搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长距离泵浦-探测系统的阿秒精度锁定

王柯俭 滕浩 邢笑伟 董朔 曹凯强 江昱佼 赵昆 朱江峰 刘文军 魏志义

引用本文:
Citation:

长距离泵浦-探测系统的阿秒精度锁定

王柯俭, 滕浩, 邢笑伟, 董朔, 曹凯强, 江昱佼, 赵昆, 朱江峰, 刘文军, 魏志义

Attosecond delay locking for large arm pump-probe system

Wang Ke-jian, Teng Hao, Xing Xiao-wei, Dong Shuo, Cao Kai-qiang, Jiang Yu-jiao, Zhao Kun, Zhu Jiang-feng, Liu Wen-jun, Wei Zhi-yi
PDF
导出引用
  • 随着超快科学和阿秒脉冲技术的发展,基于孤立阿秒脉冲的泵浦-探测系统由于能实现对电子动力学的时间分辨测量,已成为人们开展阿秒超快过程研究不可或缺的关键技术。但要获得稳定可靠的泵浦-探测信号,需要保证泵浦与探测光之间阿秒级的高精度同步,较大的抖动将会导致信号产生弥散、甚至被淹埋在噪声中,从而无法获得真实的物理图像。由于阿秒脉冲从产生到应用终端之间的距离通常较长,要实现阿秒时间分辨,就必须对阿秒光脉冲与泵浦光进行阿秒量级的延时锁定。针对这一问题,本文发展了一种新型的双层光路系统,通过对获得的干涉条纹作快速傅里叶变换,将获得的时间抖动量反馈给压电平移台实时补偿光程漂移,实现了泵浦光与探测光之间阿秒量级的同步锁定。应用该方案到光路长度从1米到10米的阿秒泵浦探测系统,得到了锁定精度分别从7.64 as到31.76 as的结果,分析表明系统延时误差与距离成严格的线性关系,决定数R2=0.96。这一研究工作表明,使用小型干涉仪可实现对大科学装置中长距离阿秒泵浦探测系统的锁定精度进行快速检测,这对如非共线阿秒条纹相机、时间分辨光电子能谱仪、相干合成等应用具有一定的参考意义。
    With the development of ultrafast science and attosecond laser technology, the pump-probe system based on isolated attosecond laser pulses is a key for attosecond science, which will be used to study electronic dynamics in attosecond time-scale. To obtain stable and reliable signals, it is necessary to ensure ultra-stable and ultra-accurate synchronization. Any timing jitter can cause signal disperse or get buried in noise, making it impossible to obtain the true physical mechanism. Based on above, the delay between pump and probe laser pulses must be controlled with an attosecond time resolution. In this work, a dual-layer system was developed to make a high-precision synchronization locking. To ensure that both layers have the same time jitter, we design an adapter to hold the elements, which are placed in the mounting. Timing jitter is obtained by shaking interference fringes through fast Fourier transformation, which can be calculated in several milliseconds. Then error signals are fed back to the PZT stage for compensation of real-time optical path drift. With such a design, a time-delay accuracy of 7.64 as to 15.53 as are realized, which is linearly related to the interferometer arm length from 1 m to 5 m and the R-square is 0.96. Moreover, the error between the experimental result of arm length of 8,10 meters and the result fitted with the above data is less than 3 as. These results shows that using a small interferometer can achieve fast detection of the time-delay accuracy of long-arm attosecond pump-probe detection systems in large scientific instruments, which is of important guiding significance for applications such as non-collinear attosecond streaking spectroscopy, time-resolved photoelectron spectroscopy, coherent synthesis, and other applications.
  • [1]

    Bloembergen N, Hall P 1999 Rev. Mod. Phys. 71 283

    [2]

    Zewail A H 1988 Science 242 1645

    [3]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [4]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X, Chang Z 2012 Opt. Lett. 37 3891

    [5]

    Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, Chang Z 2017 Nat. Commun. 8 186

    [6]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express 25 27506

    [7]

    Witting T, Osolodkov M, Schell F, Morales F, Patchkovskii S, Šušnjar P, Cavalcante F H M, Menoni C S, Schulz C P, Furch F J, Vrakking M J J 2022 Optica 9 145

    [8]

    Wirth A, Hassan M Th, Grguraš I, Gagnon J, Moulet A, Luu T T, Pabst S, Santra R, Alahmed Z A, Azzeer A M, Yakovlev V S, Pervak V, Krausz F, Goulielmakis E 2011 Science 334 195

    [9]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95

    [10]

    Cattaneo L, Pedrelli L, Bello R Y, Palacios A, Keathley P D, Martín F, Keller U 2022 Phys. Rev. Lett. 128 063001

    [11]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [12]

    Stewart G A, Hoerner P, Debrah D A, Lee S K, Schlegel H B, Li W 2023 Phys. Rev. Lett. 130 083202

    [13]

    Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013 Science 342 453

    [14]

    Wang J, Chen F, Pan M, Xu S, Lv R, Liu J, Li Y, Fang S, Chen Y, Zhu J, Zhang D, Qian T, Yun C, Zhao K, Ding H, Wei Z 2023 Opt. Express 31 9854

    [15]

    Chen F, Wang J, Pan M, Liu J, Huang J, Zhao K, Yun C, Qian T, Wei Z, Ding H 2023 Rev. Sci. Instrum. 94 043905

    [16]

    Luo S, Weissenbilder R, Laurell H, Ammitzböll M, Poulain V, Busto D, Neoričić L, Guo C, Zhong S, Kroon D, Squibb R J, Feifel R, Gisselbrecht M, L’Huillier A, Arnold C L 2023 Adv. Phys.: X 8 2250105

    [17]

    Jiang Y J, Gao Y T, Huang P, Zhao K, Xu S Y, Zhu J F, Fang S B, Teng H, Hou X, Wei Z Y 2019 Acta Phys. Sin. 68 214204 (in Chinese) [江昱佼, 高亦谈, 黄沛, 赵昆, 许思源, 朱江峰, 方少波, 滕浩, 侯洵, 魏志义 2019 物理学报 68 214204]

    [18]

    Vaughan J, Bahder J, Unzicker B, Arthur D, Tatum M, Hart T, Harrison G, Burrows S, Stringer P, Laurent G M 2019 Opt. Express 27 30989

    [19]

    Li M, Wang H, Li X, Wang J, Zhang J, San X, Ma P, Lu Y, Liu Z, Wang C, Yang Y, Luo S, Ding D 2023 Journal of Electron Spectroscopy and Related Phenomena 263 147287

    [20]

    Luo S, Weissenbilder R, Laurell H, Ammitzböll M, Poulain V, Busto D, Neoričić L, Guo C, Zhong S, Kroon D, Squibb R J, Feifel R, Gisselbrecht M, L’Huillier A, Arnold C L 2023 Adv. Phys.: X 8 2250105

    [21]

    Cooley J W, Tukey J W 1965 Math. Comp. 19 297

  • [1] 方振, 余游, 赵秋烨, 张昱冬, 王治强, 张祖兴. 基于泵浦强度调制的超快光纤激光器中孤子分子光谱脉动动力学研究. 物理学报, doi: 10.7498/aps.73.20231030
    [2] 何广龙, 薛莉, 吴诚, 李慧, 印睿, 董大兴, 王昊, 徐迟, 黄慧鑫, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 夏凌昊, 张蜡宝, 吴培亨. 面向机载平台的小型超导单光子探测系统. 物理学报, doi: 10.7498/aps.72.20230248
    [3] 苑涛, 戴汉宁, 陈宇翱. 超冷原子动量光晶格中的非线性拓扑泵浦. 物理学报, doi: 10.7498/aps.72.20230740
    [4] 卫容宇, 李军, 张大命, 王炜皓. 纠缠态量子探测系统的恒虚警检测方法研究. 物理学报, doi: 10.7498/aps.71.20211121
    [5] 刘雪梅, 芮扬, 张亮, 武跃龙, 武海斌. 用于冷原子的高精度磁场锁定系统. 物理学报, doi: 10.7498/aps.71.20220399
    [6] 卫容宇, 李军, 张大命, 王炜皓. 纠缠态量子探测系统的恒虚警检测方法研究. 物理学报, doi: 10.7498/aps.70.20211121
    [7] 查冰婷, 袁海璐, 马少杰, 陈光宋. 单光束扩束扫描激光周视探测系统参数对探测能力的影响. 物理学报, doi: 10.7498/aps.68.20181860
    [8] 黄沛, 方少波, 黄杭东, 侯洵, 魏志义. 基于平衡光学互相关方法的超短脉冲激光相干合成技术. 物理学报, doi: 10.7498/aps.67.20181851
    [9] 樊正富, 谭智勇, 万文坚, 邢晓, 林贤, 金钻明, 曹俊诚, 马国宏. 低温生长砷化镓的超快光抽运-太赫兹探测光谱. 物理学报, doi: 10.7498/aps.66.087801
    [10] 张鑫, 张蕴川, 李建, 李仁杰, 宋庆坤, 张佳乐, 樊莉. 波长锁定激光二极管共振泵浦Nd:YVO4晶体连续波自拉曼激光器的设计与研究. 物理学报, doi: 10.7498/aps.66.194203
    [11] 王盼盼, 周晨, 宋杨, 张援农, 赵正予. 大气风场和温度对无线电声波探测系统探测高度影响的数值研究. 物理学报, doi: 10.7498/aps.64.100205
    [12] 张岩, 于旭东, 邸克, 李卫, 张靖. 压缩态光场平衡零拍探测的位相锁定. 物理学报, doi: 10.7498/aps.62.084204
    [13] 王贵师, 易红明, 蔡廷栋, 汪磊, 谈图, 张为俊, 高晓明. 基于石英音叉增强型光谱技术(QEPAS)的实时探测系统研究. 物理学报, doi: 10.7498/aps.61.120701
    [14] 朱丽丹, 孙方远, 祝捷, 唐大伟. 飞秒激光抽运探测热反射法对金属纳米薄膜超快非平衡传热的研究. 物理学报, doi: 10.7498/aps.61.134402
    [15] 贺雪鹏, 刘院省, 刘世炳. 超快激光抽运-探测中探针光时间延迟量的 实时测量原理与光学设计. 物理学报, doi: 10.7498/aps.60.024212
    [16] 梁文锡, 朱鹏飞, 王瑄, 聂守华, 张忠超, 曹建明, 盛政明, 张杰. 超快电子衍射系统的时间空间分辨能力研究及其优化. 物理学报, doi: 10.7498/aps.58.5539
    [17] 欧阳晓平, 李真富, 王群书, 霍裕昆, 马彦良, 张前美, 张国光, 金玉仁. 狭缝式高灵敏裂变中子探测系统. 物理学报, doi: 10.7498/aps.54.4643
    [18] 孙 强, 于 斌, 王肇圻, 母国光, 卢振武. 谐衍射双波段红外超光谱探测系统研究. 物理学报, doi: 10.7498/aps.53.756
    [19] 王祖赓, 李敏. 光学泵浦的锂分子激光. 物理学报, doi: 10.7498/aps.37.1640
    [20] 鲍晓毅, 吴存恺. 相位对同步泵浦锁模染料激光系统参数的影响. 物理学报, doi: 10.7498/aps.37.851
计量
  • 文章访问数:  108
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-19

/

返回文章
返回