搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光声光谱仪用三维扩展光源光场整形系统设计与实验

邱乙耕 范元媛 颜博霞 王延伟 吴一航 韩哲 亓岩 鲁平

引用本文:
Citation:

光声光谱仪用三维扩展光源光场整形系统设计与实验

邱乙耕, 范元媛, 颜博霞, 王延伟, 吴一航, 韩哲, 亓岩, 鲁平

Design and experiment of light field shaping system for three-dimensional extended light source used in photoacoustic spectrometer

Qiu Yi-Geng, Fan Yuan-Yuan, Yan Bo-Xia, Wang Yan-Wei, Wu Yi-Hang, Han Zhe, Qi Yan, Lu Ping
PDF
HTML
导出引用
  • 三维非相干扩展光源相比红外激光光源具有功率高、光谱范围宽、价格低等优势, 在高精度、多组分光声光谱仪中具有极高的应用价值. 然而, 其存在方向性差、能量密度低、形状不规则等现实问题, 需要在光学系统设计过程中进行光场整形. 光声光谱仪要求在小体积范围内收集并优化厘米级三维扩展光源向全空间的辐射, 经一系列波长及频率调制元件后, 最终实现毫米级半径、厘米级长度的圆柱体光场分布. 本文根据光学扩展量概念和边缘光线原理, 在光学系统设计与优化的过程中突破传统完全基于点光源的设计模式, 贯穿了扩展光源概念, 基于自行设计的测量方法和装置直接获取了三维扩展光源的发光特性, 并以微元的形式进行精准三维扩展光源建模. 借助非球面实现了光声光谱仪用三维扩展光源光场整形系统的设计并进行了相关实验验证. 以Hawkeye IR-Si272光源为例, 分别实现了光声光谱仪光声池入池光功率和侧壁噪声仿真值与实验值的较小偏差, 二者具有一致性. 相比原厂聚光系统, 自行设计的光声光谱仪用光源系统入池光功率从0.86 W提升至1.32 W, 侧壁噪声从50.3%下降至19.7%, 实现了百万分之一量级微量气体浓度检测.
    Compared with infrared laser sources, the three-dimensional incoherent extended light source has the advantages of high power, wide spectral range, and low cost. It has extremely wide applications in high-precision and multi-component photoacoustic spectrometers. However, it encounters some problems about poor directivity, low energy density, irregular shape, light field shaping needed in the design of optical system. The photoacoustic spectrometer is required to collect and optimize the radiation of the centimeter-level three-dimensional extended light source to the whole space in a small volume. Through using a series of wavelength and frequency modulation elements, the final cylindrical light field distribution with millimeter-level radius and centimeter-level length is realized. According to the concept of optical expansion and the principle of edge light, this paper breaks through the traditional design mode based on point light source in the process of optical system design and optimization. The concept of extended light source is used throughout the design process. The luminous characteristics of the three-dimensional extended light source are directly acquired by the self-designed measurement method and device which is accurately reflected in the three-dimensional extended light source model in the form of micro-element. The design of the light field shaping system of the three-dimensional extended light source for the photoacoustic spectrometer is realized by the aspheric surface, and the relevant experimental verification is carried out. Taking the Hawkeye IR-Si272 light source for example, the experimental value of the light power at the entrance of the photoacoustic cell and the sidewall noise rate of the photoacoustic spectrometer have a small deviation from their corresponding simulation values. Compared with the original condenser system, the self-designed photoacoustic spectrometer light source system increases the value of the light power at the entrance of the photoacoustic cell from 0.86W to 1.32W, and reduces the value of the sidewall noise rate from 50.3% to 19.7%. The lower limit of detection of the concentration of trace gas in the order of ppm (parts per million) is also achieved.
      通信作者: 范元媛, fanyuanyuan@ime.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFF01011801)、国家自然科学基金(批准号: 12074405)、应用光学国家重点实验室开放基金(批准号: SKLAO-201915)和中国科学院青年创新促进会(批准号: 2020121)资助的课题
      Corresponding author: Fan Yuan-Yuan, fanyuanyuan@ime.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFF01011801), the National Natural Science Foundation of China (Grant No. 12074405), the Open Fund Project of the State Key Laboratory of Applied Optics, China (Grant No. SKLAO-201915), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences, China (Grant No. 2020121)
    [1]

    Wang Q, Wang J, Li L, Yu Q 2011 Sens. Actuators B 153 214Google Scholar

    [2]

    李奔荣 2014 硕士学位论文 (长沙: 中南大学)

    Li B R 2014 M. S. Thesis (Changsha: Central South University) (in Chinese)

    [3]

    李少成 2003 博士学位论文 (大连: 大连理工大学)

    Li S C 2003 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [4]

    Fan Y Y, Qiu Y G, Wang Q, Qi Y 2020 AOPC 2020: Optical Sensing and Imaging Technology Beijing, China, November 5, 2020 115672F

    [5]

    杨晓龙 2003 硕士学位论文 (大连: 大连理工大学)

    Yang X L 2003 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese)

    [6]

    张望, 于清旭 2007 光谱学与光谱分析 27 614Google Scholar

    Zhang W, Yu Q X 2007 Spectrosc. Spectral Anal. 27 614Google Scholar

    [7]

    Ong P T, Gordon J M, Rabl A 1996 Appl. Opt. 35 4361Google Scholar

    [8]

    Shatz N E, Bortz J C, Harald R, Roland W 1997 Nonimaging Optics: Maximum Efficiency Light Transfer IV San Diego, United States, October 3, 1997 p76

    [9]

    Henning R 2007 Nonimaging Optics and Efficient Illumination Systems IV San Diego, United States, September 18, 2007 667008

    [10]

    Fournier F R, Cassarly W J, Rolland J P 2009 Nonimaging Optics: Efficient Design for Illumination and Solar Concentration VI San Diego, United States, August 20, 2009 742302

    [11]

    Wester R, Müller G, Völl A, Berens M, Stollenwerk J, Loosen P 2014 Opt. Express 22 A552Google Scholar

    [12]

    Wu R, Qin Y, Hua H, Meuret Y, Benítez P, Miñano J C 2015 Opt. Lett. 40 2130Google Scholar

    [13]

    Hoffman C, Ilan B 2020 Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XVII San Diego, United States, August 20, 2020 1149508

    [14]

    Hawkeye Technologies http://hawkeyetechnologies.com/source-selection/ [2021-4-8]

    [15]

    邱乙耕, 范元媛, 王倩, 颜博霞, 王延伟, 韩哲, 亓岩 2021 光学学报 41 0212003Google Scholar

    Qiu Y G, Fan Y Y, Wang Q, Yan B X, Wang Y W, Han Z, Qi Y 2021 Acta Opt. Sin. 41 0212003Google Scholar

    [16]

    Lee F, Lester C, Bruce D, William H, Joseph H, Ritva K 2012 Opt. Eng. 51 011006Google Scholar

    [17]

    Ye J, Chen L, Li X, Yuan Q, Gao Z 2017 Opt. Eng. 56 110901

    [18]

    Su Y P 2017 Design Methods for Non-imaging Optics (Beijing: China Machine Press) pp26−27

    [19]

    Daniel M, Zacarias M 2012 Handbook of Optical Design (Boca Raton: CRC Press) p6

    [20]

    Li X T, Cen Z F 2014 Geometrical Optics, Aberrations and Optical Design (Zhejiang: Zhejiang University Press) pp213−215

    [21]

    Chinese Research Academy of Environmental Sciences, http://english.mee.gov.cn/Resources/standards/others1/others3/201102/t20110216_200847.shtml [2010-5-1]

  • 图 1  红外热辐射光源发光特性测量实验装置图[15] (a)示意图; (b)实物照

    Fig. 1.  Experiment configuration for measuring the light distribution characteristic of IR thermal radiation light source[15]: (a) Schematic diagram; (b) photograph.

    图 2  红外热辐射光源辐射通量长度分布测量实验装置图 (a)示意图; (b)实物照

    Fig. 2.  Experiment configuration for measuring the radiant flux distribution on the length of the IR thermal radiation light source: (a) Schematic diagram; (b) photograph.

    图 3  HAWKEYE IR-SI272光源 (a)三维布局图; (b)实物照

    Fig. 3.  HAWKEYE IR-SI272: (a) 3D layout; (b) photograph.

    图 4  带锥形光管光源的光学扩展量分析

    Fig. 4.  Analytical diagram of the Etendue of light source with tapered light pipe.

    图 5  光声池三维布局图

    Fig. 5.  3D Layout of photo-acoustic cell.

    图 6  光源光学系统 (a)三维布局图; (b)实体渲染图

    Fig. 6.  Total reflection optical system: (a) 3D layout; (b) shaded model.

    图 7  光声池截面能量分布

    Fig. 7.  The cross-section energy distribution of the photo-acoustic cell.

    图 8  实验装置图

    Fig. 8.  Experimental setup.

    图 9  光源光学指标测量

    Fig. 9.  Measurement of optical index of light source.

    图 10  探测器光斑 (a)自设计锥形光管; (b)原厂MC-234聚光器

    Fig. 10.  Light spot: (a) Self-designed tapered light pipe; (b) original MC-234 condenser.

    表 1  二次曲面conic系数-面型对应表

    Table 1.  Correspondence between conic coefficient of quadric surface and surface type.

    Conic系数取值面型
    k = 0球面
    k < –1双曲面
    k = –1抛物面
    –1 < k < 0椭球面
    k > 0竖椭球面
    下载: 导出CSV

    表 2  非球面反光碗光学表面参数

    Table 2.  Optical surface parameters of spherical reflective bowl.

    半径/mm曲率半
    径/mm
    圆锥系数二阶非球
    面系数
    四阶非球
    面系数
    12.09.896–0.6345.275×10–3–3.870×10–3
    下载: 导出CSV

    表 3  光源激励下气体检测参数表

    Table 3.  Gas detection parameters under excitation of light source.

    CO2COCH4C2H6C2H4C2H2
    标准差0.98660.52850.91180.78880.72550.6947
    斜率11.72800.78242.15082.97480.44881.8032
    检测下限/(μL·L–1)0.21261.70761.07170.67034.08700.9739
    下载: 导出CSV
  • [1]

    Wang Q, Wang J, Li L, Yu Q 2011 Sens. Actuators B 153 214Google Scholar

    [2]

    李奔荣 2014 硕士学位论文 (长沙: 中南大学)

    Li B R 2014 M. S. Thesis (Changsha: Central South University) (in Chinese)

    [3]

    李少成 2003 博士学位论文 (大连: 大连理工大学)

    Li S C 2003 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [4]

    Fan Y Y, Qiu Y G, Wang Q, Qi Y 2020 AOPC 2020: Optical Sensing and Imaging Technology Beijing, China, November 5, 2020 115672F

    [5]

    杨晓龙 2003 硕士学位论文 (大连: 大连理工大学)

    Yang X L 2003 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese)

    [6]

    张望, 于清旭 2007 光谱学与光谱分析 27 614Google Scholar

    Zhang W, Yu Q X 2007 Spectrosc. Spectral Anal. 27 614Google Scholar

    [7]

    Ong P T, Gordon J M, Rabl A 1996 Appl. Opt. 35 4361Google Scholar

    [8]

    Shatz N E, Bortz J C, Harald R, Roland W 1997 Nonimaging Optics: Maximum Efficiency Light Transfer IV San Diego, United States, October 3, 1997 p76

    [9]

    Henning R 2007 Nonimaging Optics and Efficient Illumination Systems IV San Diego, United States, September 18, 2007 667008

    [10]

    Fournier F R, Cassarly W J, Rolland J P 2009 Nonimaging Optics: Efficient Design for Illumination and Solar Concentration VI San Diego, United States, August 20, 2009 742302

    [11]

    Wester R, Müller G, Völl A, Berens M, Stollenwerk J, Loosen P 2014 Opt. Express 22 A552Google Scholar

    [12]

    Wu R, Qin Y, Hua H, Meuret Y, Benítez P, Miñano J C 2015 Opt. Lett. 40 2130Google Scholar

    [13]

    Hoffman C, Ilan B 2020 Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XVII San Diego, United States, August 20, 2020 1149508

    [14]

    Hawkeye Technologies http://hawkeyetechnologies.com/source-selection/ [2021-4-8]

    [15]

    邱乙耕, 范元媛, 王倩, 颜博霞, 王延伟, 韩哲, 亓岩 2021 光学学报 41 0212003Google Scholar

    Qiu Y G, Fan Y Y, Wang Q, Yan B X, Wang Y W, Han Z, Qi Y 2021 Acta Opt. Sin. 41 0212003Google Scholar

    [16]

    Lee F, Lester C, Bruce D, William H, Joseph H, Ritva K 2012 Opt. Eng. 51 011006Google Scholar

    [17]

    Ye J, Chen L, Li X, Yuan Q, Gao Z 2017 Opt. Eng. 56 110901

    [18]

    Su Y P 2017 Design Methods for Non-imaging Optics (Beijing: China Machine Press) pp26−27

    [19]

    Daniel M, Zacarias M 2012 Handbook of Optical Design (Boca Raton: CRC Press) p6

    [20]

    Li X T, Cen Z F 2014 Geometrical Optics, Aberrations and Optical Design (Zhejiang: Zhejiang University Press) pp213−215

    [21]

    Chinese Research Academy of Environmental Sciences, http://english.mee.gov.cn/Resources/standards/others1/others3/201102/t20110216_200847.shtml [2010-5-1]

  • [1] 沈晓阳, 成一灏, 夏林. 紧凑型冷原子高分辨成像系统光学设计. 物理学报, 2024, 73(6): 066701. doi: 10.7498/aps.73.20231689
    [2] 黄一帆, 邢阳光, 沈文杰, 彭吉龙, 代树武, 王颖, 段紫雯, 闫雷, 刘越, 李林. 亚角秒空间分辨的太阳极紫外宽波段成像光谱仪光学设计. 物理学报, 2024, 73(3): 039501. doi: 10.7498/aps.73.20231481
    [3] 吴长茂, 唐熊忻, 夏媛媛, 杨瀚翔, 徐帆江. 用于空间相机设计的高精度光线追迹方法. 物理学报, 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [4] 侯晨阳, 孟凡超, 赵一鸣, 丁进敏, 赵小艇, 刘鸿维, 王鑫, 娄淑琴, 盛新志, 梁生. “机器微纳光学科学家”: 人工智能在微纳光学设计的应用与发展. 物理学报, 2023, 72(11): 114204. doi: 10.7498/aps.72.20230208
    [5] 李月, 李竣, 薛正跃, 王晶晶, 王贵师, 高晓明, 谈图. 本振光功率锁定方法应用于激光外差辐射计的研究. 物理学报, 2023, 72(9): 093201. doi: 10.7498/aps.72.20230261
    [6] 许祥馨, 常军, 武楚晗, 宋大林. 基于双随机相位编码的局部混合光学加密系统. 物理学报, 2020, 69(20): 204201. doi: 10.7498/aps.69.20200478
    [7] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [8] 刘飞, 魏雅喆, 韩平丽, 刘佳维, 邵晓鹏. 基于共心球透镜的多尺度广域高分辨率计算成像系统设计. 物理学报, 2019, 68(8): 084201. doi: 10.7498/aps.68.20182229
    [9] 徐平, 杨伟, 张旭琳, 罗统政, 黄燕燕. 集成化导光板下表面微棱镜二维分布设计. 物理学报, 2019, 68(3): 038502. doi: 10.7498/aps.68.20181684
    [10] 操超, 廖志远, 白瑜, 范真节, 廖胜. 基于矢量像差理论的离轴反射光学系统初始结构设计. 物理学报, 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [11] 陆中伟, 王晓方. 光源尺寸和光谱带宽对波带板成像的影响. 物理学报, 2019, 68(3): 035202. doi: 10.7498/aps.68.20181236
    [12] 冯帅, 常军, 牛亚军, 穆郁, 刘鑫. 一种非对称双面离轴非球面反射镜检测补偿变焦光路设计方法. 物理学报, 2019, 68(11): 114201. doi: 10.7498/aps.68.20182253
    [13] 吕向博, 朱菁, 杨宝喜, 黄惠杰. 基于ybar-y图的光学结构计算方法研究. 物理学报, 2015, 64(11): 114201. doi: 10.7498/aps.64.114201
    [14] 沈本兰, 常军, 王希, 牛亚军, 冯树龙. 三反射主动变焦系统设计. 物理学报, 2014, 63(14): 144201. doi: 10.7498/aps.63.144201
    [15] 裴琳琳, 吕群波, 王建威, 刘扬阳. 编码孔径成像光谱仪光学系统设计. 物理学报, 2014, 63(21): 210702. doi: 10.7498/aps.63.210702
    [16] 陈晓虎, 王晓方, 张巍巍, 汪文慧. 相位型波带板应用于大尺度X射线源成像的分析与模拟. 物理学报, 2013, 62(1): 015208. doi: 10.7498/aps.62.015208
    [17] 任洪亮. 有限远共轭显微镜光镊设计和误差分析. 物理学报, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [18] 董科研, 孙 强, 李永大, 张云翠, 王 健, 葛振杰, 孙金霞, 刘建卓. 折射/衍射混合红外双焦光学系统设计. 物理学报, 2006, 55(9): 4602-4607. doi: 10.7498/aps.55.4602
    [19] 王 方, 朱启华, 蒋东镔, 张清泉, 邓 武, 景 峰. 多程放大系统主放大级光学优化设计. 物理学报, 2006, 55(10): 5277-5282. doi: 10.7498/aps.55.5277
    [20] 孙 强, 于 斌, 王肇圻, 母国光, 卢振武. 谐衍射双波段红外超光谱探测系统研究. 物理学报, 2004, 53(3): 756-761. doi: 10.7498/aps.53.756
计量
  • 文章访问数:  4708
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-12
  • 修回日期:  2021-06-08
  • 上网日期:  2021-10-08
  • 刊出日期:  2021-10-20

/

返回文章
返回