搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实现散射场强整形的微散射体阵列逆向设计方法

王志鹏 王秉中 刘金品 王任

引用本文:
Citation:

实现散射场强整形的微散射体阵列逆向设计方法

王志鹏, 王秉中, 刘金品, 王任

Inverse design method of microscatterer array for realizing scattering field intensity shaping

Wang Zhi-Peng, Wang Bing-Zhong, Liu Jin-Pin, Wang Ren
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文提出一种基于全介电微散射体的散射阵列结构逆向设计方法, 用以实现散射电场强度整形. 该方法基于空域傅里叶变换与角谱变换, 从给定目标区域处期望实现的散射场强分布出发, 逆向求得所需的感应源, 再利用电磁感应源理论, 逆向设计微散射体阵列, 且只需通过解析计算便能够快速地求取出微散射体阵列的电磁参数值分布. 基于提出的逆向设计方法, 文中提供了三维情况下的具体算例, 实现了给定方形面目标区域的散射场强整形. 理论计算结果与全波仿真结果符合良好, 表明本文提出的逆向设计方法具有可行性与有效性.
    It is a novel and interesting idea to inversely design the scattering structure with the desired scattering field intensity distribution in a given target area as the known information. The inverse design method proposed in this paper does not need to be optimized, and the spatial distribution and dielectric constant distribution of the micro-scatterer array can be quickly analytically calculated according to the desired scattering field intensity in the target area. First, based on the spatial Fourier transform and angular spectrum transformation, the plane wave sources required in all directions are inversely obtained from the electric field intensity distribution required in the target area. Then, based on the theory of induced source, a method of irradiating the array of all-dielectric micro-scatterers with incident electromagnetic field to generate the required plane wave source is proposed. The scattering fields generated by these micro-scatterers will be superimposed on the target area to achieve the desired scattering field strength intensity. Finally, according to the proposed inverse design theory model, a specific three-dimensional (3D) design is carried out. In the 3D example, we study the scattering field intensity distribution of the point-focused shape of the square surface target area, and show an all-dielectric micro-sphere distribution design. Its spatial distribution and permittivity distribution are both obtained through the rapid analytical calculation of the desired scattered field intensity shape in the target area. Finally, based on the principle of linear superposition, we quickly and easily generate the complex shapes of “I”, “T”, and “X” in the target area. The satisfactory results of full-wave simulation show that the proposed inverse design method is effective and feasible.
      通信作者: 王秉中, bzwang@uestc.edu.cn ; 王任, rwang@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61731005)、博士后创新人才支持计划(批准号: BX20180057)、中国博士后科学基金(批准号: 2018M640907)、中央高校基本科研业务费(批准号: ZYGX2019J101, ZYGX2019Z016)资助的课题
      Corresponding author: Wang Bing-Zhong, bzwang@uestc.edu.cn ; Wang Ren, rwang@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61731005), the Postdoctoral Innovation Talents Support Program, China (Grant No. BX20180057), the China Postdoctoral Science Foundation (Grant No. 2018M640907), and the Fundamental Research Fund for the Central Universities, China (Grant No. ZYGX2019J101, ZYGX2019Z016)
    [1]

    Fink M, Prada C, Wu F, Cassereau D 1989 Proceedings, IEEE Ultrasonics Symposium Montreal, Canada, October 3−6, 1989 p681

    [2]

    Azar L, Shi Y, Wooh S C 2000 NDT&E Int. 33 189Google Scholar

    [3]

    Zhao X Y, Gang T 2008 Ultrasonics 49 126Google Scholar

    [4]

    张碧星, 王文龙 2008 物理学报 57 3613Google Scholar

    Zhang B X, Wang W L 2008 Acta Phys. Sin. 57 3613Google Scholar

    [5]

    郑莉, 郭建中 2016 物理学报 65 044305Google Scholar

    Zheng L, Guo J Z 2016 Acta Phys. Sin. 65 044305Google Scholar

    [6]

    Shan L, Wen G Y 2014 IEEE Trans. Antennas Propag. 62 5565Google Scholar

    [7]

    Wang X Y, Yang G M, Wen G Y 2014 Microwave. Opt. Technol. Lett. 56 2464Google Scholar

    [8]

    Nepa P, Buffi A 2017 IEEE Antennas Propag. Mag. 59 42Google Scholar

    [9]

    Elmer M, Jeffs B D, Warnick K F, Fisher J R, Norrod R D 2012 IEEE Trans. Antennas Propag. 60 903Google Scholar

    [10]

    Guo S, Zhao D, Wang B Z 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT) Guangzhou, China, May 19−22, 2019 p1

    [11]

    Zhao D, Zhu M 2016 IEEE Antennas Wirel. Propag. Lett. 1 5Google Scholar

    [12]

    Zhao D, Guo F, Guo S, Wang B Z 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT) Chengdu, China, May 7−11, 2018 p1

    [13]

    Bellizzi G G, Crocco L, Iero D A M, Isernia T 2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT) Athens, March 1−3, 2017 p162

    [14]

    Bellizzi G G, Bevacqua M T, Crocco L, Isernia T 2018 IEEE Trans. Antennas Propag. 66 4380Google Scholar

    [15]

    Alu A 2009 Phys. Rev. B 80 245115Google Scholar

    [16]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [17]

    Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401Google Scholar

    [18]

    Grbic A, Jiang L, Merlin R 2008 Science 320 511Google Scholar

    [19]

    Imani M F, Grbic A 2013 IEEE Trans. Antennas Propag. 61 5425Google Scholar

    [20]

    Grbic A, Merlin R, Thomas E M, Imani M F 2011 Proceedings of the IEEE 99 1806Google Scholar

    [21]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A.Y, Capasso F 2016 Science 352 1190Google Scholar

    [22]

    Li L, Liu H, Zhang H, Xue W 2018 IEEE Trans. Ind. Electron. 65 3230Google Scholar

    [23]

    Yu S, Liu H, Li L 2019 IEEE Trans. Ind. Electron. 66 3993Google Scholar

    [24]

    Chen X D 2018 Computational Methods for Electromagnetic Inverse Scattering (Hoboken: Wiley-IEEE Press) p24

    [25]

    Kong J A 1990 Electromagnetic Wave Theory (New York: Wiley-Interscience) pp482−483

  • 图 1  逆向设计示意图

    Fig. 1.  Schematic diagram of inverse design.

    图 2  微球阵列设计示意图 (a) 三维视角图; (b)俯视图; (c)正视图; (d)侧视图

    Fig. 2.  Schematic of micro-sphere array design: (a) 3-D view; (b) top view; (c) front view; (d) side view.

    图 3  微球相对介电常数分布

    Fig. 3.  Spheres relative permittivity of array distribution.

    图 4  目标区域归一化点聚焦形状散射场分布图 (a) 三维视角图; (b) 俯视图

    Fig. 4.  Normalized scattering field distribution of focused shape in target area: (a) 3-D view; (b) top view.

    图 5  目标区域三条线上的归一化散射场分布图 (a) y = 0处场分布; (b) x = 0处分布; (c) y = x处场分布

    Fig. 5.  Normalized scattering field distribution on three special lines in target area: (a) A cut view in y = 0; (b) a cut view in x = 0; (c) a cut view in y = x.

    图 6  目标区域归一化复杂形状散射场分布图 (a) 相对原点沿向x方向右平移沿z方向上平移2${\lambda _0}$的点聚焦形状散射场; (b) “I”形状; (c) “T”形状; (d) “X”-形状

    Fig. 6.  Normalized scattering field intensity distribution of complex shape in target area: (a) focused shaped field moving 2${\lambda _0}$ to the right and top relative to the origin; (b) “I”-shaped; (c) “T”-shaped; (d) “X”-shaped.

    图 7  “I”形散射场分布的微散射体阵列示意图 (a) 三维视角图; (b)俯视图; (c)正视图; (d)侧视图

    Fig. 7.  Schematic of micro-sphere array design with “I”-shaped: (a) 3-D view; (b) top view; (c) front view; (d) side view.

  • [1]

    Fink M, Prada C, Wu F, Cassereau D 1989 Proceedings, IEEE Ultrasonics Symposium Montreal, Canada, October 3−6, 1989 p681

    [2]

    Azar L, Shi Y, Wooh S C 2000 NDT&E Int. 33 189Google Scholar

    [3]

    Zhao X Y, Gang T 2008 Ultrasonics 49 126Google Scholar

    [4]

    张碧星, 王文龙 2008 物理学报 57 3613Google Scholar

    Zhang B X, Wang W L 2008 Acta Phys. Sin. 57 3613Google Scholar

    [5]

    郑莉, 郭建中 2016 物理学报 65 044305Google Scholar

    Zheng L, Guo J Z 2016 Acta Phys. Sin. 65 044305Google Scholar

    [6]

    Shan L, Wen G Y 2014 IEEE Trans. Antennas Propag. 62 5565Google Scholar

    [7]

    Wang X Y, Yang G M, Wen G Y 2014 Microwave. Opt. Technol. Lett. 56 2464Google Scholar

    [8]

    Nepa P, Buffi A 2017 IEEE Antennas Propag. Mag. 59 42Google Scholar

    [9]

    Elmer M, Jeffs B D, Warnick K F, Fisher J R, Norrod R D 2012 IEEE Trans. Antennas Propag. 60 903Google Scholar

    [10]

    Guo S, Zhao D, Wang B Z 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT) Guangzhou, China, May 19−22, 2019 p1

    [11]

    Zhao D, Zhu M 2016 IEEE Antennas Wirel. Propag. Lett. 1 5Google Scholar

    [12]

    Zhao D, Guo F, Guo S, Wang B Z 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT) Chengdu, China, May 7−11, 2018 p1

    [13]

    Bellizzi G G, Crocco L, Iero D A M, Isernia T 2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT) Athens, March 1−3, 2017 p162

    [14]

    Bellizzi G G, Bevacqua M T, Crocco L, Isernia T 2018 IEEE Trans. Antennas Propag. 66 4380Google Scholar

    [15]

    Alu A 2009 Phys. Rev. B 80 245115Google Scholar

    [16]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [17]

    Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401Google Scholar

    [18]

    Grbic A, Jiang L, Merlin R 2008 Science 320 511Google Scholar

    [19]

    Imani M F, Grbic A 2013 IEEE Trans. Antennas Propag. 61 5425Google Scholar

    [20]

    Grbic A, Merlin R, Thomas E M, Imani M F 2011 Proceedings of the IEEE 99 1806Google Scholar

    [21]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A.Y, Capasso F 2016 Science 352 1190Google Scholar

    [22]

    Li L, Liu H, Zhang H, Xue W 2018 IEEE Trans. Ind. Electron. 65 3230Google Scholar

    [23]

    Yu S, Liu H, Li L 2019 IEEE Trans. Ind. Electron. 66 3993Google Scholar

    [24]

    Chen X D 2018 Computational Methods for Electromagnetic Inverse Scattering (Hoboken: Wiley-IEEE Press) p24

    [25]

    Kong J A 1990 Electromagnetic Wave Theory (New York: Wiley-Interscience) pp482−483

  • [1] 居学尉, 张林烽, 黄峰, 朱国锋, 李淑锦, 陈燕青, 王嘉勋, 钟舜聪, 陈盈, 王向峰. 数字型太赫兹带通滤波器的逆向设计及优化. 物理学报, 2024, 73(6): 060702. doi: 10.7498/aps.73.20231584
    [2] 李家祥, 王慧琴, 徐和庆, 张华, 冯艳, 董美彤. 基于序列二次规划算法的超小尺寸微纳波长分束器的逆向设计. 物理学报, 2023, 72(19): 194101. doi: 10.7498/aps.72.20230892
    [3] 张伊祎, 韦雪玲, 农洁, 马汉斯, 叶子阳, 徐文杰, 张振荣, 杨俊波. 基于直接二进制搜索算法设计的超紧凑In2Se3可调控功率分束器. 物理学报, 2023, 72(15): 154207. doi: 10.7498/aps.72.20230459
    [4] 桑迪, 徐明峰, 安强, 付云起. 基于拓扑优化的自由形状波分复用超光栅. 物理学报, 2022, 71(22): 224204. doi: 10.7498/aps.71.20221013
    [5] 宁啸坤, 耿滔. 频谱非对称包络调制的圆对称艾里光束的传播特性研究. 物理学报, 2022, 71(10): 104201. doi: 10.7498/aps.71.20220019
    [6] 柯航, 李培丽, 施伟华. 基于下山单纯形算法逆向设计二维光子晶体波导型1×5分束器. 物理学报, 2022, 71(14): 144204. doi: 10.7498/aps.71.20220328
    [7] 邱乙耕, 范元媛, 颜博霞, 王延伟, 吴一航, 韩哲, 亓岩, 鲁平. 光声光谱仪用三维扩展光源光场整形系统设计与实验. 物理学报, 2021, 70(20): 204201. doi: 10.7498/aps.70.20210691
    [8] 王志鹏, 王秉中, 刘金品, 王任. 实现散射场强整形的微散射体阵列逆向设计方法. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200825
    [9] 田永顺, 胡志良, 童剑飞, 陈俊阳, 彭向阳, 梁天骄. 基于3.5 MeV射频四极质子加速器硼中子俘获治疗装置的束流整形体设计. 物理学报, 2018, 67(14): 142801. doi: 10.7498/aps.67.20180380
    [10] 张羽, 罗秀娟, 曹蓓, 陈明徕, 刘辉, 夏爱利, 兰富洋. 傅里叶望远镜发射阵列的冗余度及冗余度-斯特列尔比-目标信息特性分析. 物理学报, 2016, 65(11): 114201. doi: 10.7498/aps.65.114201
    [11] 易红霞, 肖刘, 刘濮鲲, 郝保良, 李飞, 李国超. 基于电子注可回收能力的空间行波管慢波结构的优化设计. 物理学报, 2011, 60(6): 068403. doi: 10.7498/aps.60.068403
    [12] 李国林, 舒挺, 袁成卫, 张军, 靳振兴, 杨建华, 钟辉煌, 杨杰, 武大鹏. 一种高功率微波空间滤波器的设计与初步实验研究. 物理学报, 2010, 59(12): 8591-8596. doi: 10.7498/aps.59.8591
    [13] 刘永生, 杨文华, 朱艳燕, 陈静, 杨正龙, 杨金焕. 新型空间硅太阳电池纳米减反射膜系的优化设计. 物理学报, 2009, 58(7): 4992-4996. doi: 10.7498/aps.58.4992
    [14] 朱言午, 石顺祥, 刘继芳, 孙艳玲. 用于THz波段脉冲空间整形的滤波透镜的电磁场分析. 物理学报, 2009, 58(2): 1042-1045. doi: 10.7498/aps.58.1042
    [15] 李平, 粟敬钦, 马驰, 张锐, 景峰. 光谱色散匀滑对焦斑光强频谱的影响. 物理学报, 2009, 58(9): 6210-6215. doi: 10.7498/aps.58.6210
    [16] 肖 毅, 郭 旗. 有限宽平板波导中的克尔空间孤子及全光器件的设计. 物理学报, 2008, 57(2): 923-933. doi: 10.7498/aps.57.923
    [17] 李建龙, 吕百达. 基于自适应遗传算法部分相干光整形位相板的优化设计. 物理学报, 2008, 57(5): 3006-3010. doi: 10.7498/aps.57.3006
    [18] 高 玮, 吕志伟, 何伟明, 朱成禹, 董永康. 水中微弱光散射布里渊频谱选择性光放大研究. 物理学报, 2007, 56(5): 2693-2698. doi: 10.7498/aps.56.2693
    [19] 张权, 张尔扬, 唐朝京. 基于无消相干子空间的量子避错码设计. 物理学报, 2002, 51(8): 1675-1683. doi: 10.7498/aps.51.1675
    [20] 姬扬, 张静娟, 姚德成, 陈岩松. 用于半导体激光器光束整形的衍射光学元件的设计研究. 物理学报, 1996, 45(12): 2027-2034. doi: 10.7498/aps.45.2027
计量
  • 文章访问数:  7584
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-01
  • 修回日期:  2020-08-12
  • 上网日期:  2020-12-12
  • 刊出日期:  2021-01-05

/

返回文章
返回