搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气风场和温度对无线电声波探测系统探测高度影响的数值研究

王盼盼 周晨 宋杨 张援农 赵正予

引用本文:
Citation:

大气风场和温度对无线电声波探测系统探测高度影响的数值研究

王盼盼, 周晨, 宋杨, 张援农, 赵正予

A numerical study of effects on detection height of a radio acoustic sounding system influenced by atmospheric wind and temperature

Wang Pan-Pan, Zhou Chen, Song Yang, Zhang Yuan-Nong, Zhao Zheng-Yu
PDF
导出引用
  • 从声波扰动介质中的电波波动方程出发, 使用时域有限差分(FDTD)方法, 结合声波传播的FDTD 模型, 构建了描述声波和电波相互作用的数值模型, 并运用该模型分析风场和温度对无线电声波探测系统的探测高度的影响. 数值模拟结果表明: 温度与风场剖面的存在改变声波和电波散射回波的传播轨迹; 温度梯度剖面主要影响声波的传播速度, 风场剖面导致作为电波散射体的声波波阵面的偏移, 降低电波散射回波的强度并改变回波路径, 使得接收数据减少, 限制无线电声波探测系统的探测高度; 在强风背景下, 若降低声波散射体高度, 电波散射回波“聚束点”的偏移会有较大的改善, 但同时意味着探测高度的降低. 为了改善风场背景下无线电声波探测系统的探测高度, 可以使用双基地雷达或者增大接收天线面积等方法来实现.
    Radio acoustic sounding system (RASS) is a detection technique using the interaction between radio wave and acoustic wave to remotely measure vertical profiles of the atmospheric temperature, and usually composed of a Doppler radar with fixed beam (monostatic or bistatic) and an acoustic source with high power. By combining acoustic propagation equation and radio wave propagation equation in a disturbance medium and using a finite-difference time-domain method, a numerical model describing the interaction between acoustic wave and electric wave is constructed, and the model is used to analyze the effects of wind and temperature on detection height of RASS. In the atmospheric temperature background, the propagations of a single frequency acoustic wave packet under different wind conditions are simulated, and the scattering propagation of electric wave packets corresponding to the acoustic scatterer are analyzed and compared. Besides, the entire physical process are described from the angle of energy density. The numerical simulation results show that the propagation trajectories of both acoustic wave and radio wave backscattering echo are changed due to the existence of wind field and temperature profile. The presence of wind field results in an offset of acoustic wave front, reducing the strength and changing the trajectory of radio wave backscattering echo, so that the detection height is limited due to the reduction of receiving data. The simulation results of the acoustic wave reveal that the temperature profile mainly affects the propagation velocity of acoustic wave, while the presence of wind field may result in shifts of propagation trajectory and acoustic wave front, and the greater the wind speed, the more the horizontal shift of acoustic wave front is. The numerical analyses of scattering propagations of radio wave with the acoustic scatterer at the same height under different background atmospheric conditions manifest that the stronger the wind speed, the more the deviation of electric wave echo from the receive antenna is, and the smaller the echo intensity is when the scattering echo propagates to the same position. The theoretical calculations with the acoustic wave scatterer at different heights under the same atmospheric wind field (strong wind) background demonstrate that if the height of scattering point is reduced, the offset of the scattering echo “bunching point” at the same altitude will be greatly improved and the intensity will be enhanced, but it also means the decline of detection height. In order to improve the detection height under the background of wind field, some methods are adopted, such as using a bistatic radar antenna or increasing the reception antenna area.
    [1]

    Xiong H 2000 Radio Wave Propagation (Beijing: Electronic Industry Press) (in Chinese) [熊皓 2000 无线电波传播(北京: 电子工业出版社)]

    [2]

    Smith Jr P L 1961 5th National Convention on Military Electronics Midwest Research Institute, Washington, DC, System Analysis, June 26-28, 1999

    [3]

    Marshall J M, Peterson A M, Branes Jr A A 1972 Appl. Opt. 11 108

    [4]

    Frankel M S, Chang N J F, Sanders Jr M J 1977 Bull. Am. Meteorol. Soc. 58 928

    [5]

    Fukushima M S, Akita K, Masuda Y 1979 Enuiron. Res. Jpn. 104 1

    [6]

    Azizyan G V, Bovsheverrov V M, Gorelik A G, Yegorov M A, Krayukin G A, Knyazen L V 1981 Izv. Acad. Sci. USSR Atmos. Oceanic Phys., Engl. Transi. 17 112

    [7]

    Masuda Y 1988 Radio Sci. 23 647

    [8]

    Yee K S 1966 IEEE Trans. Antennas Propagat. 14 302

    [9]

    Taylor C D, Lam D H, Shumpert T H 1969 IEEE Trans. Antennas Propagat. 17 585

    [10]

    Merewether D E 1971 IEEE Trans. Electromagn. Compat. 13 41

    [11]

    Luebbers R J, Kuriz K S, Schneider M, Hmsberger 1991 IEEE Trans. Antennas Propagat. 39 429

    [12]

    Zhu X M, Ren X C, Guo L X 2014 Acta Phys. Sin. 63 054101 (in Chinese) [朱小敏, 任新成, 郭立新 2014 物理学报 63 054101]

    [13]

    Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. Soc. 18 1674

    [14]

    Liu S B, Liu S Q 2004 Chin. Phys. Soc. 13 1009

    [15]

    Song Y, Zhao Z Y, Zhang Y N 2014 Acta Geophys. Sin. 57 1746 (in Chinese) [宋杨, 赵正予, 张援农 2014 地球物理学报 57 1746]

    [16]

    Song Y 2014 Ph. D. Dissertation (Wuhan: Wuhan University) (in Chinese) [宋杨 2014 博士学位论文(武汉: 武汉大学)]

    [17]

    Beer T 1974 Atmospheric Waves (London: Adam Hilger)

    [18]

    Smith E K, Weintraub S 1953 PROC. IRE 41 1035

    [19]

    David H, Robert R, Jerl W 2005 Fundamental of Physics (USA: John Wiley and Sons) p509

    [20]

    Mur G 1981 IEEE Trans. Electromagn. Compat. 23 377

    [21]

    Berenger J P 1994 J. Comput. Phys. 114 185

    [22]

    Courant R, Friedrichs K, Lewy H 1928 Math. Ann. 100 32

    [23]

    Du G H, Zhu Z M, Gong X F 2012 Acoustic Foundation (3rd Ed.) (Nanjing: Nanjing University Press) (in Chinese) [杜功焕, 朱哲民, 龚秀芬2012 声学基础(第三版)(南京: 南京大学出版社)]

    [24]

    Ma W W 2006 Physics (5th Ed.) (Beijing: Higher Education Press) (in Chinese) [马文蔚 2006 物理学(第五版)(北京: 高等教育出版社)]

  • [1]

    Xiong H 2000 Radio Wave Propagation (Beijing: Electronic Industry Press) (in Chinese) [熊皓 2000 无线电波传播(北京: 电子工业出版社)]

    [2]

    Smith Jr P L 1961 5th National Convention on Military Electronics Midwest Research Institute, Washington, DC, System Analysis, June 26-28, 1999

    [3]

    Marshall J M, Peterson A M, Branes Jr A A 1972 Appl. Opt. 11 108

    [4]

    Frankel M S, Chang N J F, Sanders Jr M J 1977 Bull. Am. Meteorol. Soc. 58 928

    [5]

    Fukushima M S, Akita K, Masuda Y 1979 Enuiron. Res. Jpn. 104 1

    [6]

    Azizyan G V, Bovsheverrov V M, Gorelik A G, Yegorov M A, Krayukin G A, Knyazen L V 1981 Izv. Acad. Sci. USSR Atmos. Oceanic Phys., Engl. Transi. 17 112

    [7]

    Masuda Y 1988 Radio Sci. 23 647

    [8]

    Yee K S 1966 IEEE Trans. Antennas Propagat. 14 302

    [9]

    Taylor C D, Lam D H, Shumpert T H 1969 IEEE Trans. Antennas Propagat. 17 585

    [10]

    Merewether D E 1971 IEEE Trans. Electromagn. Compat. 13 41

    [11]

    Luebbers R J, Kuriz K S, Schneider M, Hmsberger 1991 IEEE Trans. Antennas Propagat. 39 429

    [12]

    Zhu X M, Ren X C, Guo L X 2014 Acta Phys. Sin. 63 054101 (in Chinese) [朱小敏, 任新成, 郭立新 2014 物理学报 63 054101]

    [13]

    Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. Soc. 18 1674

    [14]

    Liu S B, Liu S Q 2004 Chin. Phys. Soc. 13 1009

    [15]

    Song Y, Zhao Z Y, Zhang Y N 2014 Acta Geophys. Sin. 57 1746 (in Chinese) [宋杨, 赵正予, 张援农 2014 地球物理学报 57 1746]

    [16]

    Song Y 2014 Ph. D. Dissertation (Wuhan: Wuhan University) (in Chinese) [宋杨 2014 博士学位论文(武汉: 武汉大学)]

    [17]

    Beer T 1974 Atmospheric Waves (London: Adam Hilger)

    [18]

    Smith E K, Weintraub S 1953 PROC. IRE 41 1035

    [19]

    David H, Robert R, Jerl W 2005 Fundamental of Physics (USA: John Wiley and Sons) p509

    [20]

    Mur G 1981 IEEE Trans. Electromagn. Compat. 23 377

    [21]

    Berenger J P 1994 J. Comput. Phys. 114 185

    [22]

    Courant R, Friedrichs K, Lewy H 1928 Math. Ann. 100 32

    [23]

    Du G H, Zhu Z M, Gong X F 2012 Acoustic Foundation (3rd Ed.) (Nanjing: Nanjing University Press) (in Chinese) [杜功焕, 朱哲民, 龚秀芬2012 声学基础(第三版)(南京: 南京大学出版社)]

    [24]

    Ma W W 2006 Physics (5th Ed.) (Beijing: Higher Education Press) (in Chinese) [马文蔚 2006 物理学(第五版)(北京: 高等教育出版社)]

  • [1] 冯波, 徐文君, 蔡杰雄, 吴如山, 王华忠. 标量声波方程前向散射场的保相位理论及其线性化近似. 物理学报, 2023, 72(15): 159101. doi: 10.7498/aps.72.20230194
    [2] 王敬之, 马新, 项正, 顾旭东, 焦鹿怀, 雷良建, 倪彬彬. 等离子体层嘶声波对辐射带电子投掷角散射系数的多维建模. 物理学报, 2022, 71(22): 229401. doi: 10.7498/aps.71.20220655
    [3] 王志鹏, 王秉中, 刘金品, 王任. 实现散射场强整形的微散射体阵列逆向设计方法. 物理学报, 2021, 70(1): 010202. doi: 10.7498/aps.70.20200825
    [4] 王志鹏, 王秉中, 刘金品, 王任. 实现散射场强整形的微散射体阵列逆向设计方法. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200825
    [5] 韩金华, 郭刚, 刘建成, 隋丽, 孔福全, 肖舒颜, 覃英参, 张艳文. 100 MeV质子双环双散射体扩束方案设计. 物理学报, 2019, 68(5): 054104. doi: 10.7498/aps.68.20181787
    [6] 刘胜兴, 李整林. 海面冰层对声波的反射和散射特性. 物理学报, 2017, 66(23): 234301. doi: 10.7498/aps.66.234301
    [7] 唐远河, 崔进, 郜海阳, 屈欧阳, 段晓东, 李存霞, 刘丽娜. 地基气辉成像干涉仪探测高层大气风场的定标研究. 物理学报, 2017, 66(13): 130601. doi: 10.7498/aps.66.130601
    [8] 迟静, 李小雷, 高大治, 王好忠, 王宁. 利用海浪噪声自相关实现散射体无源探测. 物理学报, 2017, 66(19): 194304. doi: 10.7498/aps.66.194304
    [9] 李威, 李骏, 龚志雄. 水下任意刚性散射体对Bessel波的散射特性分析. 物理学报, 2015, 64(15): 154305. doi: 10.7498/aps.64.154305
    [10] 崔帅, 张晓娟, 方广有. 基于递归T矩阵的离散随机散射体散射特性研究. 物理学报, 2014, 63(15): 154202. doi: 10.7498/aps.63.154202
    [11] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. Rayleigh散射Doppler激光雷达风场反演方法改进. 物理学报, 2012, 61(3): 030702. doi: 10.7498/aps.61.030702
    [12] 陈小艺, 刘曼, 李海霞, 张美娜, 宋洪胜, 滕树云, 程传福. 弱散射体产生的菲涅耳极深区散斑场相位涡旋演化的实验研究. 物理学报, 2012, 61(7): 074201. doi: 10.7498/aps.61.074201
    [13] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. 瑞利散射多普勒激光雷达风场反演方法. 物理学报, 2011, 60(6): 060704. doi: 10.7498/aps.60.060704
    [14] 张霖, 张淳民, 简小华. 高层大气风场洛伦兹光谱线型粒子辐射率探测研究. 物理学报, 2010, 59(2): 899-906. doi: 10.7498/aps.59.899
    [15] 于全芝, 李玉同, 蒋小华, 刘永刚, 王哲斌, 董全力, 刘 峰, 张 喆, 黄丽珍, C. Danson, D. Pepler, 丁永坤, 傅世年, 张 杰. 激光等离子体的电子温度对Thomson散射离子声波双峰的影响. 物理学报, 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [16] 唐远河, 张淳民, 刘汉臣, 陈光德, 贺 健. 基于镀膜四面角锥棱镜技术的上层大气风场探测研究. 物理学报, 2005, 54(9): 4065-4071. doi: 10.7498/aps.54.4065
    [17] 宋洪胜, 程传福, 张宁玉, 任晓荣, 滕树云, 徐至展. 强散射体产生的像面散斑对比度与随机表面及成像系统关系的研究. 物理学报, 2005, 54(2): 669-676. doi: 10.7498/aps.54.669
    [18] 刘晓东, 李曙光, 侯蓝田, 王慧田. 含金属散射体的中红外无序介质的光子定域化理论研究. 物理学报, 2002, 51(9): 2123-2127. doi: 10.7498/aps.51.2123
    [19] 陆鹏, 王耀俊. 考虑界面状况时柱状弹性固体的声波散射. 物理学报, 2001, 50(4): 697-703. doi: 10.7498/aps.50.697
    [20] 周宇峰, 王耀俊, 马力, 高天赋. 流体饱和多孔圆柱体的声波散射. 物理学报, 2000, 49(3): 480-486. doi: 10.7498/aps.49.480
计量
  • 文章访问数:  6081
  • PDF下载量:  1169
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-17
  • 修回日期:  2014-12-12
  • 刊出日期:  2015-05-05

/

返回文章
返回