搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于平衡光学互相关方法的超短脉冲激光相干合成技术

黄沛 方少波 黄杭东 侯洵 魏志义

引用本文:
Citation:

基于平衡光学互相关方法的超短脉冲激光相干合成技术

黄沛, 方少波, 黄杭东, 侯洵, 魏志义

Coherent synthesis of ultrashort pulses based on balanced optical cross-correlator

Huang Pei, Fang Shao-Bo, Huang Hang-Dong, Hou Xun, Wei Zhi-Yi
PDF
导出引用
  • 相干合成技术是超快光学领域的重要研究方向之一.当单路脉冲激光的连续谱超过一个倍频程时,精确控制其光谱相位(色散管理)是获得亚周期超短脉冲激光的关键.由于常见的脉冲压缩系统存在光谱带宽限制,因此多通道相干合成技术受到了广泛的关注.本文将充气空心光纤展宽后的超倍频程连续光谱分波段独立压缩,并利用平衡光学互相关方法锁定子脉冲之间的相位延迟,获得了4.1 fs的合成脉冲.实验结果表明相干合成技术在高能量亚周期超快光场调控中存在优势.
    Coherent synthesis of laser pulses is a major trend in the generation of ultrafast pulse field. There is no good way to compensate for the whole spectrum when the spectrum of ultrashort pulses is wide enough to reach an octave, so it is difficult to realize a sub-cycle pulse in a single-path laser system even if the spectrum range is wide enough. In this paper, 0.8 mJ, 30 fs laser pulses at 1 kHz repetition rate with 790 nm center wavelength from a Ti:sapphire chirped pulse amplifier (CPA) system are focused into hollow fiber with an inner diameter of 250 μm and a length of 1 m to produce an octave-spanning white-light supercontinuum (450-950 nm). Using this supercontinuum, we conduct two sets of comparative experiments. 1) We split the supercontinuum into two pulses with different spectrum ranges (450-750 nm and 650-1000 nm) by a dichroic mirror (HR, 500-700 nm; HT, 700-1000 nm), and we compress the two pulses by the double-chirped mirrors and wedge pairs to generate two few-cycle pulses:the long and short wavelength yielding pulses are 7.9 fs and 6.1 fs, respectively. Then we coherently synthesize two pulses by using another dichroic mirror, and controlling the relative time delay between the two pulses, and thus we synthesize a pulse of 4.1 fs. 2) We directly compress the supercontinuum by the double-chirped mirrors and wedge pairs, and obtain an optimization result of 5.3 fs, of which the pulse duration is wider than that in experiment 1. In these comparative experiments, the advantage of coherent synthesis for shorter pulse duration is preliminarily verified. Besides, the balanced optical cross-correlator technique is used to lock the relative time delay between two pulses. The root-mean-square value of relative time delay drift is less than 80 as in the case with feedback control loop, which ensures the stability of coherent synthesis system. This scheme can be adopted to accurately compensate for the dispersion and obtain the sub-cycle synthesized pulse, which is useful for generating the high harmonic and atto-second pulse.
    [1]

    Brocklesby W S, Nilsson J, Schreiber T, Limpert J, Brignon A, Bourderionnet J, Lombard L, Michau V, Hanna M, Zaouter Y, Tajima T, Mourou G 2014 Eur. Phys. J. Special Topics 223 1189

    [2]

    Danson C, Hillier D, Hopps N, Neely D 2015 High Power Laser Sci. Eng. 3 3

    [3]

    Kozlov V A, Hernandez-Cordero J, Morse T F 1999 Opt. Lett. 24 1814

    [4]

    Manzoni C, Mucke O D, Cirmi G, Fang S, Moses J, Huang S W, Hong K H, Cerullo G, Kartner F X 2015 Laser Photon Rev. 9 129

    [5]

    Sokolov A V, Walker D R, Yavuz D D, Yin G Y, Harris S E 2000 Phys. Rev. Lett. 85 562

    [6]

    Shverdin M Y, Walker D R, Yavuz D D, Yin G Y, Harris S E 2005 Phys. Rev. Lett. 94 033904

    [7]

    Chan H S, Hsieh Z M, Liang W H, Kung A H, Lee C K, Lai C J, Pan R P, Peng L H 2011 Science 331 1165

    [8]

    Hsieh Z M, Lai C J, Chan H S, Wu S Y, Lee C K, Chen W J, Pan C L, Yee F G, Kung A H 2009 Phys. Rev. Lett. 102 213902

    [9]

    Hassan M T, Wirth A, Moulet A, Luu T T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301

    [10]

    Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66

    [11]

    Huang S W, Cirmi G, Moses J, Hong K H, Bhardwaj S, Birge J R, Chen L J, Li E, Eggleton B J, Cerullo G, Kartner F X 2011 Nat. Photon. 5 475

    [12]

    Manzoni C, Huang S W, Cirmi G, Farinello P, Moses J, Kartner F X, Cerullo G 2012 Opt. Lett. 37 1880

    [13]

    Mucke O D, Fang S, Cirmi G, Giulio, Rossi M, Chia S H, Ye H, Yang Y D, Mainz R, Manzoni C, Farinello P, Cerullo G, Kartner F X 2015 IEEE J. Sel. Top. Quantum Electron 21 8700712

    [14]

    Xin M, Safak K, Peng M Y, Kalaydzhyan A, Wang W T, Mucke O D, Kartner F X 2017 Light Sci. Appl. 6 16187

    [15]

    Diels J C, Rudolph W 2006 Ultrashort Laser Pulse Phenomena (Vol. 1) (Burlington: Elsevier) pp2-10

    [16]

    Sweetser J N, Fittinghoff D N, Trebino R 1997 Opt. Lett. 22 519

    [17]

    Chipperfield L E, Robinson J S, Tisch J W G, Marangos J P 2009 Phys. Rev. Lett. 102 063003

    [18]

    Paul P M, Toma E S, Breger P, Mullot G, Auge F, Balcou P, Muller H G, Agostini P 2001 Science 292 1689

    [19]

    Henischel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [20]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Worner H J 2017 Opt. Express 25 27506

  • [1]

    Brocklesby W S, Nilsson J, Schreiber T, Limpert J, Brignon A, Bourderionnet J, Lombard L, Michau V, Hanna M, Zaouter Y, Tajima T, Mourou G 2014 Eur. Phys. J. Special Topics 223 1189

    [2]

    Danson C, Hillier D, Hopps N, Neely D 2015 High Power Laser Sci. Eng. 3 3

    [3]

    Kozlov V A, Hernandez-Cordero J, Morse T F 1999 Opt. Lett. 24 1814

    [4]

    Manzoni C, Mucke O D, Cirmi G, Fang S, Moses J, Huang S W, Hong K H, Cerullo G, Kartner F X 2015 Laser Photon Rev. 9 129

    [5]

    Sokolov A V, Walker D R, Yavuz D D, Yin G Y, Harris S E 2000 Phys. Rev. Lett. 85 562

    [6]

    Shverdin M Y, Walker D R, Yavuz D D, Yin G Y, Harris S E 2005 Phys. Rev. Lett. 94 033904

    [7]

    Chan H S, Hsieh Z M, Liang W H, Kung A H, Lee C K, Lai C J, Pan R P, Peng L H 2011 Science 331 1165

    [8]

    Hsieh Z M, Lai C J, Chan H S, Wu S Y, Lee C K, Chen W J, Pan C L, Yee F G, Kung A H 2009 Phys. Rev. Lett. 102 213902

    [9]

    Hassan M T, Wirth A, Moulet A, Luu T T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301

    [10]

    Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66

    [11]

    Huang S W, Cirmi G, Moses J, Hong K H, Bhardwaj S, Birge J R, Chen L J, Li E, Eggleton B J, Cerullo G, Kartner F X 2011 Nat. Photon. 5 475

    [12]

    Manzoni C, Huang S W, Cirmi G, Farinello P, Moses J, Kartner F X, Cerullo G 2012 Opt. Lett. 37 1880

    [13]

    Mucke O D, Fang S, Cirmi G, Giulio, Rossi M, Chia S H, Ye H, Yang Y D, Mainz R, Manzoni C, Farinello P, Cerullo G, Kartner F X 2015 IEEE J. Sel. Top. Quantum Electron 21 8700712

    [14]

    Xin M, Safak K, Peng M Y, Kalaydzhyan A, Wang W T, Mucke O D, Kartner F X 2017 Light Sci. Appl. 6 16187

    [15]

    Diels J C, Rudolph W 2006 Ultrashort Laser Pulse Phenomena (Vol. 1) (Burlington: Elsevier) pp2-10

    [16]

    Sweetser J N, Fittinghoff D N, Trebino R 1997 Opt. Lett. 22 519

    [17]

    Chipperfield L E, Robinson J S, Tisch J W G, Marangos J P 2009 Phys. Rev. Lett. 102 063003

    [18]

    Paul P M, Toma E S, Breger P, Mullot G, Auge F, Balcou P, Muller H G, Agostini P 2001 Science 292 1689

    [19]

    Henischel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [20]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Worner H J 2017 Opt. Express 25 27506

  • [1] 张鹏, 滕浩, 杨浩, 吕仁冲, 王柯俭, 朱江峰, 魏志义. 基于Herriott型多通结构的块材料展宽与棱栅对色散补偿的啁啾脉冲放大. 物理学报, 2022, 71(11): 114202. doi: 10.7498/aps.71.20212381
    [2] 钟哲强, 母杰, 王逍, 张彬. 基于紧聚焦方式的阵列光束相干合成特性分析. 物理学报, 2020, 69(9): 094204. doi: 10.7498/aps.69.20200034
    [3] 彭一鸣, 薛煜, 肖光宗, 于涛, 谢文科, 夏辉, 刘爽, 陈欣, 陈芳琳, 孙学成. 相干合成涡旋光束的螺旋谱分析及应用研究. 物理学报, 2019, 68(21): 214206. doi: 10.7498/aps.68.20190880
    [4] 黄沛, 方少波, 黄杭东, 赵昆, 滕浩, 侯洵, 魏志义. 基于瞬态光栅频率分辨光学开关装置的阿秒延时相位控制. 物理学报, 2018, 67(21): 214202. doi: 10.7498/aps.67.20181570
    [5] 陈翔, 张心贲, 祝贤, 程兰, 彭景刚, 戴能利, 李海清, 李进延. 色散补偿光子晶体光纤结构参数对其色散的影响. 物理学报, 2013, 62(4): 044222. doi: 10.7498/aps.62.044222
    [6] 钟东洲, 佘卫龙. 铌酸锂晶体中飞秒激光脉冲线性电光效应及其色散补偿. 物理学报, 2012, 61(6): 064214. doi: 10.7498/aps.61.064214
    [7] 秦鹏, 陈伟, 宋有建, 胡明列, 柴路, 王清月. 基于飞秒激光平衡光学互相关的任意长绝对距离测量. 物理学报, 2012, 61(24): 240601. doi: 10.7498/aps.61.240601
    [8] 张立超, 侯蓝田, 周桂耀. 八边形光子晶体光纤色散补偿特性分析. 物理学报, 2011, 60(5): 054217. doi: 10.7498/aps.60.054217
    [9] 马群, 章岳光, 沈伟东, 罗震岳, 张青, 张淑娜, 叶蓬, 袁文佳, 刘旭, 魏志义. 钛宝石飞秒激光器用色散补偿Gires-Tournois镜的研究. 物理学报, 2011, 60(2): 027804. doi: 10.7498/aps.60.027804
    [10] 王胭脂, 邵建达, 董洪成, 晋云霞, 贺洪波, 易葵, 范正修, 宋有建, 胡明列, 柴路, 王清月. 钛宝石激光器9.5 fs脉冲输出中的啁啾镜色散补偿. 物理学报, 2011, 60(1): 018101. doi: 10.7498/aps.60.018101
    [11] 韩伟涛, 侯蓝田, 耿鹏程. 双包层多芯光子晶体光纤自相干合成的数值分析与实验. 物理学报, 2010, 59(10): 7091-7095. doi: 10.7498/aps.59.7091
    [12] 薛宇豪, 周军, 何兵, 李震, 漆云凤, 刘驰, 楼祺洪. 基于空间滤波的光纤激光被动相位锁定技术研究. 物理学报, 2010, 59(11): 7869-7874. doi: 10.7498/aps.59.7869
    [13] 陈子伦, 周 朴, 许晓军, 侯 静, 姜宗福. 谱线和耦合系数对光纤激光器相互注入锁定的影响. 物理学报, 2008, 57(6): 3588-3592. doi: 10.7498/aps.57.3588
    [14] 雷 兵, 冯 莹, 刘泽金. 利用全光纤耦合环实现三路光纤激光器的相位锁定. 物理学报, 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [15] 谭中伟, 曹继红, 陈 勇, 刘 艳, 宁提纲, 简水生. 低串扰的多波长光纤光栅色散补偿器. 物理学报, 2007, 56(1): 274-279. doi: 10.7498/aps.56.274
    [16] 陈子伦, 侯 静, 周 朴, 刘 亮, 姜宗福. 两个光纤激光器的互相注入锁定. 物理学报, 2007, 56(12): 7046-7050. doi: 10.7498/aps.56.7046
    [17] 孙振红, 柴 路, 张志刚, 王清月, 张伟力, 袁晓东, 黄小军. 马丁内兹型啁啾脉冲放大系统高阶色散的混合补偿. 物理学报, 2005, 54(2): 777-781. doi: 10.7498/aps.54.777
    [18] 裴 丽, 宁提纲, 李唐军, 董小伟, 简水生. 高速光通信系统中光纤光栅色散补偿研究. 物理学报, 2005, 54(4): 1630-1635. doi: 10.7498/aps.54.1630
    [19] 李曙光, 刘晓东, 侯蓝田. 光子晶体光纤色散补偿特性的数值研究. 物理学报, 2004, 53(6): 1880-1886. doi: 10.7498/aps.53.1880
    [20] 裴 丽, 简水生, 延凤平, 宁提纲, 简 伟, 李唐军. 4×10Gb/s 400km 啁啾光纤光栅色散补偿研究. 物理学报, 2003, 52(3): 615-619. doi: 10.7498/aps.52.615
计量
  • 文章访问数:  5443
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-15
  • 修回日期:  2018-11-17
  • 刊出日期:  2019-12-20

/

返回文章
返回