搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于阿秒抖动光纤锁模激光器的时钟同步

秦鹏 宋有建 胡明列 柴路 王清月

引用本文:
Citation:

基于阿秒抖动光纤锁模激光器的时钟同步

秦鹏, 宋有建, 胡明列, 柴路, 王清月

Timing synchronization based on mode-locked fiber lasers with attosecond timing jitter

Qin Peng, Song You-Jian, Hu Ming-Lie, Chai Lu, Wang Qing-Yue
PDF
导出引用
  • 光纤锁模激光器结构简单, 运转稳定, 且输出的超短脉冲序列具有极高的时钟稳定性, 在抽运探测、脉冲相干合成等要求高精度时钟同步的前沿领域有着广阔的应用前景. 本文通过激光器腔内的电光调制器进行反馈控制, 实现了两台光纤锁模激光器之间的紧密时钟信号同步; 并且通过平衡光学互相关方法, 对残余的时钟误差信号进行了测量, 分辨率达到了13 as. 通过优化激光器的腔内动力学过程及反馈环路的参数, 在[1 Hz, 10 MHz]的积分区间内得到了109 as的残余时钟误差, 对应单台激光器的平均时间抖动为77 as.
    Mode-locked fiber lasers output ultra-short pulse trains with extremely high temporal stability, showing great potential in systems that require precise timing synchronization, such as pump-probe experiments, high-speed analog-to-digital conversion, large-scale timing distribution and coherent combination. The fiber lasers are usually simpler, less costly, more efficient and more robust to the environment than solid state lasers, making them a better option for real-world applications. With the atto second temporal resolution of the balanced optical cross-correlation (BOC) method, timing jitter of mode-locked fiber lasers has been carefully measured and optimized over the last decade. However, due to the inherently large amplified spontaneous emission noise in the long gain fiber and broad pulse width inside the laser cavity, the quantum-noise-limited timing jitter of mode-locked fiber lasers is still much higher than that of the solid state lasers. In order to further optimize the timing synchronization of mode-locked fiber laser, larger locking bandwidth is required to suppress the low-frequency timing jitter, which contributes significantly to the total amount of residual timing jitter. In this work, tight timing synchronization between two mode-locked Yb-fiber lasers is achieved via a feedback loop built on an intra-cavity electro-optic phase modulator. Both lasers work in the stretched-pulse regime, which has been proven to support the lowest quantum-noise-limited timing jitter of mode-locked fiber laser. The output of the BOC system provides a timing error discriminator of 40 mV/fs, corresponding to 13 as resolution within the integration bandwidth. When the pulse trains from both lasers are successfully synchronized, the residual timing jitter can be measured with the same signal as that used for timing synchronization Based on the residual timing jitter measurement, the intra-cavity dynamics of the laser and the locking parameters of the feedback loop can be further optimized and a tight synchronization with 400 kHz locking bandwidth is finally achieved. When performing the integration from 1 Hz to 10 MHz, the residual timing error is as low as 109 as, corresponding to 77 as averaged timing jitter of each laser. A parallel out-of-loop single-arm cross-correlation measurement is also performed to test the validity of the in-loop results, and both measurements agree with each other.
      通信作者: 宋有建, yjsong@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61205131, 11274239, 61227010, 61322502)、国家重点基础研究发展计划(批准号: 2011CB808101, 2010CB327604)和长江学者和创新团队发展计划 (批准号: IRT13033)资助的课题.
      Corresponding author: Song You-Jian, yjsong@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61205131, 11274239, 61227010, 61322502), the National Basic Research Program of China (Grant Nos. 2011CB808101, 2010CB327604), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13033).
    [1]

    Schulz S, Grgura I, Behrens C, Bromberger H, Costello J T, Czwalinna M K, Felber M, Hoffmann M C, Ilchen M, Liu H Y, Mazza T, Meyer M, Pfeiffer S, Prędki P, Schefer S, Schmidt C, Wegner U, Schlarb H, Cavalieri A L 2015 Nat. Commun. 6 5938

    [2]

    Domke M, Rapp S, Schmidt M, Huber H P 2012 Opt. Express 20 10330

    [3]

    Khilo A, Spector S J, Grein M E, Nejadmalayeri A H, Holzwarth C W, Sander M Y, Dahlem M S, Peng M Y, Geis M W, DiLello N A, Yoon J U, Motamedi A, Orcutt J S, Wang J P, Sorace-Agaskar C M, Popović M A, Sun J, Zhou G R, Byun H, Chen J, Hoyt J L, Smith H I, Ram R J, Perrott M, Lyszczarz T M, Ippen E P, Krtner F X 2012 Opt. Express 20 4454

    [4]

    Kim J, Park M J, Perrott M H, Krtner F X 2008 Opt. Express 16 16509

    [5]

    Cox J A, Putnam W P, Sell A, Leitenstorfer A, Krtner F X 2012 Opt. Lett. 37 3579

    [6]

    Fong B J, Lin W T, Wu S Y, Peng J L, Hsiang W W, Lai Y 2015 Opt. Lett. 40 966

    [7]

    Hou D, Li P, Xi P, Zhao J, Zhang Z 2010 Chin. Opt. Lett. 8 993

    [8]

    Zhang F, Hou D, Guo H P, Zhao J Y, Zhang Z G 2010 Acta Opt. Sin. 30 671 (in Chinese) [张帆, 候冬, 郭海鹏, 赵建业, 张志刚 2010 光学学报 30 671]

    [9]

    Kim J, Cox J A, Chen J, Krtner F X 2008 Nat. Photon. 2 733

    [10]

    Benedick A J, Fujimoto J G, Krtner F X 2012 Nat. Photon. 6 97

    [11]

    Wang P, Zhao H, Wang Z H, Li D H, Wei Z Y 2006 Acta Phys. Sin. 55 4161 (in Chinese) [王鹏, 赵环, 王兆华, 李德华, 魏志义 2006 物理学报 55 4161]

    [12]

    Zhao H, Zhao Y Y, Tian J R, Wang P, Zhu J F, Ling W J, Wei Z Y 2008 Acta Phys. Sin. 57 892 (in Chinese) [赵环, 赵研英, 田金荣, 王鹏, 朱江峰, 令维军, 魏志义 2008 物理学报 57 892]

    [13]

    Zhang D P, Hu M L, Xie C, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 044206 (in Chinese) [张大鹏, 胡明列, 谢辰, 柴路, 王清月 2012 物理学报 61 044206]

    [14]

    Song Y, Jung K, Kim J 2011 Opt. Lett. 36 1761

    [15]

    Song Y, Kim C, Jung K, Kim H, Kim J 2011 Opt. Express 19 14518

    [16]

    Kim T K, Song Y, Jung K, Kim C, Kim H, Nam C H, Kim J 2011 Opt. Lett. 36 4443

    [17]

    Hudson D D, Holman K W, Jones R J, Cundiff Steven T, Ye J, Jones D J 2005 Opt. Lett. 30 2948

    [18]

    Kim J, Chen J, Cox J, Krtner F X 2007 Opt. Lett. 32 3519

    [19]

    Schibli T R, Kim J, Kuzucu O, Gopinath J T, Tandon S N, Petrich G S, Kolodziejski L A, Fujimoto J G, Ippen E P, Kaertner F X 2003 Opt. Lett. 28 947

    [20]

    Kim J, Krtner F X 2009 Laser Photon. Rev. 4 432

    [21]

    Haus H A, Mecozzi A 1993 IEEE J. Quantum Electron. 29 983

    [22]

    Paschotta R 2004 Appl. Phys. B 79 163

  • [1]

    Schulz S, Grgura I, Behrens C, Bromberger H, Costello J T, Czwalinna M K, Felber M, Hoffmann M C, Ilchen M, Liu H Y, Mazza T, Meyer M, Pfeiffer S, Prędki P, Schefer S, Schmidt C, Wegner U, Schlarb H, Cavalieri A L 2015 Nat. Commun. 6 5938

    [2]

    Domke M, Rapp S, Schmidt M, Huber H P 2012 Opt. Express 20 10330

    [3]

    Khilo A, Spector S J, Grein M E, Nejadmalayeri A H, Holzwarth C W, Sander M Y, Dahlem M S, Peng M Y, Geis M W, DiLello N A, Yoon J U, Motamedi A, Orcutt J S, Wang J P, Sorace-Agaskar C M, Popović M A, Sun J, Zhou G R, Byun H, Chen J, Hoyt J L, Smith H I, Ram R J, Perrott M, Lyszczarz T M, Ippen E P, Krtner F X 2012 Opt. Express 20 4454

    [4]

    Kim J, Park M J, Perrott M H, Krtner F X 2008 Opt. Express 16 16509

    [5]

    Cox J A, Putnam W P, Sell A, Leitenstorfer A, Krtner F X 2012 Opt. Lett. 37 3579

    [6]

    Fong B J, Lin W T, Wu S Y, Peng J L, Hsiang W W, Lai Y 2015 Opt. Lett. 40 966

    [7]

    Hou D, Li P, Xi P, Zhao J, Zhang Z 2010 Chin. Opt. Lett. 8 993

    [8]

    Zhang F, Hou D, Guo H P, Zhao J Y, Zhang Z G 2010 Acta Opt. Sin. 30 671 (in Chinese) [张帆, 候冬, 郭海鹏, 赵建业, 张志刚 2010 光学学报 30 671]

    [9]

    Kim J, Cox J A, Chen J, Krtner F X 2008 Nat. Photon. 2 733

    [10]

    Benedick A J, Fujimoto J G, Krtner F X 2012 Nat. Photon. 6 97

    [11]

    Wang P, Zhao H, Wang Z H, Li D H, Wei Z Y 2006 Acta Phys. Sin. 55 4161 (in Chinese) [王鹏, 赵环, 王兆华, 李德华, 魏志义 2006 物理学报 55 4161]

    [12]

    Zhao H, Zhao Y Y, Tian J R, Wang P, Zhu J F, Ling W J, Wei Z Y 2008 Acta Phys. Sin. 57 892 (in Chinese) [赵环, 赵研英, 田金荣, 王鹏, 朱江峰, 令维军, 魏志义 2008 物理学报 57 892]

    [13]

    Zhang D P, Hu M L, Xie C, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 044206 (in Chinese) [张大鹏, 胡明列, 谢辰, 柴路, 王清月 2012 物理学报 61 044206]

    [14]

    Song Y, Jung K, Kim J 2011 Opt. Lett. 36 1761

    [15]

    Song Y, Kim C, Jung K, Kim H, Kim J 2011 Opt. Express 19 14518

    [16]

    Kim T K, Song Y, Jung K, Kim C, Kim H, Nam C H, Kim J 2011 Opt. Lett. 36 4443

    [17]

    Hudson D D, Holman K W, Jones R J, Cundiff Steven T, Ye J, Jones D J 2005 Opt. Lett. 30 2948

    [18]

    Kim J, Chen J, Cox J, Krtner F X 2007 Opt. Lett. 32 3519

    [19]

    Schibli T R, Kim J, Kuzucu O, Gopinath J T, Tandon S N, Petrich G S, Kolodziejski L A, Fujimoto J G, Ippen E P, Kaertner F X 2003 Opt. Lett. 28 947

    [20]

    Kim J, Krtner F X 2009 Laser Photon. Rev. 4 432

    [21]

    Haus H A, Mecozzi A 1993 IEEE J. Quantum Electron. 29 983

    [22]

    Paschotta R 2004 Appl. Phys. B 79 163

  • [1] 吴航, 陈燎, 李帅, 杜禺璠, 张驰, 张新亮. 百兆赫兹重频的轨道角动量模式飞秒光纤激光器. 物理学报, 2024, 73(1): 014204. doi: 10.7498/aps.73.20231085
    [2] 马博文, 戴雯, 孟飞, 陶家宁, 武子铃, 石岩青, 方占军, 胡明列, 宋有建. 基于异步光学采样的电光频率梳时间抖动测量. 物理学报, 2024, 73(14): 144203. doi: 10.7498/aps.73.20240400
    [3] 魏连锁, 李华, 吴迪, 郭媛. 基于BP神经网络模型时钟同步误差补偿算法. 物理学报, 2021, 70(11): 114203. doi: 10.7498/aps.70.20201641
    [4] 桂淮濛, 施卫. 线性模式下GaAs光电导开关的时间抖动特性. 物理学报, 2018, 67(18): 184207. doi: 10.7498/aps.67.20180548
    [5] 黄沛, 方少波, 黄杭东, 侯洵, 魏志义. 基于平衡光学互相关方法的超短脉冲激光相干合成技术. 物理学报, 2018, 67(24): 244204. doi: 10.7498/aps.67.20181851
    [6] 秦鹏, 陈伟, 宋有建, 胡明列, 柴路, 王清月. 基于飞秒激光平衡光学互相关的任意长绝对距离测量. 物理学报, 2012, 61(24): 240601. doi: 10.7498/aps.61.240601
    [7] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [8] 张鑫, 胡明列, 宋有健, 柴路, 王清月. 大模场面积光子晶体光纤耗散孤子锁模激光器. 物理学报, 2010, 59(3): 1863-1869. doi: 10.7498/aps.59.1863
    [9] 欧阳春梅, 柴路, 赵慧, 胡明列, 宋有建, 王清月. 滤波位置相关的全正色散掺Yb3+锁模光纤激光器的实验研究. 物理学报, 2010, 59(6): 3936-3941. doi: 10.7498/aps.59.3936
    [10] 王金东, 魏正军, 张辉, 张华妮, 陈帅, 秦晓娟, 郭健平, 廖常俊, 刘颂豪. 长程光纤传输的时间抖动对相位编码量子密钥分发系统的影响. 物理学报, 2010, 59(8): 5514-5522. doi: 10.7498/aps.59.5514
    [11] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器. 物理学报, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [12] 吕玉祥, 孙帅, 杨星. 基于光注入Fabry-Perot半导体激光器实现同步全光分路时钟提取与波长转换. 物理学报, 2009, 58(4): 2467-2475. doi: 10.7498/aps.58.2467
    [13] 宋有建, 胡明列, 刘庆文, 李进延, 陈 伟, 柴 路, 王清月. 掺Yb3+双包层大模场面积光纤锁模激光器. 物理学报, 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
    [14] 赵 环, 赵研英, 田金荣, 王 鹏, 朱江峰, 令维军, 魏志义. 两台独立飞秒钛宝石振荡器的高精度主动同步研究. 物理学报, 2008, 57(2): 892-896. doi: 10.7498/aps.57.892
    [15] 陈子伦, 侯 静, 周 朴, 刘 亮, 姜宗福. 两个光纤激光器的互相注入锁定. 物理学报, 2007, 56(12): 7046-7050. doi: 10.7498/aps.56.7046
    [16] 王云才. 增益开关半导体激光器在外光注入下脉冲抖动的实验研究. 物理学报, 2003, 52(9): 2190-2193. doi: 10.7498/aps.52.2190
    [17] 陆宏. 飞秒锁模固态激光器中放大的自发辐射导致的时基抖动. 物理学报, 2001, 50(5): 875-879. doi: 10.7498/aps.50.875
    [18] 王徐芳, 姚敏玉, 徐磊, 张剑锋, 陈明华, 高以智. 自注入减小增益开关分布反馈激光器时间抖动的数值模拟. 物理学报, 2000, 49(3): 475-479. doi: 10.7498/aps.49.475
    [19] 关信安, 赵智虹. 同步泵浦-被动锁模染料激光器的基本方程及其解. 物理学报, 1989, 38(1): 16-23. doi: 10.7498/aps.38.16
    [20] 关信安, 赵智虹. 适用于CW同步泵浦染料激光器的锁模方程及其解. 物理学报, 1988, 37(2): 335-340. doi: 10.7498/aps.37.335
计量
  • 文章访问数:  5514
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-24
  • 修回日期:  2015-06-30
  • 刊出日期:  2015-11-05

/

返回文章
返回