-
三维非相干扩展光源相比红外激光光源具有功率高、光谱范围宽、价格低等优势, 在高精度、多组分光声光谱仪中具有极高的应用价值. 然而, 其存在方向性差、能量密度低、形状不规则等现实问题, 需要在光学系统设计过程中进行光场整形. 光声光谱仪要求在小体积范围内收集并优化厘米级三维扩展光源向全空间的辐射, 经一系列波长及频率调制元件后, 最终实现毫米级半径、厘米级长度的圆柱体光场分布. 本文根据光学扩展量概念和边缘光线原理, 在光学系统设计与优化的过程中突破传统完全基于点光源的设计模式, 贯穿了扩展光源概念, 基于自行设计的测量方法和装置直接获取了三维扩展光源的发光特性, 并以微元的形式进行精准三维扩展光源建模. 借助非球面实现了光声光谱仪用三维扩展光源光场整形系统的设计并进行了相关实验验证. 以Hawkeye IR-Si272光源为例, 分别实现了光声光谱仪光声池入池光功率和侧壁噪声仿真值与实验值的较小偏差, 二者具有一致性. 相比原厂聚光系统, 自行设计的光声光谱仪用光源系统入池光功率从0.86 W提升至1.32 W, 侧壁噪声从50.3%下降至19.7%, 实现了百万分之一量级微量气体浓度检测.Compared with infrared laser sources, the three-dimensional incoherent extended light source has the advantages of high power, wide spectral range, and low cost. It has extremely wide applications in high-precision and multi-component photoacoustic spectrometers. However, it encounters some problems about poor directivity, low energy density, irregular shape, light field shaping needed in the design of optical system. The photoacoustic spectrometer is required to collect and optimize the radiation of the centimeter-level three-dimensional extended light source to the whole space in a small volume. Through using a series of wavelength and frequency modulation elements, the final cylindrical light field distribution with millimeter-level radius and centimeter-level length is realized. According to the concept of optical expansion and the principle of edge light, this paper breaks through the traditional design mode based on point light source in the process of optical system design and optimization. The concept of extended light source is used throughout the design process. The luminous characteristics of the three-dimensional extended light source are directly acquired by the self-designed measurement method and device which is accurately reflected in the three-dimensional extended light source model in the form of micro-element. The design of the light field shaping system of the three-dimensional extended light source for the photoacoustic spectrometer is realized by the aspheric surface, and the relevant experimental verification is carried out. Taking the Hawkeye IR-Si272 light source for example, the experimental value of the light power at the entrance of the photoacoustic cell and the sidewall noise rate of the photoacoustic spectrometer have a small deviation from their corresponding simulation values. Compared with the original condenser system, the self-designed photoacoustic spectrometer light source system increases the value of the light power at the entrance of the photoacoustic cell from 0.86W to 1.32W, and reduces the value of the sidewall noise rate from 50.3% to 19.7%. The lower limit of detection of the concentration of trace gas in the order of ppm (parts per million) is also achieved.
-
Keywords:
- optical design /
- light field shaping /
- extended light source /
- light source for photoacoustic spectrometer
[1] Wang Q, Wang J, Li L, Yu Q 2011 Sens. Actuators B 153 214Google Scholar
[2] 李奔荣 2014 硕士学位论文 (长沙: 中南大学)
Li B R 2014 M. S. Thesis (Changsha: Central South University) (in Chinese)
[3] 李少成 2003 博士学位论文 (大连: 大连理工大学)
Li S C 2003 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)
[4] Fan Y Y, Qiu Y G, Wang Q, Qi Y 2020 AOPC 2020: Optical Sensing and Imaging Technology Beijing, China, November 5, 2020 115672F
[5] 杨晓龙 2003 硕士学位论文 (大连: 大连理工大学)
Yang X L 2003 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese)
[6] 张望, 于清旭 2007 光谱学与光谱分析 27 614Google Scholar
Zhang W, Yu Q X 2007 Spectrosc. Spectral Anal. 27 614Google Scholar
[7] Ong P T, Gordon J M, Rabl A 1996 Appl. Opt. 35 4361Google Scholar
[8] Shatz N E, Bortz J C, Harald R, Roland W 1997 Nonimaging Optics: Maximum Efficiency Light Transfer IV San Diego, United States, October 3, 1997 p76
[9] Henning R 2007 Nonimaging Optics and Efficient Illumination Systems IV San Diego, United States, September 18, 2007 667008
[10] Fournier F R, Cassarly W J, Rolland J P 2009 Nonimaging Optics: Efficient Design for Illumination and Solar Concentration VI San Diego, United States, August 20, 2009 742302
[11] Wester R, Müller G, Völl A, Berens M, Stollenwerk J, Loosen P 2014 Opt. Express 22 A552Google Scholar
[12] Wu R, Qin Y, Hua H, Meuret Y, Benítez P, Miñano J C 2015 Opt. Lett. 40 2130Google Scholar
[13] Hoffman C, Ilan B 2020 Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XVII San Diego, United States, August 20, 2020 1149508
[14] Hawkeye Technologies http://hawkeyetechnologies.com/source-selection/ [2021-4-8]
[15] 邱乙耕, 范元媛, 王倩, 颜博霞, 王延伟, 韩哲, 亓岩 2021 光学学报 41 0212003Google Scholar
Qiu Y G, Fan Y Y, Wang Q, Yan B X, Wang Y W, Han Z, Qi Y 2021 Acta Opt. Sin. 41 0212003Google Scholar
[16] Lee F, Lester C, Bruce D, William H, Joseph H, Ritva K 2012 Opt. Eng. 51 011006Google Scholar
[17] Ye J, Chen L, Li X, Yuan Q, Gao Z 2017 Opt. Eng. 56 110901
[18] Su Y P 2017 Design Methods for Non-imaging Optics (Beijing: China Machine Press) pp26−27
[19] Daniel M, Zacarias M 2012 Handbook of Optical Design (Boca Raton: CRC Press) p6
[20] Li X T, Cen Z F 2014 Geometrical Optics, Aberrations and Optical Design (Zhejiang: Zhejiang University Press) pp213−215
[21] Chinese Research Academy of Environmental Sciences, http://english.mee.gov.cn/Resources/standards/others1/others3/201102/t20110216_200847.shtml [2010-5-1]
-
表 1 二次曲面conic系数-面型对应表
Table 1. Correspondence between conic coefficient of quadric surface and surface type.
Conic系数取值 面型 k = 0 球面 k < –1 双曲面 k = –1 抛物面 –1 < k < 0 椭球面 k > 0 竖椭球面 表 2 非球面反光碗光学表面参数
Table 2. Optical surface parameters of spherical reflective bowl.
半径/mm 曲率半
径/mm圆锥系数 二阶非球
面系数四阶非球
面系数12.0 9.896 –0.634 5.275×10–3 –3.870×10–3 表 3 光源激励下气体检测参数表
Table 3. Gas detection parameters under excitation of light source.
CO2 CO CH4 C2H6 C2H4 C2H2 标准差 0.9866 0.5285 0.9118 0.7888 0.7255 0.6947 斜率 11.7280 0.7824 2.1508 2.9748 0.4488 1.8032 检测下限/(μL·L–1) 0.2126 1.7076 1.0717 0.6703 4.0870 0.9739 -
[1] Wang Q, Wang J, Li L, Yu Q 2011 Sens. Actuators B 153 214Google Scholar
[2] 李奔荣 2014 硕士学位论文 (长沙: 中南大学)
Li B R 2014 M. S. Thesis (Changsha: Central South University) (in Chinese)
[3] 李少成 2003 博士学位论文 (大连: 大连理工大学)
Li S C 2003 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)
[4] Fan Y Y, Qiu Y G, Wang Q, Qi Y 2020 AOPC 2020: Optical Sensing and Imaging Technology Beijing, China, November 5, 2020 115672F
[5] 杨晓龙 2003 硕士学位论文 (大连: 大连理工大学)
Yang X L 2003 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese)
[6] 张望, 于清旭 2007 光谱学与光谱分析 27 614Google Scholar
Zhang W, Yu Q X 2007 Spectrosc. Spectral Anal. 27 614Google Scholar
[7] Ong P T, Gordon J M, Rabl A 1996 Appl. Opt. 35 4361Google Scholar
[8] Shatz N E, Bortz J C, Harald R, Roland W 1997 Nonimaging Optics: Maximum Efficiency Light Transfer IV San Diego, United States, October 3, 1997 p76
[9] Henning R 2007 Nonimaging Optics and Efficient Illumination Systems IV San Diego, United States, September 18, 2007 667008
[10] Fournier F R, Cassarly W J, Rolland J P 2009 Nonimaging Optics: Efficient Design for Illumination and Solar Concentration VI San Diego, United States, August 20, 2009 742302
[11] Wester R, Müller G, Völl A, Berens M, Stollenwerk J, Loosen P 2014 Opt. Express 22 A552Google Scholar
[12] Wu R, Qin Y, Hua H, Meuret Y, Benítez P, Miñano J C 2015 Opt. Lett. 40 2130Google Scholar
[13] Hoffman C, Ilan B 2020 Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XVII San Diego, United States, August 20, 2020 1149508
[14] Hawkeye Technologies http://hawkeyetechnologies.com/source-selection/ [2021-4-8]
[15] 邱乙耕, 范元媛, 王倩, 颜博霞, 王延伟, 韩哲, 亓岩 2021 光学学报 41 0212003Google Scholar
Qiu Y G, Fan Y Y, Wang Q, Yan B X, Wang Y W, Han Z, Qi Y 2021 Acta Opt. Sin. 41 0212003Google Scholar
[16] Lee F, Lester C, Bruce D, William H, Joseph H, Ritva K 2012 Opt. Eng. 51 011006Google Scholar
[17] Ye J, Chen L, Li X, Yuan Q, Gao Z 2017 Opt. Eng. 56 110901
[18] Su Y P 2017 Design Methods for Non-imaging Optics (Beijing: China Machine Press) pp26−27
[19] Daniel M, Zacarias M 2012 Handbook of Optical Design (Boca Raton: CRC Press) p6
[20] Li X T, Cen Z F 2014 Geometrical Optics, Aberrations and Optical Design (Zhejiang: Zhejiang University Press) pp213−215
[21] Chinese Research Academy of Environmental Sciences, http://english.mee.gov.cn/Resources/standards/others1/others3/201102/t20110216_200847.shtml [2010-5-1]
计量
- 文章访问数: 4708
- PDF下载量: 64
- 被引次数: 0