 2024, 73(7): 074201. doi: 10.7498/aps.73.20231874
    [2] 徐梦敏, 李晓庆, 唐荣, 季小玲. 风控热晕对双模涡旋光束大气传输的轨道角动量和相位奇异性的影响. 物理学报, 2023, 72(16): 164202. doi: 10.7498/aps.72.20230684
    [3] 赵丽娟, 姜焕秋, 徐志钮. 螺旋扭曲双包层-三芯光子晶体光纤用于轨道角动量的生成. 物理学报, 2023, 72(13): 134201. doi: 10.7498/aps.72.20222405
    [4] 吴航, 陈燎, 舒学文, 张新亮. 基于飞秒激光加工长周期光栅的全光纤三阶轨道角动量模式的产生. 物理学报, 2023, 72(4): 044201. doi: 10.7498/aps.72.20221928
    [5] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [6] 赵丽娟, 赵海英, 徐志钮. 一种可用于轨道角动量的受激布里渊放大的光子晶体光纤放大器. 物理学报, 2022, 71(7): 074206. doi: 10.7498/aps.71.20211909
    [7] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性. 物理学报, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [8] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器. 物理学报, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [9] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制. 物理学报, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [10] 范榕华, 郭邦红, 郭建军, 张程贤, 张文杰, 杜戈. 基于轨道角动量的多自由度W态纠缠系统. 物理学报, 2015, 64(14): 140301. doi: 10.7498/aps.64.140301
    [11] 秦鹏, 宋有建, 胡明列, 柴路, 王清月. 基于阿秒抖动光纤锁模激光器的时钟同步. 物理学报, 2015, 64(22): 224209. doi: 10.7498/aps.64.224209
    [12] 付栋之, 贾俊亮, 周英男, 陈东旭, 高宏, 李福利, 张沛. 利用Sagnac干涉仪实现光子轨道角动量分束器. 物理学报, 2015, 64(13): 130704. doi: 10.7498/aps.64.130704
    [13] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究. 物理学报, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [14] 李铁, 谌娟, 柯熙政, 吕宏. 大气信道中单光子轨道角动量纠缠特性的研究. 物理学报, 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [15] 齐晓庆, 高春清, 辛璟焘, 张戈. 基于激光光束轨道角动量的8位数据信号产生与检测的实验研究. 物理学报, 2012, 61(17): 174204. doi: 10.7498/aps.61.174204
    [16] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究. 物理学报, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [17] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究. 物理学报, 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [18] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究. 物理学报, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [19] 高明伟, 高春清, 林志锋. 扭转对称光束的产生及其变换过程中的轨道角动量传递. 物理学报, 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
    [20] 高明伟, 高春清, 何晓燕, 李家泽, 魏光辉. 利用具有轨道角动量的光束实现微粒的旋转. 物理学报, 2004, 53(2): 413-417. doi: 10.7498/aps.53.413
计量
  • 文章访问数:  984
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-03
  • 修回日期:  2023-09-03
  • 上网日期:  2023-10-08
  • 刊出日期:  2024-01-05

/

返回文章
返回