搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长距离泵浦-探测系统的阿秒精度锁定

王柯俭 滕浩 邢笑伟 董朔 曹凯强 江昱佼 赵昆 朱江峰 刘文军 魏志义

引用本文:
Citation:

长距离泵浦-探测系统的阿秒精度锁定

王柯俭, 滕浩, 邢笑伟, 董朔, 曹凯强, 江昱佼, 赵昆, 朱江峰, 刘文军, 魏志义
cstr: 32037.14.aps.73.20241061

Attosecond delay locking of large arm pump-probe system

Wang Ke-Jian, Teng Hao, Xing Xiao-Wei, Dong Shuo, Cao Kai-Qiang, Jiang Yu-Jiao, Zhao Kun, Zhu Jiang-Feng, Liu Wen-Jun, Wei Zhi-Yi
cstr: 32037.14.aps.73.20241061
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 随着超快科学和阿秒脉冲技术的发展, 基于孤立阿秒脉冲的泵浦-探测系统由于能实现对电子动力学的时间分辨测量, 已成为人们开展阿秒超快过程研究不可或缺的关键技术. 但要获得稳定可靠的泵浦-探测信号, 需要保证泵浦与探测光之间阿秒级的高精度同步, 较大的抖动将会导致信号产生弥散、甚至被淹埋在噪声中, 从而无法获得真实的物理图像. 由于阿秒脉冲从产生到应用终端之间的距离通常较长, 要实现阿秒时间分辨, 就必须对阿秒光脉冲与泵浦光进行阿秒量级的延时锁定. 针对这一问题, 本文发展了一种新型的双层光路系统, 通过对获得的干涉条纹进行快速傅里叶变换, 将获得的时间抖动量反馈给压电平移台实时补偿光程漂移, 实现了泵浦光与探测光之间阿秒量级的同步锁定. 应用该方案到光路长度从1—10 m的阿秒泵浦探测系统, 得到了锁定精度分别从7.64—31.76 as的结果, 分析表明系统延时误差与距离呈严格的线性关系, 决定数R2 = 0.96. 本研究工作表明, 使用小型干涉仪可实现对大科学装置中长距离阿秒泵浦探测系统的锁定精度进行快速检测, 这对如非共线阿秒条纹相机、时间分辨光电子能谱仪、相干合成等应用具有一定的参考意义.
    With the development of ultrafast science and attosecond laser technology, the pump-probe system based on isolated attosecond laser pulses is a key to attosecond science, which will be used to study electronic dynamics on an attosecond time-scale. To obtain stable and reliable signals, it is necessary to ensure ultra-stable and ultra-accurate synchronization. Any timing jitter can cause signal to disperse or get buryied in noise, making it impossible to obtain the true physical mechanism. Based on the above, the delay between pump laser pulse and probe laser pulse must be controlled with an attosecond time resolution. In this work, a dual-layer system is developed to achieve high-precision synchronization locking. To ensure that both layers have the same time jitter, we design an adapter to secure the elements placed during installation. Timing jitter is obtained by shaking interference fringes through fast Fourier transformation, and can be calculated in several ms. Then error signals are fed back to the PZT stage in order to compensate for real-time optical path drift. Through such a design, a time-delay accuracy of 7.64 as to 15.53 as is realized, which is linearly related to the interferometer arm length ranging from 1 m to 5 m, with an R2 of 0.96. Moreover, the error between the experimental result of arm length of 8 m and 10 m and the result fitted with the above data is less than 3 as. These results show that using a small interferometer can achieve the fast detection of the time-delay accuracy of long-arm attosecond pump-probe detection system in large scientific instrument, which is of great significance in guiding ther applications such as in non-collinear attosecond streaking spectroscopy, time-resolved photoelectron spectroscopy, and coherent synthesis.
      通信作者: 滕浩, hteng@iphy.ac.cn ; 朱江峰, jfzhu@xidian.edu.cn ; 魏志义, zywei@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1604200)和国家自然科学基金(批准号: 12034020)资助的课题.
      Corresponding author: Teng Hao, hteng@iphy.ac.cn ; Zhu Jiang-Feng, jfzhu@xidian.edu.cn ; Wei Zhi-Yi, zywei@iphy.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1604200) and the National Natural Science Foundation of China (Grant No. 12034020).
    [1]

    Bloembergen N, Hall P 1999 Rev. Mod. Phys. 71 283Google Scholar

    [2]

    Zewail A H 1988 Science 242 1645Google Scholar

    [3]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [4]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X W, Chang Z H 2012 Opt. Lett. 37 3891Google Scholar

    [5]

    Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M, Chang Z H 2017 Nat. Commun. 8 186Google Scholar

    [6]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express 25 27506Google Scholar

    [7]

    Witting T, Osolodkov M, Schell F, et al. 2022 Optica 9 145Google Scholar

    [8]

    Wirth A, Hassan M Th, Grguraš I, et al. 2011 Science 334 195Google Scholar

    [9]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [10]

    Cattaneo L, Pedrelli L, Bello R Y, Palacios A, Keathley P D, Martín F, Keller U 2022 Phys. Rev. Lett. 128 063001Google Scholar

    [11]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477Google Scholar

    [12]

    Stewart G A, Hoerner P, Debrah D A, Lee S K, Schlegel H B, Li W 2023 Phys. Rev. Lett. 130 083202Google Scholar

    [13]

    Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013 Science 342 453Google Scholar

    [14]

    Wang J, Chen F M, Pan M J, et al. 2023 Opt. Express 31 9854Google Scholar

    [15]

    Chen F M, Wang J, Pan M J, Liu J D, Huang J, Zhao K, Yun C, Qian T, Wei Z Y, Ding H 2023 Rev. Sci. Instrum. 94 043905Google Scholar

    [16]

    Cavalieri A L, Müller N, Uphues Th, et al. 2007 Nature 449 1029Google Scholar

    [17]

    江昱佼, 高亦谈, 黄沛, 赵昆, 许思源, 朱江峰, 方少波, 滕浩, 侯洵, 魏志义 2019 物理学报 68 214204Google Scholar

    Jiang Y J, Gao Y T, Huang P, Zhao K, Xu S Y, Zhu J F, Fang S B, Teng H, Hou X, Wei Z Y 2019 Acta Phys. Sin. 68 214204Google Scholar

    [18]

    Vaughan J, Bahder J, Unzicker B, Arthur D, Tatum M, Hart T, Harrison G, Burrows S, Stringer P, Laurent G M 2019 Opt. Express 27 30989Google Scholar

    [19]

    Li M X, Wang H Y, Li X K, Wang J, Zhang J D, San X Y, Ma P, Lu Y N, Liu Z, Wang C C, Yang Y, Luo S Z, Ding D J 2023 J. Electron Spectrosc. 263 147287Google Scholar

    [20]

    Luo S J, Weissenbilder R, Laurell H, et al. 2023 Adv. Phys. X 8 2250105Google Scholar

    [21]

    Cooley J W, Tukey J W 1965 Math. Comp. 19 297Google Scholar

  • 图 1  实验装置示意图. BP1, 2为指向锁定镜, RM1—3为反射镜

    Fig. 1.  Schematic layout of the experimental setup. BP1, 2 represents beampoint-locking mirror, RM1–3 represents reflect mirror.

    图 2  干涉条纹采集与反演结果 (a)干涉条纹; (b)纵向积分曲线; (c)频率谱

    Fig. 2.  Interference fringe acquisition and inversion results: (a) Interference fringes; (b) longitudinal integration curve; (c) frequency density.

    图 3  延时抖动结果 (a)未锁定延时; (b)锁定延时; (c)延时锁定下的延时扫描

    Fig. 3.  Results of delay-locking: (a) Unlocked time delay; (b) locked time delay; (c) the delay step scan with time delay locked.

    图 4  不同臂长的锁定精度

    Fig. 4.  Locked-delay accuracy of different arm lengths.

  • [1]

    Bloembergen N, Hall P 1999 Rev. Mod. Phys. 71 283Google Scholar

    [2]

    Zewail A H 1988 Science 242 1645Google Scholar

    [3]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [4]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X W, Chang Z H 2012 Opt. Lett. 37 3891Google Scholar

    [5]

    Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M, Chang Z H 2017 Nat. Commun. 8 186Google Scholar

    [6]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express 25 27506Google Scholar

    [7]

    Witting T, Osolodkov M, Schell F, et al. 2022 Optica 9 145Google Scholar

    [8]

    Wirth A, Hassan M Th, Grguraš I, et al. 2011 Science 334 195Google Scholar

    [9]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [10]

    Cattaneo L, Pedrelli L, Bello R Y, Palacios A, Keathley P D, Martín F, Keller U 2022 Phys. Rev. Lett. 128 063001Google Scholar

    [11]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477Google Scholar

    [12]

    Stewart G A, Hoerner P, Debrah D A, Lee S K, Schlegel H B, Li W 2023 Phys. Rev. Lett. 130 083202Google Scholar

    [13]

    Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013 Science 342 453Google Scholar

    [14]

    Wang J, Chen F M, Pan M J, et al. 2023 Opt. Express 31 9854Google Scholar

    [15]

    Chen F M, Wang J, Pan M J, Liu J D, Huang J, Zhao K, Yun C, Qian T, Wei Z Y, Ding H 2023 Rev. Sci. Instrum. 94 043905Google Scholar

    [16]

    Cavalieri A L, Müller N, Uphues Th, et al. 2007 Nature 449 1029Google Scholar

    [17]

    江昱佼, 高亦谈, 黄沛, 赵昆, 许思源, 朱江峰, 方少波, 滕浩, 侯洵, 魏志义 2019 物理学报 68 214204Google Scholar

    Jiang Y J, Gao Y T, Huang P, Zhao K, Xu S Y, Zhu J F, Fang S B, Teng H, Hou X, Wei Z Y 2019 Acta Phys. Sin. 68 214204Google Scholar

    [18]

    Vaughan J, Bahder J, Unzicker B, Arthur D, Tatum M, Hart T, Harrison G, Burrows S, Stringer P, Laurent G M 2019 Opt. Express 27 30989Google Scholar

    [19]

    Li M X, Wang H Y, Li X K, Wang J, Zhang J D, San X Y, Ma P, Lu Y N, Liu Z, Wang C C, Yang Y, Luo S Z, Ding D J 2023 J. Electron Spectrosc. 263 147287Google Scholar

    [20]

    Luo S J, Weissenbilder R, Laurell H, et al. 2023 Adv. Phys. X 8 2250105Google Scholar

    [21]

    Cooley J W, Tukey J W 1965 Math. Comp. 19 297Google Scholar

计量
  • 文章访问数:  2595
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-31
  • 修回日期:  2024-09-01
  • 上网日期:  2024-09-19
  • 刊出日期:  2024-10-05

/

返回文章
返回